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Adaptive dynamics

Adaptive dynamics

Darwinian evolution: Three main ingredients

• Heredity: transmissions of individual characteristics from a
generation to the next one.

• Mutation: cause of the variability in individual characteristics.

• Selection: consequence of the interactions between individuals
and their environment, including the rest of the population
(ecology).

Adaptive dynamics (since the 90s): Hofbauer and Sigmund (1990),
Metz, Geritz et al. (1992,1996), Dieckmann and Law (1996). . .

• Focus on the interplay between ecology and evolution

• Ecological interactions modeled in detail

• Heredity is simplified as much as possible: asexual (clonal)
reproduction



Biological context The model The PDE approach A stochastic approach Conclusion

Adaptive dynamics

Adaptive dynamics

 Density-dependent individual-based models where no fitness is
given. The fitness landscape has to be constructed from the
parameters of the model.

 New phenomenon of evolutionary branching (Metz et al., 1996)

• Transition from a population concentrated around a single
phenotype to a population concentrated around several distinct
phenotypes, still under ecological interaction

• Mechanism of diversification

• Can lead to sympatric speciation (Dieckmann and Doebeli, 1999)

 Three biological main assumptions (Metz et al., 1996):

• large populations

• rare mutations

• small mutation steps
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Adaptive dynamics

Evolutionary banching
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The model

Individual-based model

Birth-death-competition-mutation process (Metz et al. 1996,
Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Doebeli-Dieckmann
01, Fournier-Méléard 04, C.-Ferrière-Méléard 06. . . ).

• Each individual characterized by a continuous phenotypic trait
x ∈ X ⊂ R (individual size, age at maturity, rate of food
intake. . . ).

• K scales the size of the population

• µ scales the probability of mutation

• σ scales the size of mutation steps

• At time t , the population is composed of NK (t) individuals with
weights 1

K and traits x1, . . . , xNK (t) ∈ X :

νKt =
1

K

NK (t)∑
i=1

δxi .
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The model

Transition rates for an individual with trait x

• Reproduction at rate b(x ):
• With probability 1 − µ, clonal reproduction (offspring with trait

x).
• With probability µ, mutation, and the mutant trait is x + σH ,

where H ∼ m(h)dh, symmetric w.r.t. 0 (e.g. Gaussian
distribution).

• Death without competition at rate d(x ).

• Death from competition with any other individual of trait y at
rate 1

K c(x , y).

 an individual with trait x dies at density dependent rate

d(x ) +
1

K

NK (t)∑
i=1

c(x , xi)− c(x , x )

= d(x ) +

∫
X

c(x , y)

(
νKt (dy)− 1

K
δx (dy)

)
.



Biological context The model The PDE approach A stochastic approach Conclusion

The model

On the limit K → +∞
Assume b(x ) ≡ b, d(x ) ≡ d and c(x , y) ≡ c (neutral case).
Then the total number of individuals N K

t is a Markov birth and death
process with

• birth rate bn

• death rate dn + cn n−1
K when N K

t = n.

In this case, N K
t /K converges when K → +∞ to the solution of the

logistic equation
ṅ = n(b − d − cn).

Remark: also true if νK0 → n0δx and µ = 0, with b = b(x ), d = d(x )
and c = c(x , y) (monomorphic case). We will use the notation

n̄(x ) =
b(x )− d(x )

c(x , x )

the equilibrium of the logistic equation.
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Two examples

Example 1

Arm-race competition (Kisdi 1999, Kisdi and Geritz 2000)

• X = [0, 4], d(x ) ≡ 0, p(x ) ≡ p

• M (x , h)dh = N (0, σ2) (conditioned on x + h ∈ X )

• b(x ) = 4− x decreasing

• α(x , y) = α(x − y) with

-
u

6

α(u)

αmax. .................................. ............................... ............................. .......................... ....................... ..................... .................. ................
.............
..........
.
.........
..
.
.........
..
..........
.

............. ................ .................. ..................... ....................... .......................... ............................. ............................... ..................................

Asymetric competition
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Two examples

Simulations 1

µ = 0.1 σ = 0.03 K = 50 µ = 0.1 σ = 0.03 K = 1000
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Two examples

Example 2

Roughgarden (1976,1979), Dieckmann-Doebeli (1999): symmetric
competition.

• X = [−2, 2] d(x ) ≡ 0 uK = 1 p(x ) = p.

• m(h)dh = N (0, 1) (conditioned on x + h ∈ X ).

• b(x ) = exp
(
− x2

2σ2
b

)
, maximum at 0.

