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population dynamics in ecology and evolution

Lecture 3: large population scaling of adaptive dynamics
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Biological context
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Adaptive dynamics

Adaptive dynamics

Darwinian evolution: Three main ingredients

o Heredity: transmissions of individual characteristics from a
generation to the next one.

o Mutation: cause of the variability in individual characteristics.

o Selection: consequence of the interactions between individuals
and their environment, including the rest of the population

(ecology).

Adaptive dynamics (since the 90s): Hofbauer and Sigmund (1990),
Metz, Geritz et al. (1992,1996), Dieckmann and Law (1996). ..

o Focus on the interplay between ecology and evolution

o Ecological interactions modeled in detail
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« Heredity is simplified as much as possible: asexual (clonal)
reproduction

)
Pl
i)



Biological context
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Adaptive dynamics

Adaptive dynamics

~ Density-dependent individual-based models where no fitness is
given. The fitness landscape has to be constructed from the
parameters of the model.

~» New phenomenon of evolutionary branching (Metz et al., 1996)

o Transition from a population concentrated around a single
phenotype to a population concentrated around several distinct
phenotypes, still under ecological interaction

o Mechanism of diversification
o Can lead to sympatric speciation (Dieckmann and Doebeli, 1999)

~~ Three biological main assumptions (Metz et al., 1996):

o large populations
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e rare mutations

¢ small mutation steps
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Evolutionary banching
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The model
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The model

Individual-based model

Birth-death-competition-mutation process (Metz et al. 1996,
Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Doebeli-Dieckmann
01, Fournier-Méléard 04, C.-Ferriere-Méléard 06. .. ).

Each individual characterized by a continuous phenotypic trait
z € X C R (individual size, age at maturity, rate of food
intake. .. ).

K scales the size of the population

1 scales the probability of mutation
o scales the size of mutation steps

At time ¢, the population is composed of Nk (t) individuals with
weights % and traits @1,..., Ty, () € X:

1 NK(t)
Z/tl{ - ? Z 6%.
=1
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(o] lo}

The model

Transition rates for an individual with trait z

» Reproduction at rate b(z):
» With probability 1 — x4, clonal reproduction (offspring with trait

» With probability p, mutation, and the mutant trait is z + o H,
where H ~ m(h)dh, symmetric w.r.t. 0 (e.g. Gaussian
distribution).

o Death without competition at rate d(z).
o Death from competition with any other individual of trait y at
rate -c(z,y).

~~ an individual with trait z dies at density dependent rate

1 NK(t)

d(z) + % Z c(z,z;) — c(z,x)

i=1
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The model

On the limit K — +o0

Assume b(z) = b, d(z) = d and c(z,y) = ¢ (neutral case).
Then the total number of individuals N/ is a Markov birth and death
process with

o birth rate bn

« death rate dn + cn” when N/ = n.

In this case, N</K converges when K — -+oco to the solution of the
logistic equation
n=mn(b—d— cn).

Remark: also true if ¢ — nyd, and p = 0, with b = b(z), d = d(=)
and ¢ = ¢(z,y) (monomorphic case). We will use the notation
b(z) — d(z)

c(z, )
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n(z) =
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Two examples

Example 1

Arm-race competition (Kisdi 1999, Kisdi and Geritz 2000)

X = [074]7 d(x) =0, p(x) =D
M (z,h)dh = N'(0,0%) (conditioned on = + h € X)

o b(z)=4—1x decreasing

o afz,y) =alz—y) with
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Asymetric competition
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Two examples

Simulations 1
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Two examples

Example 2

Roughgarden (1976,1979), Dieckmann-Doebeli (1999): symmetric
competition.

e X=[-22] dz)=0 ug=1 p(z)=rp.
m(h)dh = N(0,1) (conditioned on = + h € X).

b(z) = exp (—%), maximum at 0.
b

Symmetric competition for resources:

o(s,9) = ol — y) = exp (—%)
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Two examples

Simulations 2
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Two examples

Comments

We observe quite complex phenomena (directional evolution,
diversification...).
Our goals:

o use mathematical approaches to analyse these phenomena

o using “unrealistic” assumptions

o but enlightening about the phenomena, the building blocks, the
effects of small mutations...

~+ Mathematical modeling and analysis to give a qualitative
understanding of the biological phenomenon
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The PDE approach
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Hamilton-Jacobi equation with constraints

Example 1: large K limit

nw=0.1 o0=0.03
K = 100000
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The PDE approach
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Hamilton-Jacobi equation with constraints

Large population limit

Fournier and Méléard, 2004: assuming that v converges in law to
the measure ug(z)dz for the weak topology when K — +oo, then
(vf,t > 0) converges in law to (u(t,z)dz,t > 0), where u(t,z) is
solution to the PDE

oru(t, ) = u(t,) (1= 00() — o) - [ el p)utt. ) )

+ /X b(w)u(t, yym(Z=—Y)

o o’
Assuming ¢ =1 and o = ¢, this PDE can be written as

Oru(t,z) = u(t, ) <r(:c) - /RL’ c(z, y)ult,y) dy)

