Large population scalings of stochastic population dynamics in ecology and evolution

Nicolas Champagnat

Workshop/School on Stochastic PDEs, Mean Field Games and Biology, L'Aquila, 6–8 Sept. 2017

Darwinian evolution

Three main ingredients:

- Heredity: transmissions of individual characteristics from a generation to the next one.
- Mutation: cause of the variability in individual characteristics.
- Selection: consequence of interactions between individuals and their environment, including the rest of the population (ecology).

Adaptive dynamics (AD)

Introduction

Adaptive dynamics/Ecology

Adaptive dynamics (Hofbauer and Sigmund 1990, Marrow et al. 1992, Metz et al. 1992):

- describe the evolution of a population by putting emphasis on the ecological interactions

 → density-dependent selection modelled in detail
- heredity (in a first approach) is simplified as much as possible: asexual (clonal) reproduction
- individual-based
- stochastic
- interactions are modelled in a realistic way
- population size can fluctuate

Adaptive dynamics (AD)

Introduction

Adaptive dynamics/Ecology

Adaptive dynamics (Hofbauer and Sigmund 1990, Marrow et al. 1992, Metz et al. 1992):

- describe the evolution of a population by putting emphasis on the ecological interactions

 → density-dependent selection modelled in detail
- heredity (in a first approach) is simplified as much as possible: asexual (clonal) reproduction

Grounded on models that are

- individual-based
- stochastic
- interactions are modelled in a realistic way
- population size can fluctuate

Biological motivations

Evolutionary time-scale is not always slow w.r.t. ecological time-scale

- evolution of resistance in pathogens
- genetic adaptation to harvesting
- experimental evolution in microorganisms

 \leadsto Makes sense to study the interplay between ecology and evolution in models

Biological motivations

Introduction

Adaptive dynamics/Ecology

Evolutionary time-scale is not always slow w.r.t. ecological time-scale

- evolution of resistance in pathogens
- genetic adaptation to harvesting
- experimental evolution in microorganisms

 \leadsto Makes sense to study the interplay between ecology and evolution in models

Implications in biodiversity management

- rapid evolutions usually involve human pressure
- adaptive evolution does not necessarily "rescue" populations
- how can management and restoration practice account for/use the evolutionary process?

Adaptive dynamics scales

The theory of adaptive dynamics (Metz et al., 1996, Dieckman and Law, 1996) proposes simple models approaching the evolution under several assumptions:

- Large populations
- Rare mutations
- Small mutation steps

Ecological models of dispersal

The models of adaptive dynamics can also have a spatial interpretation

- mutations can be seen as spatial dispersion, or other motions (Bolker, Pacala, 1997, Champagnat, Méléard, 2007)
- classical ecological question: links between local interaction and spatial dispersion
- invasion, survival, extinction
- competition between species
- similar scalings can be considered (spatial scaling, dispersal probability/range, time...)

Introduction

Outline of the lectures

- Description of the stochastic individual-based ecological model; first properties
- ② Several large population scalings → recover classical or original macroscopic models under various biological assumptions and scales, including superprocesses
- 3 Basic properties of the class of SPDE obtained this way
- ④ Properties of local extinction and persistence of these SPDE
- **5** The case of age-dependent evolutionary dynamics

A general birth-and-death measure-valued process with competition and mutation (already studied in Bolker and Pacala 1997, Dieckmann and Law 2000, Fournier and Méléard 2004,...)

