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Adaptive dynamics/Ecology

Darwinian evolution

Three main ingredients:

• Heredity: transmissions of individual characteristics from a
generation to the next one.

• Mutation: cause of the variability in individual characteristics.

• Selection: consequence of interactions between individuals and
their environment, including the rest of the population (ecology).
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Adaptive dynamics/Ecology

Adaptive dynamics (AD)

Adaptive dynamics (Hofbauer and Sigmund 1990, Marrow et al. 1992,
Metz et al. 1992):

• describe the evolution of a population by putting emphasis on the
ecological interactions
 density-dependent selection modelled in detail

• heredity (in a first approach) is simplified as much as possible:
asexual (clonal) reproduction

Grounded on models that are

• individual-based

• stochastic

• interactions are modelled in a realistic way

• population size can fluctuate
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Adaptive dynamics/Ecology

Biological motivations

Evolutionary time-scale is not always slow w.r.t. ecological time-scale

• evolution of resistance in pathogens

• genetic adaptation to harvesting

• experimental evolution in microorganisms

 Makes sense to study the interplay between ecology and evolution
in models

Implications in biodiversity management

• rapid evolutions usually involve human pressure

• adaptive evolution does not necessarily “rescue” populations

• how can management and restoration practice account for/use
the evolutionary process?
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Adaptive dynamics/Ecology

Adaptive dynamics scales

The theory of adaptive dynamics (Metz et al., 1996, Dieckman and
Law, 1996) proposes simple models approaching the evolution under
several assumptions:

• Large populations

• Rare mutations

• Small mutation steps
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Adaptive dynamics/Ecology

Ecological models of dispersal

The models of adaptive dynamics can also have a spatial
interpretation

• mutations can be seen as spatial dispersion, or other motions
(Bolker, Pacala, 1997, Champagnat, Méléard, 2007)

• classical ecological question: links between local interaction and
spatial dispersion

• invasion, survival, extinction

• competition between species

• similar scalings can be considered (spatial scaling, dispersal
probability/range, time...)
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Outline of the lectures

Outline of the lectures

1 Description of the stochastic individual-based ecological model;
first properties

2 Several large population scalings  recover classical or original
macroscopic models under various biological assumptions and
scales, including superprocesses

3 Basic properties of the class of SPDE obtained this way

4 Properties of local extinction and persistence of these SPDE

5 The case of age-dependent evolutionary dynamics
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The model

Microscopic model

A general birth-and-death measure-valued process with competition
and mutation (already studied in Bolker and Pacala 1997, Dieckmann
and Law 2000, Fournier and Méléard 2004,...)

• each individual is characterized by a phenotypic trait x
(individual size, age at maturity,. . . ) in a closed subset X of Rk

• a population of N (t) individuals holding traits x1, . . . , xN (t) ∈ X

is represented by νt =

N (t)∑
i=1

δxi

• state space: M =

{
n∑

i=1

δxi : n ≥ 0, xi ∈ X

}
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The model

Transitions

• as in the pure multitype branching process:

• each individual with trait x gives birth at rate b(x) to a single
individual of trait x

• each individual of trait x dies at rate d(x)

• in addition,
each individual of trait y picks any given individual of trait x at
rate α(x , y) and then kills him
 an individual with trait x dies at rate

d(x ) +

Nt∑
i=1

α(x , xi) = d(x ) +

∫
X
α(x , y)νt(dy)

• at each birth from an individual with type x
• µ(x) mutation probability
• x + h mutant trait, where h ∼ m(x , dh)
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The model

Generator

 Markov jump process (νt , t ≥ 0) on M with generator

Lφ(ν) =

∫
X

[φ(ν + δx )− φ(ν)](1− µ(x ))b(x )ν(dx )

+

∫
X

∫
Rd

[φ(ν + δx+h)− φ(ν)]µ(x )b(x )m(x , h)dh ν(dx )

+

∫
X

[φ(ν − δx )− φ(ν)]

(
d(x ) +

∫
X
α(x , y)ν(dy)

)
ν(dx )
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Biological comments

Biological comments

• Logistic interaction = competition
Easy generalization to more general interactions (Champagnat,
Ferrière, Méléard, 2008)

