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Abstract

This article studies the quasi-stationary behaviour of multidimen-
sional birth and death processes, modeling the interaction between sev-
eral species, absorbed when one of the coordinates hits 0. Despite the
extensive use of these models in applications, no result was known up
to now in the case when the absorption rate is not uniformly bounded,
which is the relevant biological case. To handle this situation, we
develop original Lyapunov function arguments that might apply in
other situations with unbounded killing rates. We obtain the expo-
nential convergence in total variation of the conditional distributions
to a unique quasi-stationary distribution, uniformly with respect to the
initial distribution. Our results cover general birth and death models
with stronger intra-specific than inter-specific competition, and cases
with neutral competition with explicit conditions on the dimension of
the process.
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1 Introduction

This article is devoted to the study of quasi-stationary behavior of continuous-
time multi-type birth and death processes absorbed when one of the types
hits 0. Multitype birth and death processes are the models par excellence in
a wide range of applications (queuing theory, chemical kinetics, etc.). The
case of models absorbed when one of the types hits 0 corresponds typically
to population dynamics of several species (or types of individuals), where
extinction of species are irreversible. In complex cases (for example cooper-
ative ecosystems) one can expect that the extinction of one species rapidly
leads to the global extinction of the population. For such applications, it
is particularly relevant to study the population distributions conditionally
on non-extinction of all coordinates, and thus quasi-stationary distributions.
The specific difficulty of this problem comes from the fact that the absorption
rate is not uniformly bounded, contrary to the complementary biological sit-
uation of ecosystems conditioned to non-extinction of the whole population.
This last problem has already been studied in several works (e.g. [9, 6]),
whereas the present work is the first one to deal with birth and death pro-
cesses with unbounded absorption rate (even for the simpler question of
existence of a quasi-stationary distribution).

More specifically, we consider a continuous-time Markov process (X, ¢ >
0) taking values in Z! for some r > 1, where we use the notations Z, =
{0,1,2,...} and N={1,2,3,...}. The transition rates of X are given by

n+e; with rate njb;(n),

from n = (ny,...,n;) to {n e, with rate n [dj(n) N (Zzzl Cjk(n)nk)”/}
for all 1 < j < r, with e; = (0,...,0,1,0,...,0), where the nonzero co-
ordinate is the j-th one, v > 0, b(n) = (b1(n),...,by(n)) and d(n) =
(di(n),...,dr(n)) are functions from Z’, to R’ and c(n) = (c¢i;(n))1<i j<r is
a function from Z', to the set of r x r matrices with nonnegative coefficients.

In other words, the infinitesimal generator of the process X is defined
for all bounded function f on Z' and all n € Z', as

T

Lf(n) =Y [f(n+e;) — f(n)n;b;(n)

j=1
r r v
+ Y [f(n—ej) = f(n)]ny [dj(”) + (Z Cjk(”)”k) ] (1.1)
j=1 k=1



This model represents a density-dependent population dynamics with r
types of individuals (say r species), where bj(n) (resp. d;(n)) is the indi-
vidual birth (resp. death) rate of an individual of type j in the population
n, and c;;(n) represents the competition exerted by an individual of type
j on an individual of type ¢ in the population n. The global competition
> k1 ¢jk(n)ng felt by an individual of type ¢ influences its death rate at a
power «, which represents the strength of the competition. The larger 7 is,
the stronger is the influence of the competition in large populations. The
case 7 = 1 is very common in biology and is known as logistic (or competi-
tive Lotka-Volterra) competition. Other values of v > 0 are also relevant in
ecological applications.

Note that the forms of the birth and death rates imply that, once a
coordinate Xg of the process hits 0, it remains equal to 0. This corresponds
to the extinction of the population of type j. Hence, the set 0 := Z, \ N is
absorbing for the process X. Let us denote by 7y its absorption time. Our
goal is to study the process (X;,t > 0) conditioned to non-aborption, and
in particular its quasi-stationary distribution, i.e. a probability measure «
on N” such that

Po(Xi € -|t<Tg) =a, Vt>0.

