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Abstract

Deterministic sublinear growth models have been used recently to
enlighten the diversity-stability debate [9]. Some values of the param-
eter θ, quantifying the super- or sub-linearity of births or deaths in
the model, lead to unbounded individual birth rates for small densi-
ties, which suggests that the path to extinction in these models might
make them biologically unrealistic and hence unsuitable to model eco-
logical dynamics. In this work, we examine stochastic birth-death and
diffusion versions of these models, for which we fully characterize the
extinction properties. Our analysis leads us to conclude that sublin-
ear models show some mathematical appeal but should be taken with
caution when modeling biological phenomena, since they give rise to
stochastic dynamics that either never go extinct, even for small initial
populations, or go extinct almost surely, but on unrealistically long
time scales.

1Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
* Corresponding author: Nicolas.Champagnat@inria.fr

2Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago
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putación, Las Sophoras 173, Estación Central, Santiago, Chile, leonardo.videla@usach.cl
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1 Introduction

Recent works on food web and community patterns [9, 13] have brought
into focus a family of population growth models named sublinear models,
which have been known for more than 50 years [6, 17, 15]. In particular, in
a recent paper published in Science, the sublinear model has been used by
Hatton et al. [9] to resolve the diversity-stability debate (see also [12]) and
to explain macroecological patterns.

The sublinear model, however, presents some complexities, particularly
regarding the possibility of extinction or the path to extinction, which was
considered unsuitable for representing ecological dynamics [1, 2]. However, it
is not clear if this is the case in the context of their stochastic counterparts.
The purpose of this letter is to discuss the prospects and limitations of
stochastic sublinear models as models of ecological phenomena.

In Section 2, we recall the deterministic sublinear growth model and its
basic properties. In Section 3 we present stochastic versions of this model,
in the form of birth and death or diffusion models. We discuss their global
properties, particularly regarding extinction, and whether they are well-
suited for ecological modeling or not. We finally present a discussion of our
results in Section 4. The proofs of the mathematical results discussed in this
note are given in Supporting Information.

2 Sublinear models

The general form of sublinear growth models (after appropriate nondimen-
sionalization and time scalings) is the following ordinary differential equation
(ODE):

ẋ =
x

θ

(
1− xθ

)
, (1)

where x(t) ≥ 0 is the (scaled) population density at time t ≥ 0 and θ ∈
R \ {0} is a parameter.

The case θ = 1 corresponds to the classical logistic equation, where the
relation between per capita growth rate and density is linear, and cases
where −1 < θ < 0 are called sublinear (SG). The cases θ > 0 are related to
a linear growth rate and a superlinear death rate associated with crowding
effects [7]. The ODE corresponding to the parameter θ = 0 can be easily
derived letting θ → 0 and takes the form of the classical Gompertz equation,
which is quite popular and efficient for tumor growth modeling [16]:

ẋ = x log(1/x). (2)
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As pointed out by [1] the per capita birth rate of the SG system tends to
infinity as x goes to zero. Notice that the intrinsic dynamics in [1] and [9]
are the same as above, and correspond to the θ-model by taking θ + 1 = k.
Thus, the SG model in our case corresponds with this notation to 0 < k < 1.

Although most often only values of θ between −1 and 1 are discussed in
the literature, the range of values of θ estimated from population time series
in [9] is broader than the interval [−2, 2].

For all values of θ (including 0), this ODE is well-posed (existence for all
positive times and uniqueness of a solution for any initial condition in R+),
has two equilibria at x = 0 and x = 1, the former being unstable and the
latter stable (in the general sense, cf. e.g. [8], because local linearization may
be degenerate depending on the value of θ). In addition, the equilibrium 1
is globally asymptotically stable, which means that, for any initial condition
x(0) > 0, the solution x(t) converges to 1 when t → +∞. Therefore, the
qualitative asymptotic behavior of the deterministic ODE system is the same
for any value of θ. However, when one tries to build corresponding stochastic
processes, the picture is different.