- each individual is characterized by a phenotypic trait x (individual size, age at maturity,...) in a closed subset \mathcal{X} of \mathbb{R}^k
- a population of N(t) individuals holding traits $x_1, \ldots, x_{N(t)} \in \mathcal{X}$

is represented by $\nu_t = \sum_{i=1}^{N(t)} \delta_{x_i}$ • state space: $\mathcal{M} = \left\{ \sum_{i=1}^n \delta_{x_i} : n \ge 0, x_i \in \mathcal{X} \right\}$

	Microscopic model ⊙●⊙○○○○○○	Large popu scalings
The model		

Transitions

- as in the pure multitype branching process:
 - each individual with trait x gives birth at rate b(x) to a single individual of trait x
 - each individual of trait x dies at rate d(x)
- in addition,

each individual of traity picks any given individual of trait x at rate $\alpha(x,y)$ and then kills him

 \leadsto an individual with trait x dies at rate

$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

Sac

- at each birth from an individual with type x
 - $\mu(x)$ mutation probability
 - x + h mutant trait, where $h \sim m(x, dh)$

	Microscopic model ⊙●⊙○○○○○○	Large popu scalings
The model		

Transitions

- as in the pure multitype branching process:
 - each individual with trait x gives birth at rate b(x) to a single individual of trait x
 - each individual of trait x dies at rate d(x)
- in addition,

each individual of traity picks any given individual of trait x at rate $\alpha(x,y)$ and then kills him

 \leadsto an individual with trait x dies at rate

$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

Sac

- at each birth from an individual with type x
 - $\mu(x)$ mutation probability
 - x + h mutant trait, where $h \sim m(x, dh)$

	Microscopic model ⊙●⊙○○○○○○○	Large popu scalings
The model		

Transitions

- as in the pure multitype branching process:
 - each individual with trait x gives birth at rate b(x) to a single individual of trait x
 - each individual of trait x dies at rate d(x)
- in addition,

each individual of traity picks any given individual of trait x at rate $\alpha(x,y)$ and then kills him

 \leadsto an individual with trait x dies at rate

$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

- at each birth from an individual with type x
 - $\mu(x)$ mutation probability
 - x + h mutant trait, where $h \sim m(x, dh)$

- 日 - 日 - 日 - 三 - 三 - 三 - 三 - 〇 へ (へ

	Microscopic model	
	00000000	
The model		

Generator

 \rightsquigarrow Markov jump process ($\nu_t, t \ge 0$) on \mathcal{M} with generator

$$\begin{split} L\phi(\nu) &= \int_{\mathcal{X}} [\phi(\nu+\delta_x) - \phi(\nu)](1-\mu(x))b(x)\nu(dx) \\ &+ \int_{\mathcal{X}} \int_{\mathbb{R}^d} [\phi(\nu+\delta_{x+h}) - \phi(\nu)]\mu(x)b(x)m(x,h)dh\,\nu(dx) \\ &+ \int_{\mathcal{X}} [\phi(\nu-\delta_x) - \phi(\nu)]\left(d(x) + \int_{\mathcal{X}} \alpha(x,y)\nu(dy)\right)\nu(dx) \end{split}$$

Biological comments

- Logistic interaction = competition Easy generalization to more general interactions (Champagnat, Ferrière, Méléard, 2008)
 - birth rate $b(x, U * \nu_t(x))$
 - death rate $d(x, V * \nu_t(x))$

Example:

 $b(x, U*\nu_t(x)) = b(x) + U*\nu_t(x), \ d(x, U*\nu_t(x)) = d(x) + V*\nu_t(x)$ $U \geq V$ corresponds to mutualistic interaction

• Multispecific (prey-predator, host-parasite, ressource exploitation, mutulistic community,...) generalization

	Microscopic model	
	00000000	
First properties		

Assumptions

(A1)
$$0 \le \alpha(\cdot, \cdot) \le \bar{\alpha} < +\infty$$

$$(A1) \quad 0 \le b(\cdot) \le \bar{b} < +\infty$$

(A1)
$$0 \le d(\cdot) \le \overline{d} < +\infty$$

(A2) m(x, dh) has a density m(x, h) w.r.t. the Lebesgue measure such that $m(x, h) \le m(h)$ with $\int m(h) dh < +\infty$