More precisely, we shall give conditions ensuring the uniform exponential
convergence of conditional distributions to the quasi-stationary distribution,
independently of the initial condition. This means that there exist constants
C, X > 0 such that

IBu(Xi €t <79)—allpy < Ce™, WuePIN), t20, (1.2)

where || - |7y is the total variation norm and P(N") is the set of probability
measures on N". This implies in particular the uniqueness of the quasi-
stationary distribution.

In particular, when (1.2) is satisfied, regardless of the initial condition,
the quasi-stationary distribution describes the state of the population when
it survives for a long time. One of the most notable features of quasi-
stationary populations is the existence of a so-called mortality/extinction
plateau: there exists Ag > 0 limit of the extinction rate of the population
(see [16]). The constant —\¢ is actually the largest non-trivial eigenvalue of
the generator L and satisfies

Po(t < 75) = e MVt >0.

Many properties can be deduced from (1.2), as the uniform convergence
of eM!'P,(t < 75) to n(x), where 7 is the eigenfunction of L corresponding



to the eigenvalue Ao [6, Prop.2.3], and the existence and the exponential
ergodicity of the associated Q-process, defined as the process X conditionned
to never be extinct (see [6, Thm. 3.1] for a precise definition).

Quasi-stationary distributions for population processes have received
much interest in the recent years (see the surveys [16, 22]). One of the most
understood case concerns birth and death processes on Z_ absorbed at 0: it
has been shown in [20] that there are either zero, one or an infinite contin-
uum of quasi-stationary distributions for such processes. More recently, it
has been shown in [15] that there exists a unique quasi-stationary distribu-
tion for one dimensional birth and death processes if and only if (1.2) holds.
This result has been extended in the recent paper [6] to birth and death pro-
cesses with catastrophes (among other applications). The specific question
of estimates on the speed of convergence to quasi-stationary distributions
for one dimensional birth and death processes has been studied in [11, 8].
The multi-dimensional situation, which takes into account the existence of
several types of individuals in a population, is much less understood, except
in the branching case of multi-type Galton-Watson processes (see [1, 17])
and for specific cooperative models with bounded absorption rate (see [6]).
Another originality of the models studied in the present paper is the fact that
the absorption rate is not uniformly bounded. To handle this natural situ-
ation, we develop original Lyapunov function arguments that might apply
to other situations with unbounded killing rates. For results on the quasi-
stationary behaviour of continuous-time and continuous state space models,
we refer to [2, 14, 7] for the one dimensional case and to [18, 12, 3, 13, 10, 5]
for the multi-dimensional situation. Infinite dimensional models have been
studied in [9, 6], but only conditionally on the non-extinction of the total
population, i.e. in cases with bounded absorption rate. Several papers study-
ing the quasi-stationary behaviour of models applied to biology, chemistry,
demography and finance are listed in [19].

We are going to prove (1.2) under two sets of assumptions. The first one
(Section 2) considers stronger intra-specific competition than inter-specific
competition (i.e. ¢;;(n) larger than c;j(n) for large |n| and for i # j). We
make no particular assumption on the dimension r of the process and on
the birth, death and competition functions. The second one (Section 3)
considers a case of equal inter- and intra-specific competition (neutral com-
petition), which leads to specific difficulties that we can solve for dimension
r < 3 in the logistic case. The last section 4 is dedicated to a few extensions
of our method to other models.



2 General birth and death functions with strong
intra-specific competition

The first case we study corresponds to the following assumptions, where |n|
denotes ny + ...+ n,, for all n = (n1,...,n,).

Assumption 1. (H1) There exist constants b, d and ¢ in (0,00) and B1 >
0,02 € (—o00,1) with B1 + vB2 < ~ such that, for all n € N" and
ie{l,...,r},

0 <bi(n) < Elnlﬁl, 0 <di(n) < J\n|61, cii(n) > g\n\_ﬁQ.

