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Abstract

We investigate certain properties of degenerate Feller processes that
are killed when exiting a relatively compact set. Our main result pro-
vides general conditions ensuring that such a process possesses a (pos-
sibly non unique) quasi stationary distribution. Conditions ensuring
uniqueness and exponential convergence are discussed. The results are
applied to stochastic di�erential equations.
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1 Introduction

The purpose of this paper is to investigate certain properties of (possi-
bly degenerate) Feller processes that are killed when exiting a relatively
compact set.

To give the �avor of the kind of results that will be proved here,
consider a stochastic di�erential equation on M = Rn,

dXt = S0(Xt)dt+

m∑
j=1

Sj(Xt) ◦ dBj
t , (1)

where ◦ refers to the Stratonovich stochastic integral, S0, Sj , j = 1, . . . ,m
are smooth vector �elds on M and B1, . . . , Bm m independent Brown-
ian motions. As usual, the law of (Xt)t≥0 when X0 = x is denoted Px.
For x, y ∈ M and A ⊂ M, we write ⟨x, y⟩ =

∑n
i=1 xiyi, ∥x∥ =

√
⟨x, x⟩

and d(x,A) = infy∈A ∥x− y∥.
Let D ⊂M be an open connected set with compact closure K = D

and boundary ∂D = K\D.We assume that ∂D is regular (or, according
to a usual terminology, satis�es the exterior sphere condition) in the
following sense. For all p ∈ ∂D, there exists a (possibly non unique)
unit vector v (i.e ∥v∥ = 1) and r > 0 such that

d(p+ rv,K) = r.

Such a v is called a unit outward normal vector at p.

Remark 1 Let p ∈ ∂D and U ⊂ Rn be an open neighborhood of p.
If ∂D ∩ U is C2, there is a unique unit outward normal vector at p. If
D ∩U is convex, there is a (possibly non unique) unit outward normal
vector at p. If D ⊂ R2 is a nonconvex polygon and p ∈ ∂D is a vertex
at which the interior angle is > π, there is no unit outward normal at
p.

Associated to (1) is the Stroock and Varadhan deterministic control
system:

ẏ(t) = S0(y(t)) +

m∑
j=1

uj(t)Sj(y(t)) (2)

where the control function u = (u1, . . . , um) : R+ 7→ Rm, can be
chosen to be piecewise continuous. Given such a control function,
we let y(u, x, ·) denote the maximal solution to (2) starting from x
(i.e y(u, x, 0) = x).
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Let x ∈ Rn and U ⊂ Rnbe an open set. We say that U is accessible
from x if there exists a control u and t ≥ 0 such that y(u, x, t) ∈ U.
If in addition, y(u, x, s) ∈ D for all 0 ≤ s ≤ t, (in which case x ∈ D
and U ∩ D ̸= ∅) we say that U is D-accessible from x. By abuse of
language, we say that a point y is accessible (respectively D-accessible)
from x provided every neighborhood U of y is accessible (respectively
D-accessible) from x.

We let
τ outD = inf{t ≥ 0 : Xt ∈M \D}.

Theorem 1 Consider the following conditions:

(i) The outside set M \K is accessible from all x ∈ K;

(ii) (Boundary conditions)

(a) For every p ∈ ∂D, there exists an outward unit normal vector

v at p, such that

m∑
i=1

⟨Si(p), v⟩2 ̸= 0;

(b) For some ε > 0, the set Dε = {x ∈ D : d(x, ∂D) > ε} is

D-accessible from all x ∈ D \Dε.

Then, under condition (i), Px(τ
out
D < ∞) for all x ∈ D and under

conditions (i), (ii), there exists a probability measure µ on D such that

Pµ(Xt ∈ ·|τ outD > t) = µ(·). (3)

A probability measure µ satisfying (3) is called a Quasi-Stationary

Distribution (QSD) [16].

Remark 2 Simple criteria ensuring conditions (i) and (ii) − (b) in
Theorem 1 will be discussed in Section 3 (Propositions 14 and 16). In
particular, Proposition 16 has the following useful consequence:

If ∂D is C2, then condition (ii)− (a) implies condition (ii)− (b).

If the SDE (1) enjoys certain hypoellipticity properties, more can be
said. Given a family S of smooth vector �elds on M and k ∈ N, we let
[S]k denote the set of vector �elds recursively de�ned by [S]0 = S, and

[S]k+1 = [S]k ∪ {[Y, Z] : Y, Z ∈ [S]k}

where [Y, Z] stands for the Lie bracket of Y and Z. Set [S] = ∪k[S]k
and [S](x) = {Y (x) : Y ∈ [S]}.
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We shall say here that point x∗ ∈M satis�es the weak Hörmander con-

dition (respectively the Hörmander condition, respectively the strong

Hörmander condition) if [{S0, . . . , Sm}](x∗) (respectively

{S1(x∗), . . . , Sm(x∗)} ∪ {[Y, Z](x∗) : Y, Z ∈ [{S0, . . . , Sm}]},

respectively
[{S1, . . . , Sm}](x∗)

spans Rn.

Theorem 2 Assume that:

(i) Conditions (i), (ii)− (a) of Theorem 1 hold;

(ii) The weak Hörmander condition is satis�ed at every point x ∈ K;

(iii) Every y ∈ D is D-accessible from every x ∈ D.

Then the QSD µ is unique. Its topological support equals K and it has

a smooth density with respect to the Lebesgue measure.

Suppose furthermore that there exists a point x∗ ∈ D at which the

weak Hörmander condition is strengthened to the Hörmander condition.

Then there exist α > 0, C ∈ (0,+∞) and a continuous function h :
D 7→]0,∞[ with h(x) → 0, as x → ∂D, satisfying µ(h) = 1, such that

for all ρ ∈ M1(D) (the set of probability measures over D),

∥Pρ(Xt ∈ ·|τ outD > t)− µ(·)∥TV ≤ C

ρ(h)
e−αt

where ∥ · ∥TV stands for the total variation distance.

Corollary 3 Assume that the condition (ii)− (a) of Theorem 1 holds,

and that the strong Hörmander condition is satis�ed at every point

x ∈ K. Then, the conclusions of Theorem 2 holds and the density of µ
is positive on D.

Proof: Let, for ε ≥ 0, yε(x, u, ·) be de�ned like y(x, u, ·) when S0

is replaced by εS0. By Chow's theorem [5] (see also [18]), the strong
Hörmander condition implies that for all x, y ∈ D there exists a con-
trol u piecewise continuous with ui(s) ∈ {−1, 0, 1} and t ≥ 0 such that
y0(x, u, s) ∈ D for all 0 ≤ s ≤ t and y0(x, u, t) = y. By continuity
(or a simple application of Gronwall's lemma), yε(x, u, ·) → y0(x, u, ·)
uniformly on [0, t] as ε → 0. Let uε(s) =

u( s
ε
)

ε . Then yε(x, u, s) =
y(x, uε, εs). This proves that y is D-accessible from x. Because the
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strong Hörmander condition also holds in a neighborhood of K, the
same proof also shows that for y in a neighborhood of K and x ∈ K, y
is accessible from x. The conditions, hence the conclusions, of Theorem
1 are then satis�ed. Positivity of dµ

dx is proved in Lemma 22. 2

Remark 3 The results above extend easily to the situation where M
is a n-dimensional manifold, provided ∂D is a C2 sub-manifold.

Remark 4 The recent paper [9] considers QSDs and their proper-
ties under the assumption that the underlying process is strong-Feller.
Quasi-stationarity for degenerate strong-Feller di�usion processes have
also been the focus of interest in the recent literature ([9, 15, 20]).
Observe that none of the conditions of Theorem 1, neither the weak
Hörmander condition assumed in Theorem 2 imply that the SDE (1)
is strong Feller. However, we will see that our assumptions imply that
the SDE is Feller.

Example 1 Suppose M is the cylinder, M = R/Z× R. Let m = 1,

S0(x, y) = ∂x and S1(x, y) = ∂y.