• birth rate b(x ,U ∗ νt(x))
• death rate d(x ,V ∗ νt(x))

Example:
b(x ,U ∗νt(x )) = b(x )+U ∗νt(x ), d(x ,U ∗νt(x )) = d(x )+V ∗νt(x )
U ≥ V corresponds to mutualistic interaction

• Multispecific (prey-predator, host-parasite, ressource
exploitation, mutulistic community,. . . ) generalization
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First properties

Assumptions

(A1) 0 ≤ α(·, ·) ≤ ᾱ < +∞

(A1) 0 ≤ b(·) ≤ b̄ < +∞

(A1) 0 ≤ d(·) ≤ d̄ < +∞

(A2) m(x , dh) has a density m(x , h) w.r.t. the Lebesgue measure
such that m(x , h) ≤ m(h) with

∫
m(h)dh < +∞

 Total jump rate less than 〈νt , 1〉(b̄ + d̄ + ᾱ(〈νt , 1〉 − 1))
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First properties

Construction as a SDE driven by Poisson point measures

Given independent PPM M1,M3 (resp. M2) on R+ × N× R+ (resp.
R+ × N× Rd × R+) with intensity ds(

∑
k≥1 δk (di))dθ (resp.

ds(
∑

k≥1 δk (di))m̄(h)dh dθ),

νt = ν0 +

∫ t

0

∫
N

∫ ∞
0

δH i
s−
1i≤〈νs−,1〉1θ≤b(1−µ)(H i

s−)M1(ds, di , dθ)

+

∫ t

0

∫
N

∫
Rd

∫ ∞
0

δx+h1i≤〈νs−,1〉1θ≤bµ(H i
s−)m(H i

s−,h)/m̄(H i
s−)M2(ds, di , dh, dθ)

−
∫ t

0

∫
N

∫ ∞
0

δH i
s−
1i≤〈νs−,1〉1θ≤d(H i

s−)+
∫
α(H i

s−,y)νs−(dy)M3(ds, di , dθ),

where H i
t is the i -th atom in νt (for some arbitrary order).
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First properties

Martingale properties (Fournier, Méléard, 2004)

• Bounded birth rate: for p ≥ 1,
E[〈ν0,1〉p ] < +∞⇒ E[supt≤T 〈νt ,1〉p ] < +∞

• for φ with appropriate growth, φ(νt)− φ(ν0)−
∫ t

0

Lφ(νs)ds is

a càdlàg martingale
• In particular, for φ(ν) = 〈ν, f 〉, assuming E[〈ν0,1〉2] < +∞

〈νt , f 〉 = 〈ν0, f 〉+ M f
t

+

∫ t

0

∫
X

{[
(1− µ(x ))b(x )− d(x )−

∫
α(x , y)(νs(dy)− δx (dy))

]
f (x )

+ b(x )µ(x )

∫
f (x + z )M (x , z )dz

}
νs(dx )ds,

with

〈M f 〉t =

∫ t

0

∫
X

{[
(1−µ(x ))b(x )−d(x )−

∫
α(x , y)(νs(dy)− δx (dy))

]
f 2(x )

+ b(x )µ(x )

∫
f 2(x + z )M (x , z )dz

}
νs(dx )ds.
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First properties

Proof of the moments bound

Introducing τn = inf{t ≥ 0 : 〈νt , 1〉 ≥ n}, using
(x + 1)p − xp ≤ Cp(1 + xp−1) and

sup
s≤t∧τn

〈νs , 1〉p ≤ 〈ν0, 1〉p +

∫ t∧τn

0

∫
N

∫
Rd

∫ ∞
0

[(〈νs−, 1〉+ 1)p − 〈νs−, 1〉p ]

1i≤〈νs−,1〉1θ≤b̄M2(ds, di , dh, dθ)

+ similar term for M1,

taking expectation, we deduce that

E sup
s≤t∧τn

〈νs , 1〉p ≤ Cp + CpE
∫ t

0

(1 + 〈νs∧τn , 1〉p)ds

and the result follows from Gronwall.
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An example

Example

Parameters from Kisdi (1999)

X = [0, 4] d(x ) ≡ 0 µ(x ) ≡ µ
m(x , h)dh = N (0, σ2)

(conditioned on x + h ∈ X )

b(x ) = 4− x α(x , y) = α(x − y) with

-
u

6

α(u)

αmax. .................................. ............................... ............................. .......................... ....................... ..................... .................. ................
.............
..........
.
.........
..
.
.........
..
..........
.