(H2) For allie{l,...,r}, when |n| — +oo,

C”(’I’L) > Z cjk(n) + ‘71” Zij(n), (2.1)
j=1

1<j#k<r

where the notation f(n) > g(n) means that f(n)/g(n) — +oo when
|n| = +o0.

The first assumption is standard for population models, typically with
B1 = P2 = 0. From the biological point of view, the second assumption
corresponds to a stronger intra-specific competition than interspecific com-
petition. For example it holds if all the functions c¢;(-) for 1 < i < r
have the same order of magnitude when |n| — +4oo and all the c;;(-)
for i # j are asymptotically negligible w.r.t. the ¢;;(-). The positivity of
bi(n), cii(n) ensures that the process is irreducible away from 0 (in the sense
that P, (X; = m) > 0 for all n,m # 9).

Theorem 2.1. Under Assumptions 1, there exist constants C, A > 0 such
that (1.2) holds true.

We explain in Section 4 how to generalize this result to cases with killing
or with multiple births.

Remark 1. In fact, Assumption (H2) and the statement about c;(n) in
Assumption (H1) can be replaced by

T s

r 0l r Y
s
E ﬁ]l”ﬁﬂ (E cjk(n)nk> > C, E Lp,=1 <E cjk(n)nk> > \n|61v7
i=1 i=1

k=1 k=1

when |n| large enough, for some (explicit) constant C, depending only on r
and 7.



This allows to cover other biological settings than the strong intra-
specific competition. For example, assuming 5; = 0, it is satisfied when,
for all 4, ¢;;(n) = ni ™ for at least some j # i for some § > 0, and ¢;;(n) = 1
otherwise. This corresponds to a situation of strong competition exerted
on other species by large species (a kind of collective aggressivity against
other species). Hybrid situations can also fit this assumption, for exam-
ple when 7 = 2, ¢1a(n) = nl*°, cp(n) = ng and ¢11(n) = ex(n) = 1 for
some 6,8 > 0. More complex structures of interaction can of course fit our
assumptions.

This also allows to cover classical biological cases, with comparable inter-
and intra-specific competition, for example if v = 1 and ¢;j(n) = ¢;; inde-
pendent of n, provided that the ¢; for 1 <4 < r are not too small compared
to the Cij, 1 75]

This result and the one of Section 3 are consequences of the general
criterion of [6, Thm. 2.1], which gives a necessary and sufficient condition
for (1.2) for general Markov processes. This condition is given by the two
properties (Al) and (A2) below: there exists a probability measure v on N”
such that

(A1) there exist to,c; > 0 such that for all x € N",

Px(Xto c - ‘ to < Ta) > clu(-);

(A2) there exists ca > 0 such that for all z € N" and ¢ > 0,

P,(t < 79) > coPr(t < T9).

Hence we only have to prove that Assumptions 1 implies (A1) and (A2).
Our proof of (Al) is based on Lyapunov functions and makes use of the
following general inequality on conditional distributions.

Proposition 2.2. Fizn € N and let pu(-) = Pp(Xy € - | t < 19). Let
V : N' — Ry such that LV is bounded from above on N". Then, for all
t>0,

t
V)=V < [ [@V) = Vp(Et)]ds. (22)
where the value of the integral in the r.h.s. is well-defined in (—oo, +00] since

[ [0 = eV p2300)]_ds < o

where [x]— = (—xz) V 0 is the negative part of v € R.



Proof. Fix k € N and let 73, := inf{t > 0: | X;| > k}. We define X* as the
process X stopped at time 75, and denote by LF its infinitesimal generator,
given by LFf(n) = Lf(n)1jp <k Dynkin’s formula then entails

E,V(XF) = V(n) +/0t E, [L’W(Xf)} ds.