Let D = R/Z×]0, 1[. Here the conditions of Theorem 2, are easily seen
to be satis�ed. However, the process is not strong Feller (the dynamics
in the x-variable being deterministic). It is not hard to check that the
unique QSD is the measure

µ(dxdy) = 2
sin(πy)

π
1D(x, y)dxdy. (4)

Example 2 (Example 1, continued) Let M and D be like in Ex-
ample 1, m = 1,

S0(x, y) = a(y)∂x and S1(x, y) = ∂y,

where a is a smooth function ≥ 1. Like in example 1, the unique QSD
µ is given by (4). Suppose that a′(y∗) ̸= 0 for some 0 < y∗ < 1.
Then the Hörmander condition holds at (x, y∗), so that by Theorem 2,
(Px(Xt ∈ ·|τ outD > t))t≥0 converges at an exponential rate to µ.

Remark 5 In absence of condition (iii) in Theorem 2, there is no
guarantee that the QSD is unique. Still every QSD has a smooth
density (see Lemma 22).
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Example 3 Let M = R and D =]0, 5[. We consider smooth functions
φ1, φ2, ψ1, ψ2 : D → [0, 1] such that ψ1 + ψ2 = 1 and

φ1
|]0,1] ≡ 1, φ1

|[1,2] ≤ 1, φ1
|[2,5[ ≡ 0,

φ2
|]0,3] ≡ 0, φ2

|[3,4] ≤ 1, φ2
|[4,5[ ≡ 1,

ψ1
|]0,2] ≡ 1, 0 < ψ1

|]2,3[ ≤ 1, ψ1
|[3,5[ ≡ 0,

ψ2
|]0,2] ≡ 0, 0 < ψ2

|]2,3[ ≤ 1, ψ2
|[3,5[ ≡ 1.

For all α > 0, we consider the absorbed di�usion process Xα evolving
according to the Itô SDE

dXα
t =

(
φ1(Xα

t ) +
√
αφ2(Xα

t )
)
dBt + (ψ1(Xt) + αψ2(Xt)) dt.

and absorbed when it reaches ∂D = {0, 5}. While Xα satis�es the
conditions (i) and (ii) of Theorem 2, it does not satisfy condition (iii)
and it admits either one or two QSDs, depending on the value of α.
Indeed, as shown in [3], there exists αc > 0 such that

• for all α ∈]0, αc], X
α admits a unique QSD supported by [3, 5],

• for all α ∈]αc,+∞[, Xα admits exactly two QSDs, supported
respectively by [3, 5] and [0, 5].

Outline The rest of the paper is organized as follows. Section 2 sets
up the notation and proves the main results: a general existence result
(Theorem 7), a uniqueness criterion (Theorem 10) and a convergence
theorem (Theorem 12). These results are used in Section 3 to prove
the Theorems 1 and 2 stated in the introduction.

2 Killed processes

Throughout, we let M denote a separable and locally compact metric
space, and D ⊂M a nonempty set with compact closure K = D, such
that D is relatively open in K. That is D = O ∩K for some open set
O ⊂M.

We let (Pt)t≥0 denote a Markov Feller semi-group on M . By this,
we mean (as usual) that (Pt)t≥0 is a semi-group of Markov operators on
C0(M) (the space of continuous functions on M vanishing at in�nity)
and that Ptf(x) → f(x) as t→ 0 for all f ∈ C0(M). Observe that since
we are interested by the behavior of the process killed outside K, the
behavior of (Pt)t≥0 at in�nity is irrelevant (and the reader can think of
M as compact without loss of generality).
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By classical results (see e.g Le Gall [14], Theorem 6.15), there exist
a �ltered space (Ω,F , (Ft)) with (Ft) right continuous and complete,
a family of probabilities (Px)x∈M on (Ω,F) and a continuous time
adapted process (Xt) on (Ω,F , (Ft)) taking values in M, such that:

(i) (Xt) has cad-lag paths,

(ii) Px(X0 = x) = 1 and,

(iii) (Xt) is a Markov process with semigroup (Pt), meaning that

Ex(f(Xt+s)|Ft) = Psf(Xt)

for all t, s ≥ 0 and f measurable bounded (or ≥ 0).

For any Borel set A ⊂ M we let τA = inf{t ≥ 0 : Xt ∈ A} and
τ outA = τM\A. The assumptions on (Ft) (right continuous and complete)
imply that τA and τ outA are stopping times with respect to (Ft) (see
e.g Bass [1]).

Remark 6 For X0 = x ∈ D, τ outD ≤ τ outK but it is not true in general
that τ outD = τ outK . Consider for example the ode on R2 given by{

ẋ = 1
ẏ = 0

Let
D = {(x, y) ∈ R2 − 1 < x < 1,−1 < y < x2}.

For −1 < x < 0 and y = 0 the trajectory (x(t), y(t)) = (x + t, 0)
starting at (x, 0) leaves D at time −x and K at time −x+ 1.

An open set U ⊂M is said accessible from x ∈M if there exists t ≥ 0
such that Pt(x,U) = Pt1U (x) > 0. A point y is said accessible from
x ∈M if every open neighborhood U of y is accessible from x.

We shall assume throughout the following standing assumption.

Hypothesis 1 For all x ∈ K,M \K is accessible from x.

Proposition 4 There exist positive constants C,Λ such that

Px(τ
out
K > t) ≤ Ce−Λt

for all x ∈ K. In particular τ outK <∞, and hence τ outD <∞, Px almost

surely for all x ∈ K.
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Proof: By Feller continuity and Portmanteau theorem, for all t ≥ 0,
the set Ot = {x ∈ M : Pt(x,U) > 0} is open (possibly empty). By
assumption, the family {Ot : t ∈ R+} covers K, so that, by compact-
ness, there exist t1, . . . , tn such that K ⊂ ∪n

i=1Oti . In particular, for
some δ > 0 and t = max{t1, . . . , tn} Px(τU > t) ≤ (1−δ) for all x ∈ K.
Thus, by the Markov property, Px(τU > kt) ≤ (1 − δ)k. This proves
the result. 2

2.1 Green kernel and QSDs

Let B(D) denote the set of bounded measurable functions f : D 7→ R.
For all f ∈ B(D), x ∈ D and t ≥ 0 set

PD
t f(x) = Ex(f(Xt)1τoutD >t).

By Proposition 4, (PD
t )t≥0 is a well de�ned sub-Markovian semigroup

on B(D). The semigroup property is a consequence of the Markov
property and the fact that τ outD is a stopping time.

The Green kernel GD is the bounded (by Proposition 4) operator
de�ned on B(D) by

GDf(x) =

∫ ∞

0
PD
t f(x)dt = Ex(

∫ τoutD

0
f(Xt)dt).

For all x ∈ D and A ⊂M, a Borel set, we let

GD(x,A) = GD1A∩D(x).

Quasi-stationary Distributions

A Quasi-stationary Distribution (QSD) for (PD
t ) is a probability mea-

sure µ on D such that
µPD

t = e−λtµ (5)

for some λ > 0. For further reference we call λ the absorption rate (or
simply the rate) of µ. Equivalently,

µPD
t (·)

µPD
t 1D

= Pµ(Xt ∈ · | τ outD > t) = µ(·).

Lemma 5 Equation (5) holds if and only if µGD = 1
λµ.
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Proof: Clearly, by de�nition of GD, equation (5) implies that µGD =
1
λµ. Conversely, assume that µGD = 1

λµ. Then for every bounded non-
negative measurable map f : D 7→ R, µ(GDf) = 1

λµ(f) and also

µ(GDPD
t f) =

1

λ
µ(PD

t f).

That is

µ(

∫ ∞

t
PD
s f) =

1

λ
µ(PD

t f).

Equivalently,

µ(GDf −
∫ t

0
PD
s f) =

1

λ
µ(PD

t f).

This shows that the map v(t) = µ(PD
t f) satis�es the integral equation

v(t)− v(0) = −λ
∫ t

0
v(s)ds.

It follows that v(t) = v(0)e−λt. 2

Let Cb(D) ⊂ B(D) denote the set of bounded continuous functions on
D, and C0(D) ⊂ Cb(D) the subset of functions f such that f(x) → 0
when x→ ∂KD := K \D.

Remark 7 In the recent paper [8], the authors prove the existence
and convergence to a QSD under the condition that the sub-Markovian
semigroup is strong-Feller. Observe that in our case, although (Pt) is
Feller, there is no evidence in general that (PD

t ) is strong-Feller nor that
it preserves Cb(D). On the other hand, under rather weak, reasonable
conditions, GD maps Cb(D) into C0(D), as illustrated by the following
example.