	Microscopic model	
	00000000	
First properties		

Assumptions

(A1)
$$0 \le \alpha(\cdot, \cdot) \le \bar{\alpha} < +\infty$$

$$(A1) \quad 0 \le b(\cdot) \le \bar{b} < +\infty$$

(A1)
$$0 \le d(\cdot) \le \bar{d} < +\infty$$

(A2) m(x, dh) has a density m(x, h) w.r.t. the Lebesgue measure such that $m(x, h) \le m(h)$ with $\int m(h) dh < +\infty$

 \rightsquigarrow Total jump rate less than $\langle \nu_t, 1 \rangle (\bar{b} + \bar{d} + \bar{\alpha} (\langle \nu_t, 1 \rangle - 1))$

First properties

Construction as a SDE driven by Poisson point measures

Given independent PPM M_1, M_3 (resp. M_2) on $\mathbb{R}_+ \times \mathbb{N} \times \mathbb{R}_+$ (resp. $\mathbb{R}_+ \times \mathbb{N} \times \mathbb{R}^d \times \mathbb{R}_+$) with intensity $ds(\sum_{k \ge 1} \delta_k(di)) d\theta$ (resp. $ds(\sum_{k \ge 1} \delta_k(di)) \bar{m}(h) dh d\theta$),

$$\begin{split} \nu_{t} &= \nu_{0} + \int_{0}^{t} \int_{\mathbb{N}} \int_{0}^{\infty} \delta_{H_{s-}^{i}} \mathbb{1}_{i \leq \langle \nu_{s-}, 1 \rangle} \mathbb{1}_{\theta \leq b(1-\mu)(H_{s-}^{i})} M_{1}(ds, di, d\theta) \\ &+ \int_{0}^{t} \int_{\mathbb{N}} \int_{\mathbb{R}^{d}} \int_{0}^{\infty} \delta_{x+h} \mathbb{1}_{i \leq \langle \nu_{s-}, 1 \rangle} \mathbb{1}_{\theta \leq b\mu(H_{s-}^{i})m(H_{s-}^{i}, h)/\bar{m}(H_{s-}^{i})} M_{2}(ds, di, dh, d\theta) \\ &- \int_{0}^{t} \int_{\mathbb{N}} \int_{0}^{\infty} \delta_{H_{s-}^{i}} \mathbb{1}_{i \leq \langle \nu_{s-}, 1 \rangle} \mathbb{1}_{\theta \leq d(H_{s-}^{i}) + \int \alpha(H_{s-}^{i}, y)\nu_{s-}(dy)} M_{3}(ds, di, d\theta), \end{split}$$

where H_t^i is the *i*-th atom in ν_t (for some arbitrary order).

「日本」

First properties

Martingale properties (Fournier, Méléard, 2004)

- Bounded birth rate: for $p \ge 1$, $\mathbf{E}[\langle \nu_0, \mathbf{1} \rangle^p] < +\infty \Rightarrow \mathbf{E}[\sup_{t \le T} \langle \nu_t, \mathbf{1} \rangle^p] < +\infty$
- for ϕ with appropriate growth, $\phi(\nu_t) \phi(\nu_0) \int_0^t L\phi(\nu_s) ds$ is a càdlàg martingale
- In particular, for $\phi(\nu) = \langle \nu, f \rangle$, assuming $\mathbf{E}[\langle \nu_0, \mathbf{1} \rangle^2] < +\infty$

$$\begin{split} \langle \nu_t, f \rangle &= \langle \nu_0, f \rangle + M_t^f \\ &+ \int_0^t \int_{\mathcal{X}} \Big\{ \big[(1 - \mu(x)) b(x) - d(x) - \int \alpha(x, y) (\nu_s(dy) - \delta_x(dy)) \big] f(x) \\ &+ b(x) \mu(x) \int f(x + z) M(x, z) dz \Big\} \nu_s(dx) ds, \end{split}$$

with

$$\begin{split} \langle M^f \rangle_t = & \int_0^t \int_{\mathcal{X}} \Big\{ \Big[(1-\mu(x))b(x) - d(x) - \int \alpha(x,y)(\nu_s(dy) - \delta_x(dy)) \Big] f_{\mathbb{Q}}^2 \Big] \\ & + b(x)\mu(x) \int f^2(x+z)M(x,z)dz \Big\} \nu_s(dx)ds. \end{split}$$