+ m(h’)(u(t’x + Eh) - u(ta .’13)) dh,
R?
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The PDE approach
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Hamilton-Jacobi equation with constraints

Large population limit

Fournier and Méléard, 2004: assuming that v converges in law to
the measure ug(z)dz for the weak topology when K — +oo, then
(vf,t > 0) converges in law to (u(t,z)dz,t > 0), where u(t,z) is
solution to the PDE

oru(t, ) = u(t,) (1= 00() — o) - [ el p)utt. ) )

X
+/X b(y)pult, y)m(%) %-
Assuming ¢ =1 and o = ¢, this PDE can be written as
ot ) = Tulta) (1)~ [ ettt ) )
+§ s m(h)(u(t,z +eh) — u(t,x)) dh, g
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Hamilton-Jacobi equation with constraints

Simulation

Competition for two resources
(Diekmann, Jabin, Mischler, Perthame, 2005)
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The PDE approach
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Hamilton-Jacobi equation with constraints

Limit Hamilton-Jacobi equation (1)

Diekmann et al., 2005: defining (WKB ansatz)

t,
ue(t, ) = exp <@> , Opue = %8&057

the PDE becomes
Opult.a) = 1(a) = [ cla)uc(t.o) dy
+ /Re m(h) [exp <(p6(t’$ t+eh) = @E(t,m)) - 1] dh.

3

This suggests the convergence of (. to the solution of

uplta) = 1(o) = | el + BH(Vaplt, ).

where

1 Qo

H(p)= [ mm(h)(eP™ —1)dh
R¢
and p; is (in some sense) the limit of (¢, -).
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The PDE approach
[e]e]ele] }

Hamilton-Jacobi equation with constraints

Limit Hamilton-Jacobi equation (2)

The total population mass remains bounded
~ max, p(t,z) =0 for all ¢ > 0.

The limit population density at time ¢ is 0 except at the points z
where p(t,2) =0 ~» p; has support in {(¢,-) = 0}.
The measure u; has to be metastable, i.e.

o r(z) — [ ez, y)pue(dy) <0 for all z such that ¢(¢,z) =0,

o r(z) — [ e(z,y)pi(dy) = 0 for all z in the support of .
Under the assumption that the kernel c(z, y) is positive, these
two conditions are satisfied for a unique measure p;, and

Mt = M({@(t’ ) = O})7

for some well-defined function p
~» closed Hamilton-Jacobi equation (C., Jabin, 2011).
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A stochastic approach
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Rare mutations

Example 2: rare mutations
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A stochastic approach
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Adaptive walk

Limit of rare mutations: Metz et al. 1996

o The selection process has sufficient time between two mutations
to eliminate disadvantaged traits.

o Large population assumption: (nearly) deterministic population
dynamics between mutations, so that one can predict the
outcome of competition between the traits.

~ Succession of phases of (random) mutant invasion, and phases of
(fast, deterministic) competition between traits.

Adaptive walk in a fitness landscape that depends on the current
state of the population: fitness of a mutant trait y in a population z
at equilibrium

f(y,z) = b(y) — d(y) — c(y,z)n(z)
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Adaptive walk

Coevolution with the fitness landscape
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A stochastic approach
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Adaptive walk

Coevolution with the fitness landscape
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Adaptive walk

Coevolution with the fitness landscape
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A stochastic approach
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Adaptive walk

Coevolution with the fitness landscape
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A stochastic approach
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Adaptive walk

Coevolution with the fitness landscape
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Adaptive walk

Large population limit without mutation

* Monomorphic case

If p =0 and v = nf6, with nf — ng, then v/ — n(t)d,, with
n(0) = ny and

n=(b(z) —d(z) —alz,z)n)n.

Logistic equation: one stable equilibrium

W @o
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A stochastic approach
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Adaptive walk

Large population limit: dimorphic case

o If S = nf(0)0, + n)f(0)d,, then v/ — ny(t)6, + ny(t)d,, with

o= (b(z) — d(z) — a(z,z)ns — (@, y)ny)ng
fy= (b(y) — d(y) — ay, z)ns — a(y, y)ny)ny.

o Equilibria: (0,0) (unstable), (7(z),0), (0, 7n(y)) and possibly
(7 (2, ), i2(z, y)) in (0,00)%.

o The stability of the equilibria is governed by the invasion fitness
of the mutant trait y in a resident population of trait x:

fly;z) = b(y) — d(y) — a(y, z)n().

o (7(z),0) is unstable iff f(y;z) > 0.

o If f(y;2) > 0 and f(z;y) > 0, there is a non-trivial equilibrium,
globally asymptotically stable (coexistence).

* Note that f(z;z) = 0.
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A stochastic approach
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Adaptive walk

Lotka-Volterra system LV (d, zi, ..., zq)

For d-morphic initial conditions (71, ...,z4) € X% we define the
d-dimensional competitive Lotka-Volterra system LV (d,z1,...,z4)

n;(t) = ng ( Za T, T)n, t), Vl<i<d.
Jj=1

o The traits @y, ..., xq coexist if LV (d,z1,...,24) has a unique
equilibrium n(x) in (R%)? locally strongly stable.
o Given x1,...,xq which coexist, the fitness of trait y is defined as

d
fly;x) = fy; @, 24 )= > aly, @) (x
i=1

Its sign governs the possibility of invasion of the mutant trait vy,
i.e. the stability of the eq. (2(x),0) of LV (d+1,21,...,24,Y).