Example 4 Consider the ode on R given by ẋ = −1. For D =]0, 1[
PD
t f(x) = f(x − t)1x>t is not Feller, GDf(x) =

∫ x
0 f(u)du is Feller

(and even strong Feller). If now D =]0, 1], then GD maps Cb(D) into
C0(D).

The condition that GD(Cb(D)) ⊂ C0(D) plays a key role in the next
Theorem 7 and will be investigated in the subsequent sections.

An open set U ⊂M is saidD-accessible from x ∈ D if PD
t (x,U) > 0

for some t ≥ 0. Point y ∈ K is said D-accessible from x ∈ D if every
open neighborhood of y is D-accessible from x.
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Lemma 6 An open set U ⊂M is D-accessible from x ∈ D if and only

if GD(x,U) > 0. In particular, the set of D-accessible points from x
coincide with the topological support of GD(x, ·).

Proof: Suppose that PD
t (x,U) > 0 for some open set U and t ≥ 0.

Fatou Lemma and right continuity of paths imply that

lim inf
s→t,s>t

PD
s (x,U) ≥ Ex(lim inf

s→t,s>t
1U (Xs)1τoutD >s) ≥ PD

t (x,U) > 0.

This proves that s → PD
s (x,U) is positive on some interval [t, t + ε],

hence GD(x,U) > 0. The converse implication is obvious. 2

Theorem 7 Assume that:

(i) GD(Cb(D)) ⊂ C0(D);

(ii) There exists an open set U ⊂M, D-accessible from all x ∈ D and

such that U ∩K ⊂ D.

Then there exists a QSD for (PD
t ).

Remark 8 A su�cient condition ensuring condition (ii) in Theorem
7 is that there exists a point y ∈ D which is D-accessible from every
x ∈ D.

Proof: We claim that there exists a function ϕ ∈ C0(D), strictly
positive on D and θ > 0 such that

GDϕ ≥ θϕ. (6)

Proof of the claim: For ε > 0, let

U
ε
K = {x ∈ K : d(x,U ∩K) ≤ ε}.

Choose ε > 0 small enough so that U
ε
K ⊂ D (recall that D is rel-

atively open in K). Let ψ(x) = (1 − d(x,U∩K)
ε )+. For all x ∈ D,

GDψ(x) ≥ GD1U∩K(x) = GD1U (x) > 0. Thus, by compactness of
U

ε
K , θ = infx∈Uε

K
GDψ(x) > 0. Since ψ = 0 on K \ U ε

K , it follows that

for all x ∈ D,GDψ(x) ≥ θψ(x). The map ϕ = GDψ is positive and
satis�es (6).

Let B(K) (respectively C(K)) be the space of bounded (respec-
tively continuous) functions over K. The operator GD extends to a
bounded operator G on B(K) de�ned as

Gf(x) =

{
GD(f |D)(x) for x ∈ D
0 for x ∈ ∂KD
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By condition (i), G leaves C(K) invariant. That is G(C(K)) ⊂ C(K).
Let M1(ϕ) be the set of Borel �nite nonnegative measures µ on K

such that µ(ϕ) = 1 and let T : M1(ϕ) 7→ M1(ϕ) be the map de�ned
by

T (µ) =
µG

µGϕ

We �rst observe that T is continuous for the weak* topology: if µn ⇀ µ
for the weak* topology in M1(ϕ), then µnG ⇀ µG and µnGϕ→ µGϕ.
Since in addition µnGϕ ≥ θµn(ϕ) = θ > 0 by (6), T (µn)⇀ T (µ).

Choose an open neighborhood N of ∂KD such that G1K ≤ θ/2 on

N ∩K and set C = supx∈K\N
(G1K)(x)

ϕ(x) <∞. Then, for all µ ∈ M1(ϕ)

T (µ)(K) =
µ(G1K)

µGϕ
≤ µ(G1K)

θ
≤ θ/2µ(K) + Cµ(ϕ)

θ
=
µ(K)

2
+
C

θ
.

It follows that for any R ≥ 2C
θ the set

MR
1 (ϕ) = {µ ∈ M1(ϕ) : µ(K) ≤ R}

is invariant by T. Since MR
1 (ϕ) is convex and compact (for the weak*

topology), T admits a �xed point by Tychono� Theorem. If µ is such

a �xed point, the probability µ(·∩D)
µ(D) is then a QSD for (PD

t ). 2

Remark 9 The proof of Theorem 7 is reminiscent of the proof of the
existence Theorem 4.2 in [6].

2.2 Uniqueness and convergence criteria

Right eigenfunctions

Suppose that the conditions, hence the conclusion, of Theorem 7 hold.
We say that h ∈ C0(D) is a positive right eigenfunction for GD if
h(x) > 0 for all x ∈ D and

GDh =
1

λ
h (7)

for some λ > 0.

Lemma 8 If h is a positive right eigenfunction, the parameter λ in

(7) necessarily equals the absorption rate of any QSD and

PD
t h = e−λth

for all t ≥ 0.
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Proof: If µ is a QSD with rate λ′, then µGDh = 1
λ′µh = 1

λµh so
that λ = λ′. The proof of the second statement is similar to the proof
of Lemma 5 and left to the reader. 2

The following result shows that a strengthening in the assumptions of
Theorem 7 ensures the existence of a positive right eigenfunction for
GD.

Corollary 9 Assume that:

(i) GD(Cb(D)) ⊂ C0(D) and GD is a compact operator on C0(D);

(ii) For all x, y ∈ D y is D-accessible from x.

Then, there exists a positive right eigenfunction for GD.

Proof: Let r = limn→∞ ∥(GD)n∥1/n be the spectral radius of GD

on C0(D). Let µ be a QSD (whose existence is given by Theorem 7)
with rate λ. For any f ∈ C0(D) such that 0 ≤ f ≤ 1 and µ(f) ̸= 0
∥(GD)n∥ ≥ µ((GD)nf) = 1

λnµ(f). Hence r ≥ 1
λ > 0.

Let C+
0 (D) = {f ∈ C0(D) : f ≥ 0}. It is readily seen that C+

0 (D) is
a reproducing cone in C0(D), invariant by GD, meaning that C0(D)+ is
a cone, C0(D) = {u−v : u, v ∈ C0(D)+} and GD(C0(D)+) ⊂ C0(D)+.
Therefore, by Krein Rutman Theorem, there exists h ∈ C0(D)+ \ {0}
such that Gh = rh. Let y ∈ D be such that h(y) > 0. Then, h ≥
h(y)
2 1U∩K for some neighborhood U of y. Therefore, by (ii),

rh(x) = (GDh)(x) ≥ h(y)

2
(GD1U∩K)(x) > 0.

Now 1
λµ(h) = µ(GDh) = rµ(h). Hence r = 1

λ . This concludes the proof.
2

Uniqueness and convergence

We say that (PD
t ) is irreducible if there exists a nontrivial measure ξ

on D such that for all x ∈ D and A Borel,

ξ(A) > 0 ⇒ GD(x,A) > 0.

Theorem 10 Assume that:

(i) The hypotheses of Theorem 7 hold;

(ii) There exists a positive right eigenfunction for GD;

12



(iii) (PD
t ) is irreducible.

Then (PD
t ) has a unique QSD.

Remark 10 Conditions (i) and (ii) of Theorem 10 are implied by the
assumptions of Corollary 9.

Proof: Let h be a positive right eigenfunction and µ a QSD with
rate λ. Let Q and π respectively denote the Markov kernel and the
probability on D de�ned by

Q(f) = λ
GD(fh)

h
,

and

π(f) =
µ(fh)

µ(h)

for all f ∈ B(D). Then, π is invariant by Q. The assumption that
(PD

t ) is irreducible makes Q irreducible, in the sense that ξ(A) > 0 ⇒
Q(x,A) > 0 for all x ∈ D and A Borel. Therefore, by a standard result
(see e.g [7] or [17]), π is the unique invariant probability of Q. Assume
now that ν is another QSD with rate α. Then ν(Gh) = 1

αν(h) =
1
λν(h).

Hence α = λ. It follows that the probability π′ de�ned like π with ν in
place of µ is invariant by Q. By uniqueness, π = π′ and consequently
µ = ν. 2

A su�cient (and often more tractable than the de�nition) condition
ensuring irreducibility is given by the next lemma.