• Symmetric competition for resources:

α(x , y) = α(x − y) = exp

(
− (x − y)2

2σ2
α

)
.
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Two examples

Simulations 2

µ = 0.1, K = 1000, σ = 0.01,
σb = 0.9, σα = 1.0.

µ = 0.1, K = 1000, σ = 0.01,
σb = 0.9, σα = 0.7.
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Two examples

Comments

We observe quite complex phenomena (directional evolution,
diversification...).
Our goals:

• use mathematical approaches to analyse these phenomena

• using “unrealistic” assumptions

• but enlightening about the phenomena, the building blocks, the
effects of small mutations...

 Mathematical modeling and analysis to give a qualitative
understanding of the biological phenomenon
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Hamilton-Jacobi equation with constraints

Example 1: large K limit

µ = 0.1 σ = 0.03
K = 100000
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Hamilton-Jacobi equation with constraints

Large population limit

Fournier and Méléard, 2004: assuming that νK0 converges in law to
the measure u0(x )dx for the weak topology when K → +∞, then
(νKt , t ≥ 0) converges in law to (u(t , x )dx , t ≥ 0), where u(t , x ) is
solution to the PDE

∂tu(t , x ) = u(t , x )

(
(1− µ)b(x )− d(x )−

∫
X

c(x , y)u(t , y) dy

)
+

∫
X

b(y)µu(t , y)m(
x − y

σ
)

dy

σ
.

Assuming µ = 1 and σ = ε, this PDE can be written as

∂tu(t , x ) =

1

ε

u(t , x )

(
r(x )−

∫
R`

c(x , y)u(t , y) dy

)
+

1

ε

∫
R`

m(h)(u(t , x + εh)− u(t , x )) dh,

scaling time as t/ε (large time, small mutations)
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Hamilton-Jacobi equation with constraints

Large population limit

Fournier and Méléard, 2004: assuming that νK0 converges in law to
the measure u0(x )dx for the weak topology when K → +∞, then
(νKt , t ≥ 0) converges in law to (u(t , x )dx , t ≥ 0), where u(t , x ) is
solution to the PDE

∂tu(t , x ) = u(t , x )

(
(1− µ)b(x )− d(x )−

∫
X

c(x , y)u(t , y) dy

)
+

∫
X

b(y)µu(t , y)m(
x − y

σ
)

dy

σ
.

Assuming µ = 1 and σ = ε, this PDE can be written as

∂tu(t , x ) =
1

ε
u(t , x )

(
r(x )−

∫
R`

c(x , y)u(t , y) dy

)
+

1

ε

∫
R`

m(h)(u(t , x + εh)− u(t , x )) dh,

scaling time as t/ε (large time, small mutations)
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Hamilton-Jacobi equation with constraints

Simulation

Competition for two resources

(Diekmann, Jabin, Mischler, Perthame, 2005)
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Hamilton-Jacobi equation with constraints

Limit Hamilton-Jacobi equation (1)

Diekmann et al., 2005: defining (WKB ansatz)

uε(t , x ) = exp

(
ϕε(t , x )

ε

)
, ∂tuε =

uε
ε
∂tϕε,

the PDE becomes

∂tϕε(t , x ) = r(x )−
∫
R`

c(x , y)uε(t , y) dy

+

∫
R`

m(h)

[
exp

(
ϕε(t , x + εh)− ϕε(t , x )

ε

)
− 1

]
dh.

This suggests the convergence of ϕε to the solution of

∂tϕ(t , x ) = r(x )−
∫
R`

c(x , y)µt(dy) + βH (∇xϕ(t , x )),

where

H (p) =

∫
R`

m(h)(ep·h − 1) dh

and µt is (in some sense) the limit of uε(t , ·).

How to characterize µt ?
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Hamilton-Jacobi equation with constraints

Limit Hamilton-Jacobi equation (2)

• The total population mass remains bounded
 maxx ϕ(t , x ) = 0 for all t ≥ 0.

• The limit population density at time t is 0 except at the points x
where ϕ(t , x ) = 0  µt has support in {ϕ(t , ·) = 0}.

• The measure µt has to be metastable, i.e.

• r(x) −
∫
c(x , y)µt(dy) ≤ 0 for all x such that ϕ(t , x) = 0,

• r(x) −
∫
c(x , y)µt(dy) = 0 for all x in the support of µt .

• Under the assumption that the kernel c(x , y) is positive, these
two conditions are satisfied for a unique measure µt , and

µt = µ({ϕ(t , ·) = 0}),

for some well-defined function µ
 closed Hamilton-Jacobi equation (C., Jabin, 2011).