............. ................ .................. ..................... ....................... .......................... ............................. ............................... ..................................

Asymetric competition

• arm-race competition
• evolution of the cell size at division
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An example

Simulations

µ = 0.1 σ = 0.03
αmax = 0.02

µ = 0.1 σ = 0.03
αmax = 0.001
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Preliminaries

Large population scalings (C., Ferrière, Méléard, 2008)

Parameter K : bK , dK , µK , MK and αK (x , y) =
α(x , y)

K
Biological interpretations: K scales the amount of ressources available
(carrying capacity, or “system size”), or the size of individuals (w.r.t.
their competitive pressure).

XK
t =

1

K

I (t)∑
i=1

δx i
t

=
νKt
K

L

K

φ(X ) =

∫
X

[φ(X +
δx
K

)− φ(X )](1− µ

K

(x ))b

K

(x )KX (dx )

+

∫
X

∫
Rd

[φ(X +
δx+z

K
)− φ(X )]µ

K

(x )b

K

(x )M

K

(x , z )dzKX (dx )

+

∫
X

[φ(X − δx
K

)− φ(X )]

(
d

K

(x ) +

∫
X

α(x , y)

K
KX (dy)

)
KX (dx )
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First limit

Simplest large population limit

bK = b, dK = d , µK = µ, MK = M .
Only the competitive kernel is modified: limit of large population size.

Theorem

Assume that XK
0 ⇒ ξ0, supK E[〈XK

0 ,1〉3] < +∞
and smooth parameters.

Then XK ⇒ ξ ∈ C([0,T ],MF (X )) deterministic, where

〈ξt , f 〉 = 〈ξ0, f 〉

+

∫ t

0

∫
X

{[
(1− µ(x ))b(x )− d(x )−

∫
X
α(x , y)ξs(dy)

]
f (x )

+ b(x )µ(x )

∫
f (x + z )M (x , z )dz

}
ξs(dx )ds. (1)

Kimura’s equation for “continuum of alleles”, extended to
density-dependent selection.



Introduction Microscopic model Large popu scalings

First limit

Remark

• If ξ0(dx ) = u0(x )dx , then ξt(dx ) = u(t , x )dx , ∀t > 0 and u(t , x )
is weak solution to

∂tu = [(1− µ(x ))b(x )− d(x )−
∫
α(x , y)u(t , y)dy ]u(t , x )

+

∫
µ(y)b(y)M (y , x − y)u(t , y)dy
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First limit

Sketch of the proof (1)

• Martingale problem

〈νt , f 〉 = 〈ν0, f 〉+ M f

,K

t

+

∫ t

0

∫
X

{[
(1− µ(x ))b(x )− d(x )−

∫
X
α(x , y)νs(dy)

]
f (x )

+ b(x )µ(x )

∫
f (x + z )M (x , z )dz

}
νs(dx )ds,

with

〈M f ,K 〉t

=
1

K 2

∫ t

0

∫
X

{[
(1− µ(x ))b(x )− d(x )−

∫
X
α(x , y)XK

s (dy)
]
f 2(x )

+ b(x )µ(x )

∫
f 2(x + z )M (x , z )dz

}
KXK

s (dx )ds.
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First limit

Idea of the proof (2)

• Since supK E[supt≥T 〈XK
t ,1〉3] < +∞ ,

〈XK , f 〉 is tight (Aldous-Rebolledo criterion)  XK is tight
(Roelly, 1986)

• supt≤T sup‖f ‖∞≤1 |〈XK
t , f 〉 − 〈XK

t−, f 〉| ≤ 1/K

 continuity of the limit process

• Since 〈M f ,K 〉 ≤ C

K
, any accumulation point is deterministic and

must satisfy (1)

• Uniqueness of ξ (Gronwall lemma for the total variation distance
between two solutions)
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First limit

Simulation

µ = 0.1 σ = 0.03
K = 100000
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Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration
of births and deaths X = Rd , αK (x , y) = α(x , y)/K ,

bK (x ) = K ηr(x ) + b(x ), dK (x ) = K ηr(x ) + d(x ), η ∈ (0, 1].