< 🗆 🕨

● 日本 日本 日本 の へ (や

Proof of the moments bound

Introducing
$$\tau_n = \inf\{t \ge 0 : \langle \nu_t, 1 \rangle \ge n\}$$
, using $(x+1)^p - x^p \le C_p(1+x^{p-1})$ and

$$\sup_{s \le t \land \tau_n} \langle \nu_s, 1 \rangle^p \le \langle \nu_0, 1 \rangle^p + \int_0^{t \land \tau_n} \int_{\mathbb{N}} \int_{\mathbb{R}^d} \int_0^\infty [(\langle \nu_{s-}, 1 \rangle + 1)^p - \langle \nu_{s-}, 1 \rangle^p] \\ \mathbb{1}_{i \le \langle \nu_{s-}, 1 \rangle} \mathbb{1}_{\theta \le \bar{b}} M_2(ds, di, dh, d\theta) \\ + \text{ similar term for } M_1,$$

taking expectation, we deduce that

$$\mathbb{E} \sup_{s \le t \land \tau_n} \langle \nu_s, 1 \rangle^p \le C_p + C_p \mathbb{E} \int_0^t (1 + \langle \nu_{s \land \tau_n}, 1 \rangle^p) ds$$

and the result follows from Gronwall.

	Microscopic model	Large popu scalings
An example		

Example

Parameters from Kisdi (1999)

Asymetric competition

- arm-race competition
- evolution of the cell size at division

	Microscopic model ○○○○○○○○○	Large popu scalings
An example		

Simulations

(日)

Preliminaries	
	0000000
	Large popu se

Large population scalings (C., Ferrière, Méléard, 2008)

Parameter K: b_K , d_K , μ_K , M_K and $\alpha_K(x, y) = \frac{\alpha(x, y)}{K}$ Biological interpretations: K scales the amount of ressources available (carrying capacity, or "system size"), or the size of individuals (w.r.t. their competitive pressure).

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

alings

Sar

Large population scalings (C., Ferrière, Méléard, 2008)

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$L \quad \phi(\nu) = \int_{\mathcal{X}} [\phi(\nu + \delta_x) - \phi(\nu)] (1 - \mu \quad (x)) b \quad (x)\nu(dx)$$
$$+ \int_{\mathcal{X}} \int_{\mathbb{R}^d} [\phi(\nu + \delta_{x+z}) - \phi(\nu)] \mu \quad (x)b \quad (x)M \quad (x,z)dz\nu(dx)$$
$$+ \int_{\mathcal{X}} [\phi(\nu - \delta_x) - \phi(\nu)] \left(d \quad (x) + \int_{\mathcal{X}} \alpha(x,y)\nu(dy) \right) \nu(dx)$$

Sac

Large population scalings (C., Ferrière, Méléard, 2008)

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$\begin{split} L^{K}\phi(\nu) &= \int_{\mathcal{X}} [\phi(\nu+\delta_{x}) - \phi(\nu)](1 - \mu_{K}(x))b_{K}(x)\nu(dx) \\ &+ \int_{\mathcal{X}} \int_{\mathbb{R}^{d}} [\phi(\nu+\delta_{x+z}) - \phi(\nu)]\mu_{K}(x)b_{K}(x)M_{K}(x,z)dz\nu(dx) \\ &+ \int_{\mathcal{X}} [\phi(\nu-\delta_{x}) - \phi(\nu)]\left(d_{K}(x) + \int_{\mathcal{X}} \alpha(x,y)\nu(dy)\right)\nu(dx) \end{split}$$

Sac

Large population scalings (C., Ferrière, Méléard, 2008)

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$L^{K}\phi(X) = \int_{\mathcal{X}} [\phi(X + \frac{\delta_{x}}{K}) - \phi(X)](1 - \mu_{K}(x))b_{K}(x)\nu(dx)$$