Letting k& — 400, Fatou’s lemma applied to both sides (mind that V' is
bounded from below while LV is bounded from above) imply that

t
E,V(X;) gV(n)+/ E, [LV(X,)] ds. (2.3)
0
Similarly,
t
B, Ly (XF) = 1+ / E, {Lk]lNT(Xf)} ds.
0

Lebesgue’s dominated convergence theorem applies to the l.h.s. and the
monotone convergence theorem to the r.h.s., which entails

t
En]]-NT(Xt) =1 +/ En [L:H_Nr(Xs)] ds.
0

Now, fix T'> 0. We have 1 > P, (t < 79) > P,(T < 79) > 0 for all t € [0,T].
Note first that, since LV is bounded from above and V' is non-negative, (2.3)
implies that t — E,[LV (X})] € L'([0,T]). In addition, L1y < 0and V > 0,
so —E,(V(Xy))E,(L1yr (X)) > 0. Then, either

/Ot E,(V(Xs))E,(—Lln(Xs)) ds = 400,

and then (2.2) is trivial since p(f) = En(f(X1))/En(Ine(Xt)) > En(f (X))
for all f >0, or

/ t B, (V (X)) En(—Llne (X)) ds < +oo.
0

In this case, since p(f) = En(f(X¢))/En(Inr(Xy)) < En(f(Xe))/Pn(T <
Tp) for all f > 0, we deduce from the fundamental theorem of calculus that,
for all ¢ € [0, 7],

V(n) + Jy Bn [LV(X,)] ds
1+ [VE, [L1n(Xy)] ds

/ [1e(LV) — (V)LL) ds = V().

Inequality (2.2) then follows from (2.3). O



Proof of Theorem 2.1. The proof of (A1) is based on the following bounded
Lyapunov function: fix € € (0,7 — vf2) and define for all n € N”

[n

Vi) =3

=17

and V;(n) =0 for alln € 0 := Z' \N". For all m,n € N" such that |m| < |n|,
we have in particular the inequality

1( 1 1 )_/W“ da
e\(Im[+1  (nl+1)) S 2=

< Vi(n) - Ve(m) < /lm"' RN <1 - 1> (24

Step 1: Lyapunov function for the conditional distributions.
Fix ng € N" and let p(-) :=Pp (X; € - | t < 79). It follows from (1.1) that

, i) 7 )+ (i () |

pe(LVe) = D ue(m) D L | oy — ]+
neN” 1=1
.
bi(n)

+1p,—1 T+ D~ di(n) + ;cij(n)nj V(n) (2.5)

Fix n € N” and let i*(n) be (one of) the argmax of i — n; and let ¢*(n) :=
Ci(n)i*(n) (7). Then ngs(,) > |n|/r and
’" O
c*(n)Y|n|™
N (n) Zcij(n)nj > ST
j=1

Using Assumption (H1) and since d;(n) > 0,

S8 c*(n)n|7"*
pe(LVe) < ) pu(n) {blnlﬁ1 IS e rer
neN”

r 7

= ot [di(n) + | D ei(n)ny Vi(n)p. (2.6)
=1



In addition,

gl
—p(Va)pe(Ln) < [Velloo D pe(n) Y Tng=a [ di(n) + | Y cij(n)my
neNr i=1 j=1
Denoting a := %7 the last two equations imply
e c*(n)7|n|7¢
pe(LV2) = (Vo) e (L) < pua(m [b\n\ﬁl +a— ()JJ] + A,
neN” "
where, by (2.4),
T T v
= ()Y M= |di(n) + [ D cijmng || (IVelloo — Va(n))
neNr i=1 j=1
- v
o dnl? e+ (S e minl + i)
<D )Y Lnm =R
neN” =1
gl

rdn|fr—c  C.,, |In|7¢
< Z Nt(n) ‘ l + 'Yﬂ"’g Z CZ] ZC“

neNr 1<i#j<r

where C, , is a positive constant such that z] +... 42} < Cy ,(z14...+z,)7
for all x1,...,2, > 0.

