Processus de Markov en temps continu et génétique des populations.

Feuille d'exercices 1 - 2014-2015

Nicolas Champagnat

Chaînes de Markov à temps continu

Exercie 1 : Processus de Poisson

Soit $\lambda > 0$. On considère une chaîne de Markov $(X_t, t \ge 0)$ à temps continu sur \mathbb{N} issue de $X_0 = 0$ et de matrice de taux de transition (ou Q-matrice)

$$Q = \begin{pmatrix} -\lambda & \lambda & & \\ & -\lambda & \lambda & \\ & & \ddots & \ddots \end{pmatrix}.$$

- 1. Montrer que le temps d'explosion ζ satisfait $\zeta = +\infty$ p.s.
- 2. Donner une construction de ce processus à l'aide d'une suite i.i.d. de v.a. exponentielles.
- 3. Montrer à l'aide de l'équation forward que, pour tout $t \ge 0$ fixé, X_t suit une loi de Poisson dont on précisera le paramètre. On appelle le processus $(X_t, t \ge 0)$ processus de Poisson de paramètre λ .
 - (Attention : le fait que la loi d'une chaîne de Markov est l'unique solution de l'équation forward n'est en général vrai que si l'espace d'état est fini. On se ramènera à ce cas en considérant la chaîne de Markov arrêtée au un niveau N>0 fixé.)
- **4.** Soit X_t (resp. Y_t) un processus de Poisson de paramètre $\lambda > 0$ (resp. $\mu > 0$). On suppose les processus X et Y indépendants. Montrer que $(X_t + Y_t, t \ge 0)$ est un processus de Poisson de paramètre $\lambda + \mu$.
 - (Indication: on pourra utiliser la caractérisation infinitésimale d'une chaîne de Markov.)
- **5.** Montrer que, conditionnellement à $\{X_t = 1\}$, J_1 suit la loi uniforme sur [0, t].
- **6.** Montrer que, conditionnellement à $\{X_t = n\}$, (J_1, \ldots, J_n) à même loi que la statistique d'ordre de n v.a. uniformes sur [0,t] indépendantes (on appelle statistique d'ordre de (x_1,\ldots,x_n) le vecteur $(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ où σ est une permutation de $\{1,\ldots,n\}$ telle que $x_{\sigma(1)} \leqslant x_{\sigma(2)} \leqslant \ldots \leqslant x_{\sigma(n)}$).

Exercice 2 : Processus de naissance

Soit $(q_i)_{i\geqslant 1}$ une suite de réels strictement positifs. On considère une chaîne de Markov $(X_t, t\geqslant 0)$ à temps continu sur \mathbb{N}^* de distribution initiale $X_0=1$ et de matrice de taux de transition

$$Q = \begin{pmatrix} -q_1 & q_1 & & \\ & -q_2 & q_2 & \\ & & \ddots & \ddots \end{pmatrix}.$$

1. Donner une condition nécessaire et suffisante pour que $\zeta = +\infty$ p.s. et une condition nécessaire et suffisante pour que $\zeta < +\infty$ p.s.

Exercice 3: Processus de Yule

Soit $\lambda > 0$. On considère le processus de naissance $(Y_t, t \ge 0)$ défini comme dans l'exercice précédent avec $q_i = \lambda i$ pour tout $i \ge 1$. Ce processus est appelé processus de Yule de paramètre λ .