+
$$\int_{\mathcal{X}} \int_{\mathbb{R}^{d}} [\phi(X + \frac{\delta_{x+z}}{K}) - \phi(X)]\mu_{K}(x)b_{K}(x)M_{K}(x,z)dz\nu(dx)$$

+
$$\int_{\mathcal{X}} [\phi(X - \frac{\delta_{x}}{K}) - \phi(X)]\left(d_{K}(x) + \int_{\mathcal{X}} \frac{\alpha(x,y)}{K}\nu(dy)\right)\nu(dx)$$

Sar

Large population scalings (C., Ferrière, Méléard, 2008)

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$L^{K}\phi(X) = \int_{\mathcal{X}} [\phi(X + \frac{\delta_{x}}{K}) - \phi(X)](1 - \mu_{K}(x))b_{K}(x)KX(dx)$$

+
$$\int_{\mathcal{X}} \int_{\mathbb{R}^{d}} [\phi(X + \frac{\delta_{x+z}}{K}) - \phi(X)]\mu_{K}(x)b_{K}(x)M_{K}(x,z)dzKX(dx)$$

+
$$\int_{\mathcal{X}} [\phi(X - \frac{\delta_{x}}{K}) - \phi(X)]\left(d_{K}(x) + \int_{\mathcal{X}} \frac{\alpha(x,y)}{K}KX(dy)\right)KX(dx)$$

Simplest large population limit

 $b_K = b, d_K = d, \mu_K = \mu, M_K = M.$ Only the competitive kernel is modified: limit of large population size.

Theorem

Assume that $X_0^K \Rightarrow \xi_0$, $\sup_K \mathbf{E}[\langle X_0^K, \mathbf{1} \rangle^3] < +\infty$ and smooth parameters.

Then $X^K \Rightarrow \xi \in \mathcal{C}([0, T], M_F(\mathcal{X}))$ deterministic, where

$$\langle \xi_t, f \rangle = \langle \xi_0, f \rangle$$

+ $\int_0^t \int_{\mathcal{X}} \left\{ \left[(1 - \mu(x)) b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) \xi_s(dy) \right] f(x)$
+ $b(x) \mu(x) \int f(x+z) M(x, z) dz \right\} \xi_s(dx) ds.$ (1)

Kimura's equation for "continuum of alleles", extended to density-dependent selection.

	Microscopic model	Large popu scalings
First limit		

Remark

• If $\xi_0(dx) = u_0(x)dx$, then $\xi_t(dx) = u(t,x)dx$, $\forall t > 0$ and u(t,x) is weak solution to

$$\partial_t u = [(1 - \mu(x))b(x) - d(x) - \int lpha(x, y)u(t, y)dy]u(t, x)$$

 $+ \int \mu(y)b(y)M(y, x - y)u(t, y)dy$

	Microscopic model	Large popu scalings
First limit		

Sketch of the proof (1)

• Martingale problem

$$\begin{aligned} \langle \nu_t, f \rangle &= \langle \nu_0, f \rangle + M_t^f \\ &+ \int_0^t \int_{\mathcal{X}} \Big\{ \big[(1 - \mu(x)) b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) \nu_s(dy) \big] f(x) \\ &+ b(x) \mu(x) \int f(x + z) M(x, z) dz \Big\} \nu_s(dx) ds, \end{aligned}$$

	Microscopic model	Large popu scalings
First limit		

Sketch of the proof (1)

• Martingale problem

$$\begin{split} \langle X_t^K, f \rangle &= \langle X_0^K, f \rangle + M_t^{f,K} \\ &+ \int_0^t \int_{\mathcal{X}} \Big\{ \big[(1 - \mu(x)) b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) X_s^K(dy) \big] f(x) \\ &+ b(x) \mu(x) \int f(x + z) M(x, z) dz \Big\} X_s^K(dx) ds, \end{split}$$

	Microscopic model	Large popu scalings
First limit		

Sketch of the proof (1)