Lemma 11 Suppose that there exists an open set U ⊂M, D-accessible

from all x ∈ D, and a non trivial measure ξ such that for all x ∈ U
GD(x, ·) ≥ ξ(·). Then (PD

t ) is irreducible.

Proof: For all x ∈ D, there exists, by D-accessibility, t ≥ 0 such
that PD

t (x,U) > 0. For every Borel set A ⊂M,

GD(x,A) ≥
∫ ∞

0
PD
t+s(x,A)ds =

∫ ∞

0

∫
M
PD
t (x, dy)PD

s (y,A)ds

≥
∫ ∞

0

∫
U
PD
t (x, dy)PD

s (y,A)ds ≥ Pt(x,U)ξ(A).

2

If the local minorization GD(x, ·) ≥ ξ(·) appearing in Lemma 11 can
be improved to local minorization involving (PD

t ), we also get the ex-
ponential convergence of the conditional semigroup toward µ. More
precisely,

13



Theorem 12 Suppose that:

(i) The hypotheses of Theorem 7 hold;

(ii) There exists a positive right eigenfunction for GD, denoted by h;

(iii) There exist an open set U ⊂ M, D-accessible from all x ∈ D,
a non trivial measure ξ with ξ(U) > 0, and positive numbers

T > ε > 0 such that for all x ∈ U, T − ε ≤ t ≤ T,

PD
t (x, ·) ≥ ξ(·).

Then there exist C,α > 0 such that, for all ρ ∈ M1(D) (the set of

probability measures over D),∥∥∥∥ ρPD
t

ρPD
t 1D

− µ(·)
∥∥∥∥
TV

≤ Cµ(h)

ρ(h)
e−αt

where ∥ · ∥TV stands for the total variation distance.

Proof: Let h be a positive right eigenfunction and µ a QSD with
rate λ. For all f ∈ B(D) and t ≥ 0, let

Qt(f) = eλt
PD
t (fh)

h

and

π(f) =
µ(fh)

µ(h)

It is easy to verify that (Qt) is a Markov semigroup (usually called the
Q process induced by µ) having π as invariant probability. In order to
prove the theorem we will show that :

Step 1 There exists a probability ν on D such that for every compact
set K̃ ⊂ D there is some integer n and some constant c (both
depending on K̃) such that

QnT (x, ·) ≥ cν(·)

for all x ∈ K̃.

Step 2 The function V = 1
h is a continuous and proper Lyapunov

function for QT , that is

lim
x→∂D

V (x) = ∞,

and
QTV ≤ ρV + C (8)

for some 0 ≤ ρ < 1 and C ≥ 0.

14



From step 2 we deduce that for all n ≥ 0

QnTV ≤ ρnV +
C

1− ρ
. (9)

Choose R > 2C
1−ρ and set K̃ = {x ∈ D : V (x) ≤ R}. Then K̃ is a

compact subset of D and, by step 1, there is some n ≥ 1 such that

QnT (x, ·) ≥ cν(.) (10)

on K̃. Now, relying on a version of Harris's theorem proved by Hairer
and Mattingly in [10], (9) and (10) imply that for all f : D 7→ R
measurable, and k ≥ 0,

|Qk
nT (f)(x)− π(f)| ≤ cste γk(1 + V (x))∥f∥V

for all x ∈ D, where 0 ≤ γ < 1 and ∥f∥V = supx∈D
|f(x)|

1+V (x) . Recalling

that h is bounded (it is continuous on the compact K), this last in-
equality entails that there exist C,α > 0 such that, for any t ≥ 0 and
f such that ∥f∥1/h ≤ 1,

|Qtf(x)− π(f)| ≤ C

h(x)
e−αt.

In particular, for any f such that ∥f∥∞ ≤ 1 and ρ ∈ M1(D) such that
ρ(1/h) < +∞, ∣∣∣∣ρQt

[
f

h

]
− µ(f)

µ(h)

∣∣∣∣ ≤ Cρ(1/h)e−αt.

For any ρ ∈ M1(D), denote h ◦ ρ(dx) := h(x)ρ(dx)
ρ(h) . Then, for any f

such that ∥f∥∞ ≤ 1 and ρ ∈ M1(D),

µ(f)

µ(h)
− C

ρ(h)
e−αt ≤ (h ◦ ρ)Qt

[
f

h

]
≤ µ(f)

µ(h)
+

C

ρ(h)
e−αt.

Moreover, since PD
t f(x) = e−λth(x)Qt[f/h](x), then

ρPD
t f = e−λtρ(h)× (h ◦ ρ)Qt[f/h].

Thus, �xing ρ ∈ M1(D) and denoting tρ := 1
α log

(
Cµ(h)
ρ(h)

)
, for any

t > tρ,
µ(f)
µ(h) −

C
ρ(h)e

−αt

1
µ(h) +

C
ρ(h)e

−αt
≤ ρPD

t f

ρPD
t 1

≤
µ(f)
µ(h) +

C
ρ(h)e

−αt

1
µ(h) −

C
ρ(h)e

−αt
.
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Computations entail that, setting C(ρ) := 2µ(h)
1−e−α × C

ρ(h) , for any t ≥
1 + tρ,

µ(f)
µ(h) +

C
ρ(h)e

−αt

1
µ(h) −

C
ρ(h)e

−αt
≤ µ(f) + C(ρ)e−αt.

More directly, one has also

µ(f)
µ(h) −

C
ρ(h)e

−αt

1
µ(h) +

C
ρ(h)e

−αt
≥ µ(f)− 2

Cµ(h)

ρ(h)
e−αt.

Hence, one shows that there exists C ′ > 0 such that, for any probability
measure ρ and any t > 1 + tρ,∥∥∥∥ ρPD

t

ρPD
t 1

− µ

∥∥∥∥
TV

≤ C ′µ(h)

ρ(h)
e−αt.

For t ≤ 1 + tρ,∥∥∥∥ ρPD
t

ρPD
t 1

− µ

∥∥∥∥
TV

≤ 2 ≤ 2eα(1+tρ)e−αt =
2eαCµ(h)

ρ(h)
e−αt.

To sum up, there exists two constants C,α > 0 such that, for any
ρ ∈ M1(D) and t ≥ 0,∥∥∥∥ ρPD

t

ρPD
t 1

− µ

∥∥∥∥
TV

≤ Cµ(h)

ρ(h)
e−αt.

This concludes the proof.
We now pass to the proof of steps 1 and 2.
Proof of Step 1: For δ > 0 let Oδ = {x ∈ D : GD(x,U) > δ}. It is

not hard to see that Oδ is open in D. Indeed, suppose to the contrary
that there exists a sequence xn → x ∈ D with

GD(xn, U) ≤ δ < GD(x,U).

Let ψε(y) = min(1, d(y,M\U)
ε ). By continuity of ψε and condition (i) of

Theorem 7,

GDψε(x) = lim
n→∞

GDψε(xn) ≤ lim sup
n→∞

GD1U (xn) ≤ δ.

On the other hand, by monotone convergence

lim
ε→0

GDψε(x) = GD1U (x) > δ.
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A contradiction.
By D-accessibility the family (Oδ)δ>0 covers D. Thus, for every

compact set K̃ ⊂ D there exists δ > 0 such that for all x ∈ K̃,GD(x,U) ≥
δ. Now, relying on Proposition 4 and the de�nition of GD, one can
choose S > 0 large enough so that∫ S

0
PD
t (x,U)dt >

δ

2

for all x ∈ K̃. Consequently, for all x ∈ K̃ there is some 0 ≤ tx ≤ S
such that

PD
tx (x,U) ≥ δ

2S
= δ′.

Hence,
Qtx(x,U) ≥ δ′′

for some δ′′ > 0 and all x ∈ K̃. By the assumption on (PD
t ) there exists

c′ > 0 such that
Qt(x, ·) ≥ c′ξ′(·)

for all x ∈ U and T − ε ≤ t ≤ T , where ξ′(f) = ξ(fh). Choose now n
su�ciently large so that S

n < ε. Then for all x ∈ K̃, nT = tx + nτx for
some τx ∈ [T − ε, T ]. Thus

QnT (x, ·) ≥
∫
U
Qtx(x, dy)Qnτx(y, ·) ≥ δ′′(c′ξ′(U))n−1c′ξ′(·).