W @o
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A stochastic approach
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Result

Main assumption (A)

For all 1, ..., z; which coexist,

o (A1) for a.e. y s.t. f(y;21,...,24) > 0, there exists a
neighborhood N of (fi(x),0) s.t. all solutions of
LV(d+1,2,...,1q,y) starting from N N (R%)4+! converges to a
unique equilibrium n*.

° (A2) n* is locally strongly stable (the eigenvalues of the Jacobian
matrix all have negative real part).

Not so restrictive:
o (A) is satisfied until the first time where there is coexistence of 3

traits (see below).
o (A) is satisfied if the competition kernel is symmetric and

positive (C., Jabin, Raoul, 2010).
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Result

Main assumption (A)

For all 1, ..., z; which coexist,

o (A1) for a.e. y s.t. f(y;21,...,24) > 0, there exists a
neighborhood N of (fi(x),0) s.t. all solutions of
LV(d+1,2,...,1q,y) starting from N N (R%)4+! converges to a
unique equilibrium n*.

° (A2) n* is locally strongly stable (the eigenvalues of the Jacobian
matrix all have negative real part).

Not so restrictive:
o (A) is satisfied until the first time where there is coexistence of 3

traits (see below).
o (A) is satisfied if the competition kernel is symmetric and

positive (C., Jabin, Raoul, 2010).

1 Qo

Let  Meq(X {an o, d>1, (z1,...,24) € X¢ coexist}.
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A stochastic approach
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Result

The Polymorphic Evolution Sequence (PES)

Assume (A) and that vl = ng 0, for x € X, with ng — n(z) in
probability when K — +o00. If

1
VC >0, logK <« — < exp(CK),
KuK

then, the process (1/5 Kugr b2 0) converges for f.d.d. to a process
(A¢, t > 0) which is a Markov jump process on the set My(X), with
Jumps

d d
from g N0z to g n; (21, ..., T, T + h)0g, + 031 100 4h
=1 i=1

with infinitesimal rate

1@ o

P(xj)b(wj)ﬁj(X)%m(xj,h)dh, V1<j<d.
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Idea of the proof

A stochastic approach
000

|dea of the proof: (1) Mutation phase

Before the first mutation in a monomorphic population of trait x:

the population size is close to the solution of

n=(b(z) —d(z) —a(z,z)n)n.

the population size reaches any neighborhood of () in finite
time.

Large deviations: the exit time from [7i(z) — &, i(z) 4 €] behaves
as exp(KC), with C > 0.

therefore, the rate of mutation is (close to) ugp(x)b(z)Kn(zx).
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A stochastic approach
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Idea of the proof

(2) Competition phase

Between 0 and t;: the number of mutant individuals is close to
a branching process with birth rate b(y) and death rate

d(y) + a(y, z)n(z).
Survival probability : [f(y;z)]+/b(y).
Between t; and t2: close to the 2-dim Lotka-Volterra system.

After to: the number of resident is close to a sub-critical
branching process.

Nl
_ <VtK71{y}>
Ny SN
<Vt 71{z}> &
E o TN A =

=)
=t
St
&t
~
)
Pl
i)



A stochastic approach
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Idea of the proof

Monomorphic case: Trait Substitution Sequence

Until the first coexistence time
A = ﬁ(Xt)5Xt

where the Markov jump process (X;,t > 0) on X satisfies Xy = z and
has infinitesimal generator

Apto)= [ (oto )= pteDpoponto) L e nyan

The first coexistence time is the first time where f(X;, X;—) > 0 and
f(Xt_, Xt) > 0.
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A stochastic approach
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Canonical equation of adaptive dynamics

Canonical Equation of Adaptive Dynamics (first form)

Adaptive walk with small mutations:
When ¢ — 0, on the time scale -, the TSS converges to z(t) solution

to

% - /h2m(h)dh n(z)01f (z;x).

o “hill-climbing” process in the fitness landscape (Dieckmann and
Law, 1996).

o evolutionary branching can also be described with this approach
(C., Méléard, 2011)

o Criticism (Waxman, Gavrilets, 2005)

* mutations are too rare (real populations are never monomorphic)
« evolution on a too long time-scale t/uK o>

1 Qo

~~ PDE analysts proposed a second approach.
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Conclusion

Conclusion

o Alternative approach to study limits of “concentration” in
evolution

o The concentration limits provide simpler tools to study the long
term evolution of the population

¢ Two main phenomena: directional evolution following the fitness
gradient (canonical equation) and evolutionary branching

o It is possible to obtain a criterion for evolutionary branching
following the stochastic approach (C., Méléard, 2011)

o The deterministic approach suffers from well-posedness problems
for the limiting Hamilton-Jacobi equation

* Both approaches suffer from biologically unrealistic assumptions
~» many open problems
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