• Martingale problem

$$\begin{split} \langle X_t^K, f \rangle &= \langle X_0^K, f \rangle + M_t^{f,K} \\ &+ \int_0^t \int_{\mathcal{X}} \Big\{ \big[(1 - \mu(x)) b(x) - d(x) - \int_{\mathcal{X}} \alpha(x,y) X_s^K(dy) \big] f(x) \\ &+ b(x) \mu(x) \int f(x+z) M(x,z) dz \Big\} X_s^K(dx) ds, \end{split}$$

with

$$\begin{split} \langle M^{f,K} \rangle_t \\ &= \frac{1}{K^2} \int_0^t \int_{\mathcal{X}} \Big\{ \big[(1-\mu(x))b(x) - d(x) - \int_{\mathcal{X}} \alpha(x,y) X_s^K(dy) \big] f^2(x) \\ &\quad + b(x)\mu(x) \int f^2(x+z) M(x,z) dz \Big\} K X_s^K(dx) ds. \end{split}$$

nac

Idea of the proof (2)

• Since $\sup_K \mathbf{E}[\sup_{t \geq T} \langle X_t^K, \mathbf{1} \rangle^3] < +\infty$, $\langle X^K, f \rangle$ is tight (Aldous-Rebolledo criterion) $\rightsquigarrow X^K$ is tight (Roelly, 1986)

•
$$\sup_{t \leq T} \sup_{\|f\|_{\infty} \leq 1} |\langle X_t^K, f \rangle - \langle X_{t-}^K, f \rangle| \leq 1/K$$

 \rightsquigarrow continuity of the limit process

- Since $\langle M^{f,K} \rangle \leq \frac{C}{K}$, any accumulation point is deterministic and must satisfy (1)
- Uniqueness of ξ (Gronwall lemma for the total variation distance between two solutions)

	Microscopic model	Large popu scalings
First limit		

Simulation

Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration of births and deaths $\mathcal{X} = \mathbb{R}^d$, $\alpha_K(x, y) = \alpha(x, y)/K$,

 $b_K(x) = K^{\eta}r(x) + b(x), \quad d_K(x) = K^{\eta}r(x) + d(x), \quad \eta \in (0, 1].$

Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration of births and deaths $\mathcal{X} = \mathbb{R}^d$, $\alpha_K(x, y) = \alpha(x, y)/K$,

 $b_K(x) = K^{\eta}r(x) + b(x), \quad d_K(x) = K^{\eta}r(x) + d(x), \quad \eta \in (0, 1].$

Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration of births and deaths $\mathcal{X} = \mathbb{R}^d$, $\alpha_K(x, y) = \alpha(x, y)/K$,

 $b_K(x) = K^{\eta}r(x) + b(x), \quad d_K(x) = K^{\eta}r(x) + d(x), \quad \eta \in (0, 1].$

$$\begin{aligned} \langle X_t^K, f \rangle &= \langle X_0^K, f \rangle + M_t^{f,K} \\ &+ \int_0^t \int_{\mathcal{X}} \Big\{ \Big[K^{\eta} r(x) + b(x) - K^{\eta} r(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) X_s^K(dy) \Big] f(x) \\ &+ (K^{\eta} r(x) + b(x)) \mu_K(x) \int (f(x+z) - f(x)) M_K(x, z) dz \Big\} X_s^K(dx) ds, \end{aligned}$$

Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration of births and deaths $\mathcal{X} = \mathbb{R}^d$, $\alpha_K(x, y) = \alpha(x, y)/K$,

 $b_K(x) = K^{\eta}r(x) + b(x), \quad d_K(x) = K^{\eta}r(x) + d(x), \quad \eta \in (0, 1].$

$$\begin{split} \langle X_t^K, f \rangle &= \langle X_0^K, f \rangle + M_t^{f,K} \\ &+ \int_0^t \int_{\mathcal{X}} \Big\{ \Big[K^\eta r(x) + b(x) - K^\eta r(x) - d(x) - \int_{\mathcal{X}} \alpha(x,y) X_s^K(dy) \Big] f(x) \\ &+ (K^\eta r(x) + b(x)) \mu_K(x) \int (f(x+z) - f(x)) M_K(x,z) dz \Big\} X_s^K(dx) ds, \end{split}$$

Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration of births and deaths $\mathcal{X} = \mathbb{R}^d$, $\alpha_K(x, y) = \alpha(x, y)/K$,

 $b_K(x) = K^{\eta}r(x) + b(x), \quad d_K(x) = K^{\eta}r(x) + d(x), \quad \eta \in (0, 1].$

Biological interpretation: fast births and deaths but slow demography

$$\begin{split} \langle X_t^K, f \rangle &= \langle X_0^K, f \rangle + M_t^{f,K} \\ &+ \int_0^t \int_{\mathcal{X}} \Big\{ \Big[K^\eta r(x) + b(x) - K^\eta r(x) - d(x) - \int_{\mathcal{X}} \alpha(x,y) X_s^K(dy) \Big] f(x) \\ &+ (K^\eta r(x) + b(x)) \mu_K(x) \int (f(x+z) - f(x)) M_K(x,z) dz \Big\} X_s^K(dx) ds, \end{split}$$

Since births are accelerated, the effect of mutation (either the mutation probability or the mutation amplitude) must be rescaled accordingly: $\mu_K = \mu$, $M_K(x, z)dz \sim \mathcal{N}(0, \sigma^2(x) \mathrm{Id}/K^{\eta})$.

$$\rightsquigarrow \quad \langle M^{K,f} \rangle_t \le C \frac{K^{\eta}}{K}.$$

Small mutation step

Case
$$\eta < 1$$

• $X^K \Rightarrow \xi \in \mathcal{C}([0, T], M_F)$ where
 $\langle \xi_t, f \rangle = \langle \xi_0, f \rangle$
 $+ \int_0^t \int_{\mathcal{X}} \left\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) \xi_s(dy)) f(x) + \frac{1}{2} r(x) \mu(x) \sigma^2(x) \Delta f(x) \right\} \xi_s(dx) ds.$

 \rightsquigarrow Generalization of Fisher's models in ecology (Kimura's approximation for small mutation steps)

	Microscopic model	Large popu scalings ○○○○○○○○●○○○
Accelerated births and deaths		

Case $\eta = 1$

$$\begin{split} X^K &\Rightarrow Z \in \mathcal{C}([0,T],M_F) \text{ where } Z \text{ is defined by the 3 conditions:} \\ \bullet \sup_{t \leq T} \mathbf{E}[\langle Z_t, \mathbf{1} \rangle^3] < \infty \\ \bullet \ \langle Z_t, f \rangle &= \langle Z_0, f \rangle + \bar{M}_t^f \\ &+ \int_0^t \int_{\mathbb{R}^d} \left\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x,y) Z_s(dy)) f(x) \right. \\ &+ \frac{1}{2} r(x) \mu(x) \sigma^2(x) \Delta f(x) \right\} Z_s(dx) ds \\ \bullet \ \langle \bar{M}^f \rangle_t &= 2 \int_0^t \int_{\mathbb{R}^d} r(x) f^2(x) Z_s(dx) ds. \end{split}$$

 \rightsquigarrow Microscopic justification of superprocesses with density-dependent interaction, recently proposed and studied in population genetics (Etheridge 06)

nac

- birth and death stochasticity reflect on the demographic time-scale
- diversification vs extinction

Introduction 000000	Microscopic model	Large popu scalings
Accelerated births and deaths		

Simulations

	Microscopic model	Large popu scalings
Accelerated births and deaths		

Simulations

Conclusion

- Mathematical justification of several (old and new) macroscopic evolutionary models
- Precising the biological assumptions and scales underlying each macroscopic model (large ressources, different scales for individual births and deaths and for demography,...)
- Unifying these models from the same microscopic model