Proof of Step 2: Without loss of generality, we may assume (to
shorten notation) that T = 1.

By Markov inequality,

Px(τ
out
D > 1) ≤ Ex(τD) = GD1D(x).

Let θ > 0 be such that ρ = eλθ < 1. By the assumption thatGD(Cb(D)) ⊂
C0(D), there exists ε > 0 and C ′ ≥ 0 such that

Px(τ
out
D > 1) ≤ θ + C ′1{x∈D: d(x,∂D)≥ε}.

Then

Q1(V )(x) = eλ
Px(τ

out
D > 1)

h(x)
≤ ρV (x) + C

for some C ≥ 0. 2
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3 Application to SDEs

The main purpose of this section is to prove Theorems 1 and 2. We
assume throughout this section that M = Rn and D ⊂ M is an open
connected set with compact closure K. We let (Pt), respectively (PD

t ),
denote the Markov, respectively sub-Markov, semigroup induced by the
SDE (1).

3.1 Accessibility

This section discusses the accessibility properties and provides simple
criteria ensuring that conditions (i) (accessibility of M \ K from K)
and (ii)− (b) (accessibility of Dε from D) of Theorem 1 are satis�ed.

Recall that y(u, x, ·) denotes the maximal solution to the control
system (2) starting from x (i.e y(u, x, 0) = x).

The following proposition easily follows from the celebrated Strook
and Varadhan's support theorem [23] (see also Theorem 8.1, Chapter
VI in [13]). It justi�es the terminology used in Section 1.

Proposition 13 Assume that the Sj are bounded with �rst and second

bounded derivatives. Let x ∈M and U ⊂M open. Then U is accessible

(respectively D-accessible) from x if there exists a control u and t ≥ 0
such that y(u, x, t) ∈ U (respectively y(u, x, t) ∈ U and y(u, x, s) ∈ D
for all 0 ≤ s ≤ t).

Remark 11 The assumption that the Sj are bounded with �rst and
second bounded derivatives is free of charge here, since - by compact-
ness of K - we can always modify the Sj outside K so that they have
compact support.

This proposition provides a tool to prove that condition (i) of Theorem
1 (or the standing Hypothesis 1) holds true. As an illustration, we
provide a proof of the following result, originally due to Pinsky [19].

Proposition 14 Suppose there exists x̃ ∈M \K and δ > 0 such that

for all x ∈ D
m∑
j=1

⟨Sj(x), x− x̃⟩2 ≥ δ∥x− x̃∥2. (11)

Then M \K is accessible from all x ∈ K.
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Proof: Note that by continuity and compactness (of K × {x ∈ Rn :
∥x∥ = 1}), one can always assume that (11) holds true on some larger
open bounded domain D′ with K ⊂ D′. For x ∈ D and j ∈ {1, . . . ,m}
set

uj(x) = − 1

2δε
⟨Sj(x), x− x̃⟩

where ε will be chosen later. Consider the deterministic ode

ẋ = S0(x) +
∑
j

uj(x)Sj(x).

Set v(t) = ∥x(t)− x̃∥2. Then, as long as x(t) ∈ D′,

dv(t)

dt
≤ −1

ε
v(t) + a

where a = supx∈D′ 2(⟨S0(x), x− x̃⟩). Thus

v(t) := ∥x(t)− x̃∥2 ≤ e−εt(v0 − aε) + aε.

One can choose ε small enough so that x(t) meets D′ \K. 2

The next result (Proposition 16) provides a natural condition ensuring
that condition (ii)− (b) of Theorem 1 holds.

Suppose that ∂D is regular, as de�ned in the introduction. Let Np

denote the set of unit outward normal vectors at p ∈ ∂D and let

N = {(p, v) : p ∈ ∂D, v ∈ Np}.

We say that a vector w ∈ Rn points inward D at p ∈ ∂D if

⟨w, v⟩ ≤ 0 for all v ∈ Np, and ⟨w, v⟩ < 0 for at least one v ∈ Np.

We say that it points strictly inward D at p if ⟨w, v⟩ < 0 for all v ∈ Np.
We say that a vector �eld F points inward (respectively strictly inward)
D if F (p) points inward (strictly inward) D at p for all p ∈ ∂D.

Lemma 15 Suppose ∂D is regular. Let F be a Lipschitz vector �eld

pointing inward D and let Φ = {Φt} be its �ow. Then

(i) Φt(K) ⊂ D for all t > 0;

(ii) There exists a compact set A ⊂ D invariant under {Φt} (i.e Φt(A) =
A for all t ∈ R) such that for all x ∈ D ωΦ(x) ⊂ A, where ωΦ(x)
stands for the omega limit set of x for Φ.
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Proof: We �rst show that Φt(K) ⊂ K for all t ≥ 0. Suppose not.
Then, for some p ∈ ∂D and ε > 0, d(Φt(p),K) > 0 on ]0, ε]. The
function

t→ V (t) := d(Φt(p),K),

being Lipschitz on [0, ε] it is absolutely continuous, hence almost ev-
erywhere derivable and V (t) =

∫ t
0 V̇ (u)du. Let 0 < t0 ≤ ε be a point

at which it is derivable, x0 = Φt0(p) and p0 ∈ ∂D be such that
∥x0 − p0∥ = d(x0,K). Then for all t > 0,

V (t0 + t)− V (t0)

t
=
d(Φt(x0),K)− d(x0,K)

t
≤ ∥Φt(x0)− p0∥ − ∥x0 − p0∥

t
.

Letting t→ 0, we get

V̇ (t0) ≤
⟨F (x0), x0 − p0⟩

∥x0 − p0∥
≤ ⟨F (x0)− F (p0), x0 − p0⟩

∥x0 − p0∥

≤ L∥x0 − p0∥ = LV (t0),

where L is a Lipschitz constant for F and the second inequality comes
from the fact that F (p0) points inward D at p0. By Gronwall's lemma
we then get that for all 0 < s < t ≤ ε, V (t) ≤ eL(t−s)V (s). Since
V (0) = 0, V cannot be positive. This proves the desired result. Note
that this �rst result doesn't require that ∂D is regular but only that
for all p ∈ ∂D at which Np ̸= ∅ ⟨F (p), v⟩ ≤ 0 for all v ∈ Np (compare
with Theorem 2.3 in [4]).

We now show that Φt(K) ⊂ D for t > 0. This amounts to show
that for all p ∈ ∂D and all ε > 0 small enough, Φ−ε(p) ∈ M \K. Let
p ∈ ∂D. Choose v ∈ Np such that δ := −⟨F (p), v⟩ > 0. By assumption
d(p+rv,K) = r for some r > 0. Thus for all ε > 0 such that ε∥F (p)∥2 <
rδ,

∥(p− εF (p))− (p+ rv)∥2 < r2 − εδr.

Since ∥Φ−ε(p) − (p − εF (p)∥ = o(ε), this shows that Φ−ε(p) ̸∈ K for
ε > 0 small enough.

Assertion (ii) is a consequence of (i). It su�ces to set

A = ∩t≥0Φt(K).

2

For (p, v) ∈ N , set R(p, v) = sup{r > 0 : d(p + rv,K) = r} ∈]0,∞],
and let

R∂D = inf
(p,v)∈N

R(p, v).

It will be assumed in Proposition 16 that R∂D ̸= 0.
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Remark 12 If D is convex or ∂D is C2, then R∂D ̸= 0. Note however
that the assumption that ∂D is regular doesn't imply in general that
R∂D ̸= 0. Here is a simple example. For 1 ≤ α ≤ 2, Let Dα ⊂ R2 be
de�ned as

Dα = {(x, y) ∈ R2 : 0 < x < 1, |y| < xα}.

It is not hard to verify that ∂Dα is regular for all 1 ≤ α ≤ 2. However,
if 1 < α < 2, then N(0,0) = {v : ∥v∥ = 1, v1 < 0} and

lim
v→(0,1),v∈N(0,0)

R((0, 0), v) = 0.

Proposition 16 Assume that ∂D is regular and R∂D ̸= 0.

(i) For each p ∈ ∂D, the two following conditions, denoted (a), (b), are
equivalent:

(a) Np ∩ −Np = ∅ and for each v ∈ Np

⟨S0(p), v⟩ < 0 or

m∑
i=1

⟨Si(p), v⟩2 ̸= 0;

(b) There exists a vector w ∈ Span{S1(p), . . . , Sm(p)} such that

S0(p) + w points strictly inward D at p.