Using Assumption (H2), we see that there exist constants B > 0 and
C > 1 independent of n such that

pe(LVe) — pe(Ve) pe(Llnr) < Z p(n {B(l + |n|7#) — WW}

€N 2ri+
n T
B1—e c’ y—vB2—¢€
Z pue(n 1+ |n[77%) — WW
neN”
(C— Z n|7~ vh2—e ), )) ,
neN”

where the last inequality follows from the fact that 51 < v — B2 and € <
Y =P

Step 2: Proof of (A1).

Step 1 and Prop. 2.2 imply that

1 ¢ 1
pe(Ve) < z +/ (C’— ol Z |n|7_752_5p5(n)> ds.
0

neN”

9



This implies that, for any initial condition ng, there exists s < 1/(eC) such
that

S Iy (n) < 2.

neN"
Let us define the set K = {n € N", |n|7=7627¢ < 4C?}, which is finite since
e € (0,7 — vf2). Using the previous inequality and Markov’s inequality, we
obtain that ps(K) > 1/2.

The minimum p = mingex Pp(Xy, = (1,...,1), Yu € [1/eC,2/eC)) is

positive because K is finite, X is irreducible away from 0 and the jumping
rate from (1,...,1) is finite. Hence

" (P.(Xu =(1,...,1), Yu e [L/C, 2/50))) >

(VRS

> 0,

Using the Markov property, we deduce that

N2/(6C){(17 SR 1)} > /‘S(P- (XQ/(ac)—s = (L R 1))
> ps(P(Xu = (1,...,1), Yu € [1/(eC),2/C))
z§>0

Since p does not depend on the initial distribution of the process, we deduce
that (A1) is satisfied with v = (1, 1), to = 2/(eC) and ¢; = p/2.

Step 3: Proof of (A2).

The same calculation as in (2.6) shows that, for all n € N",

c(n)|n7"*

LV.(n) < bn| ¢ — Luza,..n) T

Now, using Assumption (H1), we have c*(n)¥|n|7=¢ > c|n|?~577%2  with
vy—e—~P2 > (B1—¢)V0. Hence, there exist two positive constants C7, Cy > 0
such that

LV.(n) < Cy — Con[7=577%2 ¥n e N,

Since V. is bounded and LV; is bounded from above, we deduce from
Dynkin’s formula as in the proof of Proposition 2.2 that, for all £ > 1,

T{Iml<k}/\To
En (Ve(Xricpypra) ) < Veln) +E < /O LV.(Xy) dt>

<-4+ (01 - cz|k|”—6‘%) En (7{jmi<ky A 70)

o=

10



where 7(|;,|<ky is the first hitting time by X; of the set {m € N" : |m| < k}

Since Va(XT{W <k} Ary) 18 almost surely non-negative, we obtain

E A — 0.
sgl\ll)r " (T{\m\gk;} TB) k—o00
Using the same argument as in [6, Eq. (4.6)], we deduce that, for all A > 0,
there exists £ > 1 such that
sup E, (eMimi<sAT0) < oo, (2.7)
neN”
Let us now denote by A the total jumping rate from (1,...,1). We choose k
such that (2.7) holds for this constant A. Defining the finite set G = {m €
N" | |m| < k}, we thus have
A = sup E,(e’6"\0) < oo, (2.8)
neN”
The irreducibility of X and the finiteness of G entail the existence of a
constant C' > 0 such that

sup Py, (t < 19) < C inf P, (t < 79), Vt>0. (2.9)
neG neG
For all n € N", we deduce from Chebyshev’s inequality and (2.8) that
P, (t < 7 ATp) < Ae™™, (2.10)

Using the last two inequalities and the strong Markov property, we have

P,(t <19) =Pp(t <716 A7) + Pr(ta AT <t < 79)

t
< Ae M +/ sup P, (t —s < 19)Pp(1a A 19 € ds)
0 meGU{d}

t
< AeM c/ Py (t — 5 < 79)Po(rc A Ty € ds),
0

where 29 := (1,...,1). Now, by definition of A and by the Markov property,
P, (t — 5 < T9)e ™ = Ppy (t — 5 < 79)Pyy (Xu = x0, Yu € [0, 5])
< Pxo (t < Ta).