3 Stochastic models with sublinear growth and
their extinction properties

In the sequel we deal with two classes of stochastic models that are, in some
sense, close relatives of (1). The first class corresponds to an individual-
based formulation which, after suitable limiting procedures (which amount
essentially to re-scaling the size of the populations) yields the SG model as
the macroscopic description. So, this class of models can be regarded as
a microscopic explanation which is compatible with the SG equation. The
second class of models is based on extensions of the SG model by considering
possible stochastic perturbations of the dynamics.

The first class of models is realized as a family of birth-and-death pro-
cesses; the second class is realized as solutions of some stochastic differential
equations. For both families of models we study the almost sure extinction
in finite time, and we show that this property depends strongly on the value
of the parameter θ and the type of stochastic models under consideration.
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3.1 Birth and death process with sublinear growth

Observe that, for θ > 0, the system (1) can be written as

ẋ =
x

θ
− x1+θ

θ
,

for θ = 0 as
ẋ = x| log(x)|1x<1 − x| log(x)|1x>1

and for θ < 0 as

ẋ =
x1+θ

|θ| − x

|θ| .

On the right-hand side of the three previous equations, the positive term
can be interpreted as a birth rate and the negative term as a death rate.

The mathematical analysis of the discrete birth and death process version
of the ODEs (1) and (2) (see Supporting Information Propositions 1.3 and
1.4) shows that extinction eventually occurs for all values of θ, but that
strong contrasts for survival of small populations appear depending on θ. In
the classical logistic case (i.e. θ = 1), if the population starts from a very
small density, even though the equilibrium 0 is unstable, the logistic birth
and death process has a positive probability to go extinct fast. Biologically,
this property is very relevant because the risk of extinction is ubiquitous
for small populationn [14]. This property remains true for positive values of
θ. However, extinction is impossible for sublinear birth and death processes
with θ ≤ 0, except on extremely large, unrealistic time scales (exponential in
K, see Supporting Information Proposition 1.4 and associated proof). This
means that sublinear birth and death models with θ ≤ 0, thus including SG,
are not suitable to model ecological phenomena.

3.2 Diffusion models with sublinear growth

We consider two different stochastic processes related to the sublinear growth
model (1). The first one is obtained by introducing a Brownian noise similar
to the one of Feller’s classical diffusion model of branching populations [11, 3]
or to classical diffusion models of population genetics [10, 5]. The second one
is the diffusion approximation of the birth and death model of Section 3.1.

The first model takes the form of the stochastic differential equation
(SDE)

dXt = Xt
1−Xθ

t

θ
dt+

√
γXtdBt (3)

4



for some parameter γ > 0 and where (Bt)t≥0 is a standard Brownian mo-
tion. The rationale for the diffusion term is that independent randomness
of birth and death events is attached to each individual in the population,
so that the variance of noise scales linearly with the population size. In this
sense, this term models demographic stochasticity, rather than environmen-
tal stochasticity which is usually modeled with a diffusion term of the form
XtdBt and does not allow in general for extinction of the population in finite
time.

Let us recall some well-known properties of the logistic Feller diffusion,
given by (3) with θ = 1 (cf. e.g. [11]): 0 is an absorbing point which is an
exit boundary and +∞ is an entrance boundary. In particular, this implies
that, for all x > 0,

P(∃t ≥ 0, Xt = 0 | X0 = x) = 1. (4)

This means that extinction in finite time occurs almost surely, regardless of
the initial condition, making (3) relevant for ecological modeling.

Instead, for general θ the behavior can be quite different: we prove
in Proposition 2.1 in Supporting Information that, as in the logistic case,
extinction occurs almost surely in finite time for θ ≥ −1, but it almost surely
never occurs for θ < −1. This means that the model is well-behaved in the
SG case (−1 < θ < 0) but it is not for smaller values of θ. Such values of θ
are considered in several references dealing with sublinear growth models, in
particular a large proportion of time-series fitted in [9] correspond to values
of θ in [−2,−1].

Finally, another diffusion model with sublinear growth can be obtained
as the diffusion approximation [10, 4] of the birth and death process of
Section 3.1 (see Supporting Information for its derivation): for any θ ̸= 0,
this diffusion approximation (Zt)t≥0 is solution to the SDE

dZt = Zt
1− Zθ

t

θ
+

√
Zt

K|θ|(1 + Zθ
t )dBt, (5)

where (Bt)t≥0 is a standard Brownian motion and K is the carrying capacity
of the birth and death model.