- 1. Un processus de Yule explose-t-il en temps fini?
- 2. Propriété de branchement : Montrer que le processus $(Y_t, t \ge 0)$ avec $Y_0 = k$ a même loi que le processus $(Y_t^1 + \ldots + Y_t^k, t \ge 0)$, où les processus $(Y_t^i, t \ge 0)$ pour $1 \le i \le n$ sont des processus de Yule indépendants avec $Y_0^i = 1$. (Indication : on pourra utiliser la caractérisation infinitésimale d'une chaîne de Markov en temps continu.)
- 3. Un processus de Yule est un processus où la reproduction de chaque individu se déroule de façon i.i.d. Soit $(E_j^i)_{i,j\geqslant 1}$ une (double) suite i.i.d. de v.a. exponentielle des paramètre λ . On considère 1 individu au temps t=0, numéroté 1, et on suppose qu'il se reproduit aux temps $E_1^1, E_1^1 + E_2^1, E_1^1 + E_2^1 + E_3^1, \ldots$, c'est-à-dire qu'il attends un temps E_i^1 entre sa (i-1)-ième et sa i-ième reproduction. Chaque reproduction produit un nouvel individu. Le premier est numéroté 2 et se reproduit à partir de sa date de naissance en attendant un temps E_i^2 entre sa (i-1)-ième et sa i-ième reproduction. On numérote les nouveaux individus dans l'ordre de leur naissance, et le k-ième se reproduit à partir de sa date de naissance en attendant un temps E_i^k entre sa (i-1)-ième et sa i-ième reproduction.

On note N_t le nombre d'individus vivant au temps t. Montrer que le processus $(N_t, t \ge 0)$ est un processus de Yule de paramètre λ .

- **4.** En utilisant l'équation forward, montrer que lorsque $Y_0 = 1$, Y_t suit la loi géométrique de paramètre $e^{-\lambda t}$ pour tout $t \ge 0$.
- **5.** Soit $n \ge 1$ fixé et E_1, \ldots, E_n des v.a. i.i.d. exponentielles de paramètre 1. On note $E_{(1)} \le E_{(2)} \le \ldots \le E_{(n)}$ le réordonnement croissant de E_1, \ldots, E_n . Montrer que les v.a. $E_{(1)}, E_{(2)} E_{(1)}, \ldots, E_{(n)} E_{(n-1)}$ sont indépendantes de lois exponentielles de paramètres $n, n-1, \ldots, 1$ respectivement.
- 6. Retrouver le résultat de la question 4. en utilisant la question 5.

Exercice 4 : Marches aléatoires

Soit $\mu > 0$ et $\lambda > 0$ fixés. On considère X_t une chaîne de Markov sur $\mathbb Z$ de matrice de taux

$$Q = \begin{pmatrix} \ddots & \ddots & \ddots & & & & \\ & \mu & -q & \lambda & & & \\ & & \mu & -q & \lambda & & \\ & & \ddots & \ddots & \ddots \end{pmatrix},$$

où $q = \lambda + \mu$.

- 1. Le processus X_t expose-t-il en temps fini?
- 2. Donner la construction de X_t à l'aide des temps de séjour et de la chaîne incluse. Que pouvezvous dire sur les temps de séjour?
- 3. On suppose pour le moment que $\mu = \lambda$. Soit N > 0 fixé. En utilisant la propriété de Markov, calculer $p_n = \mathbb{P}_n(T_0 < T_N)$, où $T_k = \inf\{t \ge 0 : X_t = k\}$. (Indication : on commencera par montrer que $T_0 \wedge T_N < \infty$ p.s. en montrant le même propriété pour la chaîne incluse, puis on cherchera une relation de récurrence satisfaite par $(p_i p_{i-1})_{1 \le i \le N}$ et on calculer p_0 et p_N .)
- **4.** On suppose toujours que $\mu = \lambda$. Calculer $\mathbb{E}_n(T_0 \wedge T_N)$ en vous inspirant de la question précédente.
- **5.** Mêmes questions lorsque $\mu \neq \lambda$.

Exercice 5: Processus de naissance et de mort (plus difficile)

On considère une chaîne de Markov à temps continu $(X_t, t \ge 0)$ de taux de transition, pour tout $n \ge 1$

de
$$n$$
 vers $n+1$ à taux λ_n
de n vers $n-1$ à taux μ_n

et de taux de transition nul vers tous les autres états. On appelle un tel processus processus de naissance et de mort (PNM). On suppose que $\mu_1 = 0$, de telle sorte que le PNM X_t est à valeurs dans \mathbb{N}^* . On suppose de plus que $\lambda_n > 0$ pour tout $n \ge 1$ et $\mu_n > 0$ pour tout $n \ge 2$. On note \mathbb{P}_n la loi de ce PNM issu de $X_0 = n$, et \mathbb{E}_n l'espérance associée.