(ii) If for all p ∈ ∂D condition (i)− (a) (or (i)− (b)) holds, then

Dε = {x ∈ D : d(x, ∂D) > ε}

is accessible from all x ∈ D for some ε > 0.

Proof: Point (ii). We �rst assume that (i) − (b) holds at every p ∈
∂D and prove that Dε is accessible for some ε > 0. The assumption
R∂D > 0 makes N closed (hence compact). Indeed, if (pn, vn) → (p, v)
with (pn, vn) ∈ N . Then, for any 0 < r < R∂D, d(pn + rvn,K) = r.
Thus d(p+ rv,K) = r.

This has the consequence that, if a continuous vector �eld F points
strictly inward D at p ∈ ∂D, it points strictly inward D at q ∈ ∂D for
all q in a neighborhood of p. Therefore, by compactness, there exists a
covering of ∂D by open sets U1, . . . , Uk, and vector �eldsW1, . . . ,Wk ∈
Span{S1, . . . , Sm} such that for all p ∈ ∂D∩Ui Fi(p) := S0(p)+Wi(p)
points strictly inward D at p. Set U0 =M \∂D and let {ρi}i=0,...,k be a
partition of unity subordinate to {Ui}i=0,...,k. That is ρi ∈ C∞(M), ρi ≥
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0,
∑k

i=0 ρi = 1, and supp(ρi) ⊂ Ui. De�ne F = ρ0S
0+

∑k
i=1 ρiFi. Then,

F points strictly inward D and writes

F = S0 +

m∑
i=1

uiSi (12)

with ui ∈ C∞(M). In view of (12), Proposition 13 and Lemma 15, this
proves the result.

Point (i). We now prove that conditions (i)− (a) and (i)− (b) are
equivalent. The implication (i)−(b) ⇒ (i)−(a) is straightforward. We
focus on the converse implication. Let

Cone(Np) = {tv, t ≥ 0, v ∈ Np}

and conv(Np) be the convex hull of Np. We claim that

conv(Np) ⊂ Cone(Np)

and 0 ̸∈ conv(Np). To prove the �rst inclusion, it su�ces to show
that Cone(Np) is convex. To shorten notation, assume (without loss
of generality) that p = 0. Let x, y ∈ Cone(N0) and 0 ≤ t ≤ 1. By
de�nition of N0, Cone(N0) = {z ∈ Rn,∃r > 0 s.t. d(rz,K) = ∥rz∥},
so there exists r > 0 such that d(rx,K) = ∥rx∥ and d(ry,K) = ∥ry∥.
Thus for all z ∈ K

∥rx− z∥2 − ∥rx∥2 = ∥z∥2 − 2⟨rx, z⟩ ≥ 0.

Similarly ∥z∥2 − 2⟨ry, z⟩ ≥ 0. Thus

∥r(tx+ (1− t)y)− z∥2 − ∥r(tx+ (1− t)y)∥2

= t(∥z∥2 − 2⟨rx, z⟩) + (1− t)(∥z∥2 − 2⟨ry, z⟩) ≥ 0.

This proves that tx+(1−t)y ∈ Cone(N0), hence convexity of Cone(N0).
The fact that 0 ̸∈ conv(Np) follows from the assumption that Np ∩

−Np = ∅. Indeed, suppose to the contrary that 0 =
∑k

i=1 tixi with

k ≥ 2, xi ∈ Np, ti > 0 and
∑k

i=1 ti = 1. Then

− t1
1− t1

x1 ∈ conv(x2, . . . , xk) ⊂ conv(Np) ⊂ cone(Np).

Thus −x1 ∈ Np. A contradiction.
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We shall now deduce the implication (i)− (a) ⇒ (i)− (b) from the
Minimax theorem (see e.g [22]). For all j ∈ {1, . . . ,m} set S−j = −Sj .
Let J = {−m, . . . , 0, . . .m} and

∆(J) = {α ∈ RJ : αj ≥ 0,
∑
j∈J

αj = 1}.

By condition (i) − (a) and compactness of Np there exists δ > 0 such
that for all v ∈ Np

min
j∈J

⟨Sj(p), v⟩ ≤ −δ.

Thus for all v ∈ Cone(Np)

min
j∈J

⟨Sj(p), v⟩ ≤ −δ∥v∥.

The set Np being compact (in �nite dimension) its convex hull is also
compact by Carathéodory theorem. Thus, because 0 ̸∈ conv(Np),

∥v∥ ≥ δ′

δ for some δ′ > 0 and all v ∈ conv(Np). It then follows that

sup
v∈conv(Np)

inf
α∈∆(J)

⟨
∑
j∈J

αjS
j(p), v⟩ ≤ sup

v∈conv(Np)
min
j∈J

⟨Sj(p), v⟩ ≤ −δ′

for some δ′ > 0. By the Minimax theorem, the left hand side, also
equals

inf
α∈∆(J)

sup
v∈conv(Np)

⟨
∑
j∈J

αjS
j(p), v⟩

and this in�mum is achieved for some β ∈ ∆(J). If β0 ̸= 0 this implies
that

sup
v∈conv(Np)

⟨S0(p) +
∑

j∈J,j ̸=0

βj
β0
Sj(p), v⟩ ≤ − δ′

β0
< 0.

If β0 = 0, for R > 0 su�ciently large

sup
v∈conv(Np)

⟨S0(p) +R
∑
j∈J

βjS
j(p), v⟩ ≤ −Rδ′ + ∥S0(p)∥ < 0.

This concludes the proof. 2

Remark 13 It follows from Proposition 16 that whenever ∂D is C2,
condition (ii)− (a) of Theorem 1 implies condition (ii)− (b), because
at each point p ∈ ∂D there is a unique outward unit normal. The
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following example shows that this is not true in general. Let D1 be as
in Remark 12, with α = 1, and let (Xt) be solution to

dXt = S1(Xt) ◦ dBt

where S1(x, y) = (1, 2). At each point p ∈ ∂D there is at least one
v ∈ Np such that ⟨S1(p), v⟩ ̸= 0 so that condition (ii)− (a) is satis�ed.
However, for 0 < η < ε,D1

ε is not D-accessible from (η, 0).
Observe also that none of the conditions required in Proposition 16

is necessary for Dε to be accessible. Let Dα be as in Remark 12, with
1 < α ≤ 2 and let

dXt = e1 ◦ dB1
t + e2 ◦ dB2

t ,

with (e1, e2) the canonical basis of R2. As shown in Corollary 3 (and
its proof), Dα

ε is accessible; while for 1 < α < 2, R∂D = 0 and for
α = 2,N0,0 ∩ −N0,0 ̸= ∅.

3.2 Proof of Theorem 1

In order to prove Theorem 1, it su�ces to show that the two assump-
tions of Theorem 7 are satis�ed. The second assumption is implied by
condition (ii)− (b) of Theorem 1. We shall show here that the �rst one
is implied by conditions (i) and (ii)− (a) of Theorem 1.

Feller properties

Let C(R+,M) be the set of continuous paths η : R+ 7→ M equipped
with the topology of uniform convergence on compact intervals.

Let (ηn)n≥0 be a sequence converging to η in C(R+,M). Set

τn,outD = inf{t ≥ 0 : ηn(t) ∈M \D}, τ outD = inf{t ≥ 0 : η(t) ∈M \D}

De�ne τn,outK and τ outK similarly.

Lemma 17 (i) Suppose η(0) ∈ D. Then for all f ∈ Cb(D), f ≥ 0 and

all t ≥ 0,

lim inf
n→∞

f(ηn(t))1{τn,out
D >t} ≥ f(η(t))1{τoutD >t}.

In particular

lim inf
n→∞

τn,outD ≥ τ outD .
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(ii) Suppose η(0) ∈ K. Then

lim sup
n→∞

τn,outK ≤ τ outK

and for all f ∈ C0(K), f ≥ 0 and all t ≥ 0,

lim sup
n→∞

f(ηn(t))1{τn,out
K >t} ≤ f(η(t))1{τoutK >t}.

Proof: (i) If τ outD ≤ t the statement is obvious. If τ outD > t, then
η([0, t]) ⊂ D so that, for n large enough, ηn([0, t]) ⊂ D. That is τn,outD >

t and the statement follows. The assertion that lim infn→∞ τn,outD ≥
τ outD follows by choosing f = 1D.