For this SDE, we prove (see Supporting Information Proposition 2.2)
that for all x > 0 and any value of θ,

P(∃t ≥ 0, Zt = 0 | Z0 = x) = 1,
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i.e. that extinction in finite time almost surely occurs regardless of the values
of the parameter θ. Therefore, the sublinear growth diffusion approximation
model always have an ecologically realistic behavior regarding extinction.

4 Conclusion

Deterministic sublinear growth models have been used recently to enlighten
the diversity-stability debate [9]. Some values of the parameter θ, quanti-
fying the super- or sub-linearity of births or deaths in the model, lead to
unbounded individual birth rates for small densities, which suggests that the
path to extinction in these models might make them biologically unrealistic
and hence unsuitable to model ecological dynamics.

In this work, we examined stochastic versions of these models, for which
extinction properties can be fully characterized. We first studied birth and
death processes and showed that, although ultimate extinction always oc-
cur almost surely in finite time, this time can be of very different order of
magnitudes in realistic models such as the logistic birth and death model:
for positive initial density, the time to extinction scales exponentially with
respect to the carrying capacity of the system, whereas for small initial
populations, there is a positive probability that the populations goes ex-
tinct fast, modeling convincingly the ubiquitous risk of extinction of small
populations. This property, however is no longer true for negative values
of θ, making the use of the birth and death model with sublinear growth
biologically questionable for ecological modeling.

We also studied a Feller diffusion models with sublinear growth and
obtained here an even more drastic behavior: for values of θ smaller than
−1 extinction becomes impossible on any time scale, making this model
biologically unrealistic. Only the diffusion approximation model is well-
behaved in terms of extinction: it occurs almost surely in finite time for
every value of the parameter θ.

These results show that the behavior of stochastic versions of a given de-
terministic system may drastically change depending on the type of stochas-
ticity (discrete or continuous) added to the system and also on the details
of this stochasticity (e.g. the variance of the noise in diffusion processes). In
addition, stochastic population models are very different from their deter-
ministic versions, so the overuse of deterministic approaches is problematic
since it can lead to ignoring important characteristics of the system such as
the extinction time scale.

Our analysis leads us to conclude that sublinear models show some math-
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ematical appeal but should be taken with caution when modeling biological
phenomena, since they give rise to stochastic dynamics that either never go
extinct or go extinct almost surely, but on unrealistically long time scales.
The diffusion approximation, however, could offer a good alternative to
model ecological phenomena.

Acknowledgements

This article has been supported by ANID-Exploration grant 13220168 “Bi-
ological and Quantum Open System Dynamics: evolution, innovation and
mathematical foundations”, and INRIA Associated Team “aStoNiche”.

N.C. has been partially supported by the Chaire “Modélisation Mathé-
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1 Discrete stochastic models of sublinear growth

Observe that, for θ > 0, Eq. (1) and (2) in the main text can be written as

ẋ =
x

θ
− x1+θ

θ
, (1.1)

for θ = 0 as
ẋ = x| log(x)|1x<1 − x| log(x)|1x>1, (1.2)

and for θ < 0 as

ẋ =
x1+θ

|θ| − x

|θ| . (1.3)

In the right-hand side of all the three previous equations, the positive term
can be interpreted as a birth rate and the negative term as a death rate.
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Therefore, introducing a parameter K ≥ 1 corresponding to the carrying
capacity of the system, this suggests to introduce the following birth and
death process version of the ODEs Eq. (1) and (2) in the main text: let
(ZK

t )t∈R+ be a Markov process taking values in {0, 1/K, 2/K, . . .} and which
jumps from n/K to (n + 1)/K at rate Kb(n/K) and jumps from n/K to
(n− 1)/K at rate Kd(n/K), where

b(x) =





x
θ if θ > 0,

x| log(x)|1x<1 if θ = 0,
x1+θ

|θ| if θ < 0

and

d(x) =





x1+θ

θ if θ > 0,

x| log(x)|1x>1 if θ = 0,
x
|θ| if θ < 0.

The rationale for the normalization of the population size by K and the
multiplication of the rates b and d by K in the definition is explained in the
next proposition.