1. Le but de cette question et la suivante est de démontrer que le temps d'explosion ζ de ce PNM est p.s. infini ssi

$$R := \sum_{n \geqslant 1} \left(\frac{1}{\lambda_n} + \frac{\mu_n}{\lambda_n \lambda_{n-1}} + \ldots + \frac{\mu_n \ldots \mu_2}{\lambda_n \ldots \lambda_2 \lambda_1} \right) = \infty.$$

a) Pour tout $i \leq j$, on pose $t_j^i = \mathbb{E}_i(T_j) \in [0, +\infty]$, où T_j est le premier temps d'atteinte de j par le PNM. En appliquant la propriété de Markov au premier temps de saut du PNM, montrer que si i < j

$$\lambda_i(t_j^i - t_j^{i+1}) + \mu_i(t_j^i - t_j^{i-1}) = 1.$$

Que vaut t_i^i ? et $t_j^1 - t_j^2$?

- **b)** Montrer que la relation de récurrence précédente ainsi que les valeurs de t_i^i et $t_j^1 t_j^2$ suffisent à caractériser toute la suite $(t_j^i)_{1 \le i \le j}$.
- c) Vérifier que

$$t_j^i = \sum_{n=i}^{j-1} \left(\frac{1}{\lambda_n} + \frac{\mu_n}{\lambda_n \lambda_{n-1}} + \dots + \frac{\mu_n \dots \mu_2}{\lambda_n \dots \lambda_2 \lambda_1} \right).$$

- d) Montrer que le temps d'explosion du PNM est presque sûrement fini quand $R < \infty$.
- **2.** On cherche maintenant à établir la réciproque. Pour tout $1 \leq i \leq j$, on pose $s_j^i = 1 \mathbb{E}_i[e^{-T_j}]$.
 - a) Comparer s_j^i et s_j^{i+1} . Que vaut s_i^i ? et s_2^1 ? (Indication : on appliquera la propriété de Markov en T_{i+1} .)
 - **b)** Montrer que $\mathbb{E}_1(e^{-T_{\infty}}) = 0$ si $\sum_{n \geqslant 1} s_{n+1}^n = \infty$, où $T_{\infty} = \sup_n T_n$. (Indication : on appliquera la propriété de Markov aux temps T_2 , puis T_3 , T_4 ...)
 - c) On suppose que $R=\infty$ et $\mathbb{P}_1(T_\infty<\infty)>0$ et on cherche à obtenir une contradiction. Montrer que

$$\beta := \inf_{i \le j} (1 - s_j^i) > 0.$$

d) En appliquant la propriété de Markov au premier temps de saut de X_t , écrire une relation de récurrence portant sur les $(s_i^i, 1 \le i \le j)$ et en déduire que $\lambda_i r_i \ge \mu_i r_{i-1}$, où

$$r_i = s_j^i - s_j^{i+1} - \beta \left(\frac{1}{\lambda_i} + \frac{\mu_i}{\lambda_i \lambda_{i-1}} + \dots + \frac{\mu_i \dots \mu_2}{\lambda_i \dots \lambda_2 \lambda_1} \right).$$

- e) Montrer que $\lambda_1(s_i^1 s_i^2) = 1 s_i^1$ et en déduire que $r_1 \ge 0$.
- f) Déduire des questions précédentes que

$$s_{j+1}^{j} \geqslant \beta \left(\frac{1}{\lambda_{j}} + \frac{\mu_{j}}{\lambda_{j}\lambda_{j-1}} + \ldots + \frac{\mu_{j}\ldots\mu_{2}}{\lambda_{j}\ldots\lambda_{2}\lambda_{1}} \right),$$

et obtenir la contradiction souhaitée.

3. Le processus de branchement en temps continu $(\lambda_n = \lambda n \text{ et } \mu_n = \mu n)$ est-il explosif? et le processus de branchement en temps continu avec immigration $(\lambda_n = \lambda n + \alpha \text{ et } \mu_n = \mu n)$?

4