Biological interpretation: fast births and deaths but slow demography

〈XK
t , f 〉 = 〈XK

0 , f 〉+ M f ,K
t

+

∫ t

0

∫
X

{[
K ηr(x )+b(x )−K ηr(x )−d(x )−

∫
X
α(x , y)XK

s (dy)
]
f (x )

+ (K ηr(x ) + b(x ))µK (x )

∫
(f (x + z )− f (x ))MK (x , z )dz

}
XK

s (dx )ds,

Since births are accelerated, the effect of mutation (either the
mutation probability or the mutation amplitude) must be rescaled
accordingly: µK = µ, MK (x , z )dz ∼ N (0, σ2(x )Id/K η).

 〈MK ,f 〉t ≤ C
K η

K
.
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of births and deaths X = Rd , αK (x , y) = α(x , y)/K ,

bK (x ) = K ηr(x ) + b(x ), dK (x ) = K ηr(x ) + d(x ), η ∈ (0, 1].

Biological interpretation: fast births and deaths but slow demography

〈XK
t , f 〉 = 〈XK

0 , f 〉+ M f ,K
t

+

∫ t

0

∫
X

{[
K ηr(x )+b(x )−K ηr(x )−d(x )−

∫
X
α(x , y)XK

s (dy)
]
f (x )

+ (K ηr(x ) + b(x ))µK (x )

∫
(f (x + z )− f (x ))MK (x , z )dz

}
XK

s (dx )ds,

Since births are accelerated, the effect of mutation (either the
mutation probability or the mutation amplitude) must be rescaled
accordingly: µK = µ, MK (x , z )dz ∼ N (0, σ2(x )Id/K η).

 〈MK ,f 〉t ≤ C
K η

K
.
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Accelerated births and deaths

Small mutation step

Case η < 1

• XK ⇒ ξ ∈ C([0,T ],MF ) where

〈ξt , f 〉 = 〈ξ0, f 〉

+

∫ t

0

∫
X

{
(b(x )− d(x )−

∫
X
α(x , y)ξs(dy))f (x )

+
1

2
r(x )µ(x )σ2(x )∆f (x )

}
ξs(dx )ds.

 Generalization of Fisher’s models in ecology (Kimura’s
approximation for small mutation steps)
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Accelerated births and deaths

Case η = 1

XK ⇒ Z ∈ C([0,T ],MF ) where Z is defined by the 3 conditions:

• supt≤T E[〈Zt ,1〉3] <∞
• 〈Zt , f 〉 = 〈Z0, f 〉+ M̄ f

t

+

∫ t

0

∫
Rd

{
(b(x )− d(x )−

∫
X
α(x , y)Zs(dy))f (x )

+
1

2
r(x )µ(x )σ2(x )∆f (x )

}
Zs(dx )ds

• 〈M̄ f 〉t = 2

∫ t

0

∫
Rd

r(x )f 2(x )Zs(dx )ds.

 Microscopic justification of superprocesses with density-dependent
interaction, recently proposed and studied in population genetics
(Etheridge 06)

• birth and death stochasticity reflect on the demographic
time-scale

• diversification vs extinction
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Accelerated births and deaths

Simulations

µ = 0.3 σ = 0.3
K = 10000 η = 0.5

µ = 0.3 σ = 0.3
K = 10000 η = 1
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Accelerated births and deaths

Simulations

µ = 0.3 σ = 0.3
K = 10000 η = 1

µ = 0.1/K η σ = 0.1
K = 10000 η = 0.5
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Conclusion

Conclusion

• Mathematical justification of several (old and new) macroscopic
evolutionary models

• Precising the biological assumptions and scales underlying each
macroscopic model (large ressources, different scales for
individual births and deaths and for demography,. . . )

• Unifying these models from the same microscopic model
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