Hence

t
]P’n(t <7y) < Ae M 4 CP,, (t < Ta)/ GASIP’,L(TG ATy € ds).
0

We finally deduce that
Po(t <79) < APy (t < 79) + CAP, (t < 7).
This entails (A2) for v = 0z, = (1, 1)- O

11



3 Birth and death processes with neutral compe-
tition in not too large dimension

The second case we study corresponds to the following assumptions.

Assumption 2. (H3) There exist constants b, d in (0,00) and B1 € [0,7)
such that, for alln € N" and i € {1,...,1},

0 < bi(n) <bnl’t, 0<di(n) <dn|*.
(H4) There exists a constant ¢ > 0 such that, for all i,5 € {1,...,r},
¢ij(n) = ¢ (neutral competition ).

Theorem 3.1. Under Assumptions 2 and if r < 1+e7y, there exist constants
C, A > 0 such that (1.2) holds true.

Remark 2. In the classical logistic case v = 1, this gives the existence and
exponential convergence in total variation to the quasi-stationary distribu-
tion up to dimension 3. The larger v is, the larger the dimension r can be
taken.

Proof of Conditions (A1) and (A2) under Assumptions 2. We proceed as in
the proof of Theorem 2.1. Fix € € (0,7). First, we deduce from (2.5) and
from the fact that n;1,,.1 > n; — 1 that

m(LVe) < 3 i >{b\n\ﬁl f—cVZ — Dinp
neN”
—Znn —1[di(n) + " |n|"] V- (n)}
A —€ rc! —€
< Z e (n) {b[n[’gl + D —|n|?

neN”
—Znn _1[di(n) + |n|"] Ve(n )}.

In addition,

— (Vo) e (Llner) = pe(V2) Y pue(m Z nit [di(n) +|n|7].

neN” =1

12



Hence,

e rc’ e
pt(LVe) = e (Ve ) pue (L1 yr) Z pe(n [b[n!’gl + ————"In|""° | +A4,

n|1+e=
neN”
(3.1)
where
A=) Z Ln;=1[di(n) + ¢|n["] (e (Ve) = Ve(n))
neN”
<> u(n) [Jrln\ﬁl(!\‘/elloo = Ve(n)) + Ve oo
neN”
+ (= 1) (e (V) = Va(n) ] (3.2)

where the last two terms are obtained by distinguishing between the cases
where n = (1,...,1) (and hence |n| = r) and n # (1,...,1) (and hence
> 1p,=1 < r—1). Now, defining W.(n) := ||Vi]lec — Vz(n), it follows
from (2.4) that

S wmlnl (us(V2) — Ve(n)),

neN”
%mevwerw%mm
neN”
1 - Ht(W8)>
< — n)We(n)'=7/¢ (1 — .
= /e ngT:u't( ) 5( ) Wg(n) N
Defining
o Mt( 6) r
we(n) == We(n)’ Vn € N
we obtain

> neNr pie(n)we(n)/e71(1 — we(n)) 4+
'Y ne
n%r Iut |n| e VE) VVE(”))-&- = gv/e Mt(WE)’Y/E_l ‘

Now, it is elementary to check that

and Holder’s inequality implies that

e\ &/
1< (W)t (Ws : > .

13



Hence, it follows from (2.4) that

5 ol (V) ~ Vi), < <W ) (=2 =

neN”

AN
| —
N
—_
|
| ™
N———
=
L
Sl
+
=
5}
&
IS
=

Since

lim (1 — )7 =
xli}l%) v _67

under the assumption that r < 1+ ey, we can find € > 0 small enough such
that, for some ¢ > 0,

(r=1) > me()nf” (ue(Ve) = V() < (1=0) Y (Inf +1)" % pue(n).

neN” neNT

Combining this with (3.1) and (3.2), since 1 —e¢ <y — ¢ and € < v, there
exists a constant C' > 0 such that

pt(LVZ2) — pe (Vo) e (L) < Z pe(n) [(5 + C?) |n|?1=¢ + &Y |n| 1

neN”
A rlty e e
—n""F+ (1 =) (|In| + 1)
c’o _
<C= 5 3 Il ).

neNr

The rest of the proof is the same as for Thm. 2.1.