(ii) Suppose to the contrary that τn,outK > τ outK +ε for some ε > 0 and
in�nitely many n. Then ηn([0, τ outK +ε]) ⊂ K. Hence η([0, τ outK +ε]) ⊂ K.
A contradiction. The last assertion directly follows for t ̸= τ outK and
f ∈ Cb(K). If now t = τ outK and f ∈ C0(K), f(ηn(t)) → f(η(t)) = 0. 2

In the following lemma, PK
t denotes the semigroup de�ned as PK

t f(x) =
Ex(f(Xt)1τoutK >t).

Lemma 18 Suppose that condition (i) of Theorem 1 holds. Then,

(i) For all f ≥ 0, f ∈ Cb(D), x ∈ D and t ≥ 0,

lim inf
y→x

PD
t f(y) ≥ PD

t f(x),

(ii) For all f ≥ 0, f ∈ C0(K), x ∈ K and t ≥ 0

lim sup
y→x,y∈K

PK
t f(y) ≤ PK

t f(x)

(iii) Suppose, in addition, that condition (ii)−(a) of Theorem 1 holds.

Then,

(a) For all x ∈ ∂D,
Px(τ

out
K = 0) = 1,

and for all x ∈ D,

Px(τ
out
D = τ outK ) = 1;

(b) For all f ∈ C0(D) and t ≥ 0, PD
t (f) ∈ Cb(D);

(c) For all f ∈ Cb(D) and t ≥ 0, GDf ∈ C0(D). Condition (i)
of Theorem 7 is then satis�ed.
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Proof: Let (Xx
t ) be the (strong) solution to (1) with initial condition

Xx
0 = x. We can always assume that (Xx

t )t≥0, x∈M is de�ned on the
Wiener space space C(R+,Rm) equipped with its Borel sigma �eld
and the Wiener measure P (the law of (B1, . . . , Bm)). That is Px(·) =
P(Xx ∈ ·). Also, for all ω ∈ C(R+,Rm), the map x ∈ M → Xx(ω) ∈
C(R+,M) is continuous (see for instance [14], Theorem 8.5).

Assertions (i) and (ii) then follow from Lemma 17 and Fatou's
lemma.

We now pass to the proof of (iii).
a) Let p ∈ ∂D. By condition (ii)− (a) of Theorem 1, there exist a

unit vector v and r > 0 such that the map Ψ : Rn 7→ R de�ned as

Ψ(x) = r2 − ∥x− (p+ rv)∥2,

satis�es
Ψ(x) > 0 ⇒ x ∈M \K,

and ⟨∇Ψ(p), Sj(p)⟩ ̸= 0 for some j ∈ {1, . . . ,m}. Without loss of gen-
erality we can assume that j = 1. Hence, for some neighborhood U of
p,

(⟨∇Ψ(x), S1(x)⟩)2 ≥ a > 0

on U.
By Ito's formulae

Ψ(Xp
t∧τoutU

) =

∫ t∧τoutU

0
LΨ(Xp

s )ds+Mt∧τoutU

where

LΨ = S0(Ψ) +
1

2

m∑
j=1

(Sj)2(Ψ),

Mt =

m∑
j=1

∫ t

0
σj(Xp

s )dB
j
s ,

and σj(x) is any bounded measurable function coinciding with ⟨∇Ψ(x), Sj(x)⟩
on U. In the de�nition of L above, we used the standard notation for dif-
ferential operators de�ned from vector �elds: Si(f)(x) = ⟨Si(x),∇f(x)⟩.
For convenience, we set σ1(x) =

√
a for x ̸∈ U. Therefore,

Ψ(Xp
t∧τoutU

) ≥Mt∧τoutU
− b(t ∧ τ outU ) (13)
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with b = supx∈U |LΨ(x)|, and

⟨M⟩t =
m∑
j=1

∫ t

0
σj(Xp

s )
2ds ≥ at.

By Dubins-Schwarz Theorem (see e.g [14], Theorem 5.13) there exists
a Brownian motion (β) such that Mt = β⟨M⟩t for all t ≥ 0. Thus, for
all ε > 0

sup
0≤t≤ε

(Mt − bt) ≥ sup
0≤t≤ε

(β⟨M⟩t −
b

a
⟨M⟩t) ≥ sup

0≤t≤aε
(βt −

b

a
t).

Let Aε be the event that the right hand side of the last inequality is
positive. We claim that Aε has probability one. Indeed, by Blumen-
thal's zero-one law, the event ∩n≥1A1/n has either probability one or
zero. But

P(Aε) ≥ P(βaε > bε) = P(β1 >
b√
a

√
ε),

showing that lim infn→∞ P(A1/n) ≥ 1/2. Thus P(∩n≥1A1/n), hence
P(A1/n), equals 1.

Now, using (13), it follows that τ outK ≤ ε almost surely on the event
{τ outU > ε}. Thus Pp(τ

out
K = 0) = 1 because Pp(τ

out
U > 0) = 1.

The second statement of (iii), (a) follows from the strong Markov
property, valid since (Pt)t≥0 is Feller (see e.g [14], Theorem 6.17), as
follows. For all x ∈ D,

Px(τ
out
D = τ outK ) = Ex(PX

τout
D

(τ outK = 0)) = 1.

b) Let x ∈ D. The property Px(τ
out
D = τ outK ) = 1 implies that

PD
t f(x) = PK

t f(x) for all f ∈ Cb(D). Hence, by (i) and (ii),

lim
y→x

PD
t f(y) = PD

t f(x)

for all f ∈ C0(D), f ≥ 0. If now f ∈ C0(D) it su�ces to write f =
f+ − f− with f+ = max(f, 0) and f− = (−f)+.

c) Write τx,outD for inf{t ≥ 0 : Xx
t ̸∈ D}. Again, the property

Px(τ
out
D = τ outK ) = 1 combined with Lemma 17, imply that, almost

surely, the maps x ∈ D → τx,outD , and x ∈ D →
∫ τx,outD
0 f(Xx

s )ds are
continuous for all f ∈ Cb(D). Also,

sup
x∈D

E[
∫ τx,outD

0
f(Xx

s )ds]
2] ≤ ∥f∥2 sup

x∈D
Ex[(τ

out
D )2] <∞
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where the last inequality follows from Proposition 4. This shows that

the family (
∫ τx,outD
0 f(Xx

s )ds)x∈D is uniformly integrable. Thus, x ∈
D → E(

∫ τx,outD
0 f(Xx

s )ds) = GDf(x) is continuous.
To conclude, observe that |GDf(x)| ≤ ∥f∥GD1D(x) and thatG

D1D(x) =
E(τ out,Dx ). As x→ p ∈ ∂D this last quantity converges to E(τ out,Dp ) = 0.
2

3.3 Proof of Theorem 2

Consequences of Hörmander conditions

We assume throughout all this subsection that the conditions of Theo-
rem 1 hold and that the weak Hörmander condition is satis�ed at every
x ∈ K.

Lemma 19 The operator GD is a compact operator on C0(D).

Proof: Let L be the di�erential operator de�ned, for g smooth, by

Lg = S0(g) +
1

2

m∑
j=1

(Sj)2(g).

Consider the Dirichlet problem{
Lg = −f on D (in the sense of distributions)
g|∂D = 0.

(14)

We claim that for every f ∈ Cb(K) there exists a solution to this
problem given as

g(x) = GDf(x)

for all x ∈ D.
Assume the claim is proved. By Theorem 18 in [21], there exists

0 < α < 1 depending only on the family S0, S1, . . . , Sm such that
if f ∈ L∞ and Lg = f (in the sense of distributions), then g is α-
Hölder. Thus, GD(C0(D)) ⊂ Cα

0 (D), the set of f ∈ C0(D) that are
α-Hölder. Because GD is a bounded operator on C0(D), it has a closed
graph in C0(D) × Cα

0 (D). Hence, by the closed graph theorem, it is a
bounded operator from C0(D) into Cα

0 (D). Compactness then follows
from Ascoli's theorem.
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We now pass to the proof of the claim.
By a theorem of Bony ([4], Théorème 5.2), for any a > 0 and

f ∈ Cb(K), the Dirichlet problem:

{
Lg − ag = −f on D (in the sense of distributions)
g|∂D = 0;

(15)

has a unique solution, call it ga, continuous on K. Furthermore, if
f is smooth on D so is ga. Note that the assumptions required for
this theorem are implied by condition (ii) of Theorem 1 and the weak
Hörmander condition.