Biological context The model The PDE approach A stochastic approach Conclusion

Rare mutations

Example 2: rare mutations

µ = 0.0001, K = 1000,
σ = 0.08, σb = 0.9, σα = 1.0.

µ = 0.0001, K = 1000,
σ = 0.08, σb = 0.9, σα = 0.7.
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Adaptive walk

Limit of rare mutations: Metz et al. 1996

• The selection process has sufficient time between two mutations
to eliminate disadvantaged traits.

• Large population assumption: (nearly) deterministic population
dynamics between mutations, so that one can predict the
outcome of competition between the traits.

 Succession of phases of (random) mutant invasion, and phases of
(fast, deterministic) competition between traits.

Adaptive walk in a fitness landscape that depends on the current
state of the population: fitness of a mutant trait y in a population x
at equilibrium

f (y , x ) = b(y)− d(y)− c(y , x )n̄(x )

(C., 2006, C. and Méléard 2011)
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Adaptive walk

Coevolution with the fitness landscape
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Adaptive walk

Coevolution with the fitness landscape
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Adaptive walk

Large population limit without mutation

• Monomorphic case

If p ≡ 0 and νK0 = nK
0 δx with nK

0 → n0, then νKt → n(t)δx , with
n(0) = n0 and

ṅ = (b(x )− d(x )− α(x , x )n)n.

Logistic equation: one stable equilibrium

n̄(x ) =
b(x )− d(x )

α(x , x )
.
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Adaptive walk

Large population limit: dimorphic case

• If νK0 = nK
x (0)δx + nK

y (0)δy , then νKt → nx (t)δx + ny(t)δy , with

ṅx= (b(x )− d(x )− α(x , x )nx − α(x , y)ny)nx

ṅy= (b(y)− d(y)− α(y , x )nx − α(y , y)ny)ny .

• Equilibria: (0, 0) (unstable), (n̄(x ), 0), (0, n̄(y)) and possibly
(n̄1(x , y), n̄2(x , y)) in (0,∞)2.

• The stability of the equilibria is governed by the invasion fitness
of the mutant trait y in a resident population of trait x :

f (y ; x ) = b(y)− d(y)− α(y , x )n̄(x ).

• (n̄(x), 0) is unstable iff f (y ; x) > 0.
• If f (y ; x) > 0 and f (x ; y) > 0, there is a non-trivial equilibrium,

globally asymptotically stable (coexistence).
• Note that f (x ; x) = 0.
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Adaptive walk

Lotka-Volterra system LV (d , x1, . . . , xd)

For d -morphic initial conditions (x1, . . . , xd) ∈ X d we define the
d -dimensional competitive Lotka-Volterra system LV (d , x1, . . . , xd)

ṅi(t) = ni(t)
(

r(xi)−
d∑

j=1

α(xi , xj )nj (t)
)
, ∀1 ≤ i ≤ d .

Definition

• The traits x1, . . . , xd coexist if LV (d , x1, . . . , xd) has a unique
equilibrium n̄(x) in (R∗+)d locally strongly stable.

• Given x1, . . . , xd which coexist, the fitness of trait y is defined as

f (y ;x) = f (y ; x1, · · · , xd) = r(y)−
d∑

i=1

α(y , xi)n̄i(x).

Its sign governs the possibility of invasion of the mutant trait y,
i.e. the stability of the eq. (n̄(x), 0) of LV (d + 1, x1, . . . , xd , y).
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Result

Main assumption (A)

For all x1, . . . , xd which coexist,
• (A1) for a.e. y s.t. f (y ; x1, . . . , xd) > 0, there exists a

neighborhood N of (n̄(x), 0) s.t. all solutions of
LV (d + 1, x1, . . . , xd , y) starting from N ∩ (R∗+)d+1 converges to a
unique equilibrium n∗.

• (A2) n∗ is locally strongly stable (the eigenvalues of the Jacobian
matrix all have negative real part).

Not so restrictive:
• (A) is satisfied until the first time where there is coexistence of 3

traits (see below).
• (A) is satisfied if the competition kernel is symmetric and

positive (C., Jabin, Raoul, 2010).

Let Meq(X ) =

{
d∑

i=1

n̄iδxi , d ≥ 1, (x1, . . . , xd) ∈ X d coexist

}
.



Biological context The model The PDE approach A stochastic approach Conclusion

Result

Main assumption (A)

For all x1, . . . , xd which coexist,
• (A1) for a.e. y s.t. f (y ; x1, . . . , xd) > 0, there exists a

neighborhood N of (n̄(x), 0) s.t. all solutions of
LV (d + 1, x1, . . . , xd , y) starting from N ∩ (R∗+)d+1 converges to a
unique equilibrium n∗.