4 A few extensions to other models

The method that we used is based on a Lyapunov type argument to prove
conditions (A1) and (A2). This method is general enough to apply to a wide
range of other models. We give here a few simple examples for which the
exponential convergence of conditional distributions can be proved following
the same arguments.

One dimensional birth and death processes with catastrophes. We
consider a standard birth an death process on Z with birth (resp. death)

14



rate b, (resp. dy) from state n € Z,, with dy = by = 0 and b,,d, > 0
for all n € N. This process is absorbed at 0 = 0. Moreover, we add a
catastrophe rate a, > 0 of jump from any state n € N to the absorption
point 0. Such models have been studied in [21, 6] with an assumption of
uniformly bounded catastrophe rate, which we relax here.

In this example, we restrict for simplicity to the logistic cases, where
there exist constants b > 0, ¢ > 0 and 6 € (0,1) such that, for n large
enough,

b, <nb, dp>n% and a, < dcn. (4.1)

This simple situation allows a similar computation as in Section 2 (with
~v=1and 81 = 2 =0). Of course, the arguments can be easily adapted to
any other cases where explicit Lyapunov functions are known.

Proposition 4.1. Assume that (4.1) holds for n sufficiently large, then
there exist constants C; \ > 0 such that (1.2) holds true.

Proof. We use the same Lyapunov function V; as in Section 2 and we obtain

pe(LVe) = Z pe(n) ((n +b71l)1+a - n(iia - a”VE(n)>

neN

< Z p(n) (bn™¢ —en' = — @, Vi(n)) .
neN

In addition

— (Vo) ue(L1R) < [Velloo D pre(n) (=101 + an) .
neN

Hence there exists a constant C' > 0 such that

pe(LVz) = (V) pe (L) < C = ¢y pun(m)n' = + ) pu(n)an (|Velloo — Ve(n))

neN neN
5
<C - 1—¢ R
<C-c¢) m(n)n (1 8)
neN
Taking € € (6,1), we can conclude as in Section 2. O

Multi-dimensional birth and death processes with catastrophes.
We now study the multi-dimensional case with catastrophes, for which, as
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far as we know, no result on quasi-stationary distributions is known. We con-
sider the same model as in Section 2 with an additional jump rate a(n) > 0
from any state n € N" to 0. The next result can be proved by an easy com-
bination of the arguments of the proofs of Theorem 2.1 and Proposition 4.1.

Proposition 4.2. Under Assumption 1 and the assumption
a(n) < ci(n)|n|?,

there exist constants C,\ > 0 such that (1.2) holds true.

Multi-dimensional birth and death processes with multiple births.
We consider the same model as in Section 2 with an additional feature: we
allow multiple progeny at each birth time. To do so we consider, for all
n € N”, a probability measure

Pn = Z P, kOk-

keZ,

Then, when a birth occurs (at rate b(n)) in a population n, the new state
of the population is n 4 k with probability p, . A one-dimensional case has
already been studied in [4].

Proposition 4.3. Under Assumption 1 and the assumption

Mim s 3 Wne < oo
neN” ke,

there exist constants C,\ > 0 such that (1.2) holds true.

Proof. The only term which differs from the proof of Theorem 2.1 is the
birth term in p(LVz), given by

n|+[K|

.
1
Z Mt(n)znibi(n) Z Dk Z T
neNT i=1 kezZr, j:hﬂ+lj
- ||
< Z Nt(n)znibi(n) Z [T Pk
neNr i=1 keZ!,

<MD m(n)bn? e
neN”

Thus, we obtain a similar bound as in Section 2 for this term, and the proof
can be completed as there. ]
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