Suppose that f is smooth on D (so that ga is smooth on D). Then
by Ito's formulae

(e−at∧τoutD ga(Xt∧τoutD
) +

∫ t∧τoutD

0
e−asf(Xs)ds)t≥0

is a local martingale. Being bounded, it is a uniformly integrable mar-
tingale. Thus, taking the expectation and letting t→ ∞, we get that∫ ∞

0
e−asPD

s f(x)ds = Ex(

∫ τoutD

0
e−asf(Xs)ds) = ga(x). (16)

In particular, GDf(x) = lima→0 ga(x), where the convergence is uni-
form by Proposition 4.

For every smooth test function Φ with compact support in D

⟨ga, L∗Φ⟩ − a⟨ga,Φ⟩ = −⟨f,Φ⟩

where ⟨h,Φ⟩ =
∫
h(x)Φ(x)dx. Letting a→ 0, we get that ⟨GDf, L∗Φ⟩ =

−⟨f,Φ⟩, that is
LGD(f) = −f,

in the sense of distributions. This proves that, for f smooth on D,
the solution to (14) is GD(f). If now f is only continuous, let (fn) be
smooth (on a neighborhood of K) with fn → f uniformly on K. Then
GD(fn) → GD(f) uniformly; and, by the same argument as above,
GD(f) solves (14) in the sense of distributions. 2

The proof of the next two lemmas are similar to the proof of Corol-
lary 5.4 in [2]. For convenience we provide details.
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Lemma 20 Let p ∈ D be such that Si(p) ̸= 0 for some i ∈ {1, . . . ,m}.
Then, there exist disjoint open sets U, V ⊂ D with p ∈ U and a non-

trivial measure ξ on V (i.e ξ(V ) > 0, ξ(M \ V ) = 0) such that for all

x ∈ U,
GD(x, ·) ≥ ξ(·).

Proof: We �rst assume that for all x ∈ D there is some i ∈ {1, . . . ,m}
such that Si(x) ̸= 0. By Theorem 6.1 in [4], this condition (combined
with condition (ii) of Theorem 1 and the weak Hörmander assump-

tion), imply that, for all a > 0, there exists a map Ka : D
2 7→ R+

smooth on D2 \ {(x, x) : x ∈ D} such that for all f ∈ Cb(K), and
x ∈ D ∫ ∞

0
e−asPD

s f(x)ds =

∫
D
Ka(x, y)f(y)dy.

To be more precise, Theorem 6.1 in [4] asserts that the solution to the
Dirichlet problem (15) can be written under the form given by the right
hand side of this equality. On the other hand, we have shown in the
proof of Lemma 19, that this solution is given by the left hand side.

Given p ∈ D, choose q ̸= p such that Ka(p, q) > 0. Such a q
exists, for otherwise, we would have

∫∞
0 e−asPD

s 1D(p)ds = 0. That is
τ outD = 0,Pp almost surely. By continuity of Ka o� the diagonal, there
exist disjoint neighborhoods U, V of p and q and some c > 0 such that
Ka(x, y) ≥ c for all x ∈ U, y ∈ V. Thus, for all x ∈ U,

GD(x, ·) ≥
∫ ∞

0
e−asPD

s (x, ·) ≥ cLeb(V ∩ ·)

where Leb stands for the Lebesgue measure on Rn.
We now pass to the proof of the Lemma. Using a local chart around

p we can assume without loss of generality that p = 0, S1(0) ̸= 0 and
S1(0)

∥S1(0)∥ = e1, where (e1, . . . , en) stands for the canonical basis on Rn.

Let Dε = {x ∈ Rn :
∑n

i=1 |xi| < ε}. For ε > 0 small enough S1(x) ̸= 0
for all x ∈ Dε and for all x ∈ Dε there is a vector u normal to Dε \Dε

(in the sense of [4]) such that ⟨S1(x), u⟩ ̸= 0. The preceding reasoning
can then be applied with Dε in place of D. Thus, for some disjoint open
sets U, V ⊂ Dε with p ∈ U and for all x ∈ U,

GD(x, ·) ≥ GDε(x, ·) ≥ cLeb(V ∩ ·).

2
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Lemma 21 Let p ∈ D be such that:

(i) The Hörmander condition holds at p;

(ii) There exists a neighborhood V ⊂ D of p such that p is D-accessible

from all x ∈ V.

Then, there exist an open set U ⊂ V, a non trivial measure ξ on U and

positive numbers T > ε > 0 such that for all x ∈ U, T − ε ≤ t ≤ T
PD
t (x, ·) ≥ ξ(·).

Proof: Replacing V by a smaller neighborhood if necessary we can
assume that the Hörmander condition holds at every x ∈ V. By ([12],
Theorem 3 and its proof), there exists a nonnegative map pVt (x, y)
smooth in the variables (t, x, y) ∈ R∗

+ × V × V such that

P V
t (x, dy) = pVt (x, y)dy,

where P V
t (x, ·) stands for the law of Xx

t killed at D \ V. Choose q ∈ V
and T > 0 such that pVT (p, q) := c > 0. Then, by continuity, there exist
ε > 0 and neighborhoods V1, V2 of p and q such that

pVt (x, y) ≥ c > 0

for all (t, x, y) ∈ [T − ε, T + ε]×V1×V2. By D-accessibility of p from q,
there exist s ≥ 0, δ > 0 such that PD

s (q, V1) > δ. Now, by the continuity
property (iii), (c) of Lemma 18, the set

U = {y ∈ V2 : P
D
s (y, V1) > δ}

is an open neighborhood of q. The proof of this fact is verbatim the
same as the proof written for GD in the proof of Step 1 of Theorem 12.
Thus, for all x ∈ U, T − ε ≤ t ≤ T + ε, and A ⊂ U a Borel set,

PD
t+s(x,A) ≥

∫
V1

PD
s (x, dy)PD

t (y,A) ≥
∫
V1

PD
s (x, dy)

∫
A
pVt (y, z)dz

≥ δcLeb(A).

2

Lemma 22 Let µ be a QSD. Then µ has a smooth density with respect

to the Lebesgue measure on D. If furthermore the strong Hörmander

conditions holds at every x ∈ K, this density is positive.
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Proof: Let Φ be a smooth function with compact support in D. By

Ito's formulae (Φ(Xt∧τoutD
)−

∫ t∧τoutD
0 LΦ(Xs)ds)t≥0 is a local martingale,

whose quadratic variation is in L2, hence a true martingale. Thus,
taking the expectation and letting t→ ∞, it comes that GD(LΦ)(x) =
−Φ(x) for all x ∈ D. Let µ be a QSD with rate λ. Then −µ(Φ) =
µGD(LΦ) = 1

λµ(LΦ). This shows that L
∗µ+λµ = 0 on D in the sense

of distributions. Now,

L∗f = S̃0f +
1

2

m∑
j=1

(Sj)2f + Tf

where T is a smooth function and S0+ S̃0 ∈ Span(S1, . . . , Sm). There-
fore L∗ satis�es the weak Hörmander property. By Hörmander Theo-
rem [11], it is hypoelliptic. This implies that µ has a smooth density.

For a > 0, set L∗
af = L∗f − af and choose a su�ciently large so

that L∗
a1 = T − a < 0. If the strong Hörmander is satis�ed at every

point x ∈ K, the same is true for L∗
a. Now, L

∗
a(−µ) = (λ + a)µ ≥ 0.

Therefore, by application of Bony's maximum principle ([4], Corollary
3.1), if the density of −µ vanishes at some x ∈ D, it has to be zero on
D. This is impossible because µ is a probability measure. 2

Proof of Theorem 2

We now assume that conditions (i), (ii), (iii) of Theorem 2 hold. By
Lemma 19 and Corollary 9, there exists a positive right eigenfunction
for GD. By Lemma 20 and Lemma 11, (PD

t ) is irreducible. Thus,
according to Theorem 10, it has a unique QSD. Such a QSD has a
smooth density by Lemma 22. This prove the �rst part of Theorem 2.

The last part follows from Lemma 21 and Theorem 12.
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