• (A2) n∗ is locally strongly stable (the eigenvalues of the Jacobian
matrix all have negative real part).

Not so restrictive:
• (A) is satisfied until the first time where there is coexistence of 3

traits (see below).
• (A) is satisfied if the competition kernel is symmetric and

positive (C., Jabin, Raoul, 2010).

Let Meq(X ) =

{
d∑

i=1

n̄iδxi , d ≥ 1, (x1, . . . , xd) ∈ X d coexist

}
.
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Result

The Polymorphic Evolution Sequence (PES)

Theorem

Assume (A) and that νK0 = nK δx for x ∈ X , with nK → n̄(x ) in
probability when K → +∞. If

∀C > 0, log K � 1

KuK
� exp(CK ),

then, the process (νKt/KuK
, t ≥ 0) converges for f.d.d. to a process

(Λt , t ≥ 0) which is a Markov jump process on the set Meq(X ), with
jumps

from

d∑
i=1

n̄iδxi to

d∑
i=1

n∗i (x1, . . . , xd , xj + h)δxi + n∗d+1δxj+h

with infinitesimal rate

p(xj )b(xj )n̄j (x)
[f (xj + h;x)]+

b(xj + h)
m(xj , h)dh, ∀1 ≤ j ≤ d .
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Idea of the proof

Idea of the proof: (1) Mutation phase

Before the first mutation in a monomorphic population of trait x :

• the population size is close to the solution of
ṅ = (b(x )− d(x )− α(x , x )n)n.

• the population size reaches any neighborhood of n̄(x ) in finite
time.

• Large deviations: the exit time from [n̄(x )− ε, n̄(x ) + ε] behaves
as exp(KC ), with C > 0.

• therefore, the rate of mutation is (close to) uKp(x )b(x )K n̄(x ).
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Idea of the proof

(2) Competition phase

• Between 0 and t1: the number of mutant individuals is close to
a branching process with birth rate b(y) and death rate
d(y) + α(y , x )n̄(x ).

• Survival probability : [f (y ; x )]+/b(y).

• Between t1 and t2: close to the 2-dim Lotka-Volterra system.

• After t2: the number of resident is close to a sub-critical
branching process.

-

6

0

ε

n̄y

n̄x

t1 t2 t3 t

〈νKt ,1{y}〉

〈νKt ,1{x}〉
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Idea of the proof

Monomorphic case: Trait Substitution Sequence

Until the first coexistence time

Λt = n̄(Xt)δXt

where the Markov jump process (Xt , t ≥ 0) on X satisfies X0 = x and
has infinitesimal generator

Aϕ(x )=

∫
(ϕ(x + h)− ϕ(x ))p(x )b(x )n̄(x )

[f (x + h; x )]+
b(x + h)

m(x , h)dh

The first coexistence time is the first time where f (Xt ,Xt−) > 0 and
f (Xt−,Xt) > 0.
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Canonical equation of adaptive dynamics

Canonical Equation of Adaptive Dynamics (first form)

Adaptive walk with small mutations:
When σ → 0, on the time scale t

σ2 , the TSS converges to x (t) solution
to

dx

dt
=

∫
h2m(h)dh n̄(x )∂1f (x ; x ).

• “hill-climbing” process in the fitness landscape (Dieckmann and
Law, 1996).

• evolutionary branching can also be described with this approach
(C., Méléard, 2011)

• Criticism (Waxman, Gavrilets, 2005)

• mutations are too rare (real populations are never monomorphic)
• evolution on a too long time-scale t/µKσ2

 PDE analysts proposed a second approach.
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Conclusion

• Alternative approach to study limits of “concentration” in
evolution

• The concentration limits provide simpler tools to study the long
term evolution of the population

• Two main phenomena: directional evolution following the fitness
gradient (canonical equation) and evolutionary branching

• It is possible to obtain a criterion for evolutionary branching
following the stochastic approach (C., Méléard, 2011)

• The deterministic approach suffers from well-posedness problems
for the limiting Hamilton-Jacobi equation

• Both approaches suffer from biologically unrealistic assumptions
 many open problems


	Biological context
	Adaptive dynamics

	The model
	The model
	Two examples

	The PDE approach
	Hamilton-Jacobi equation with constraints

	A stochastic approach
	Rare mutations
	Adaptive walk
	Result
	Idea of the proof
	Canonical equation of adaptive dynamics

	Conclusion