Proposition 1.1. For any θ ∈ R, assume that ZK
0 converges in law to a

deterministic x0 > 0. Then, for all T > 0, the stochastic process (ZK
t )t∈[0,T ]

converges in probability for the L∞([0, T ]) norm to the unique solution of
(1.1), (1.2) or (1.3) (depending on the value of θ) with initial condition
x(0) = x0.

Proof. This result can be deduced from [3, Chap. 11, Thm. 2.1], which gives
a similar result but for bounded and globally Lipschitz functions b and d.
Here these function are not bounded near 0 or near +∞ and are only lo-
cally Lipschitz in (0,+∞). However, since the limit dynamics (1.1), (1.2)
or (1.3) started from x0 > 0 converges to the unique globally asymptoti-
cally stable equilibrium 1 for large times, the solution ϕ(s) to (1.1), (1.2)
or (1.3) with initial value x0 > 0 remains for all positive time in a compact
subset of (0,+∞) of the form [ε, 1/ε] for some ε ∈ (0, 1). Then, we consider
bounded and globally Lipschitz functions b̃ and d̃ on R+ such that, for all
x ∈ [ε/2, 2/ε],

b̃(x) = b(x) and d̃(x) = d(x)

and we define the birth and death process (Z̃K
t )t≥0 taking values in {0, 1/K,

2/K, . . .} exactly as (ZK
t )t≥0 but replacing b and d by b̃ and d̃. We also

assume that Z̃K
0 = ZK

0 .
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Theorem 2.1 of [3, Chap. 11] applies to the process (Z̃K
t )t≥0, so that this

process converges in probability in L∞([0, T ]) for all T > 0 to ϕ̃(s), unique
solution to

dϕ̃

ds
(s) = b̃(ϕ̃(s))− d̃(ϕ̃(s))

such that ϕ̃(0) = x0. Since ϕ(s) is a solution to (1.1), (1.2) or (1.3) that
never exits [ε, 1/ε] and since the vector field of these equations, given by
b − d, is equal to b̃ − d̃ on this interval, we deduce that ϕ̃(s) = ϕ(s) for all
s ≥ 0.

Now, fix T > 0. It follows from the above convergence result that

lim
K→+∞

P

(
sup

t∈[0,T ]
|Z̃K

t − ϕ(t)| ≥ ε

2

)
= 0,

so in particular

lim
K→+∞

P
(
Z̃K
t ∈

[
ε

2
,
2

ε

]
, ∀t ∈ [0, T ]

)
= 1.

Now, by definition of b̃ and d̃, the processes (Z̃K
t )t≥0 and (ZK

t )t≥0 can be
constructed on the same probability space so that Z̃K

t = ZK
t for all t ≤ TK,ε,

where TK,ε is the first exit time of (Z̃K
t )t≥0 from [ε/2, 2/ε]. Therefore, the

last equation implies that

lim
K→+∞

P
(
ZK
t = Z̃K

t , ∀t ∈ [0, T ]
)
= 1.

Since (Z̃K
t )t≥0 converges in probability in L∞([0, T ]) to ϕ, we deduce that

(ZK
t )t≥0 satisfies the same property. Hence Proposition 1.1 is proved.

Note that the same result holds true if we replace b and d by any b̃ and
d̃ such that b̃(x)− d̃(x) = b(x)− d(x) for all x ≥ 0. In particular, given any
parameter α ≥ 0, Proposition 1.1 also holds true for the birth and death
process (ZK,α

t )t≥0 defined as (ZK
t )t≥0 but replacing b and d by

bα(x) = b(x) + αx and dα(x) = d(x) + αx.

This means that the constant α is added to both, per individual birth and
death rates. Hence, the parameter α does not change the overall ecological
interactions in the population, but it adds birth and death events at the same
rate that does not depend on the population density. For future reference,
let us introduce the infinitesimal generator LK,α of the birth and death
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process (ZK,α
t )t≥0: for any bounded function f on {0, 1/K, 2/K, . . .} and all

x ∈ {0, 1/K, 2/K, . . .},

LK,αf(x) = Kbα(x)

(
f

(
x+

1

K

)
− f(x)

)
+Kdα(x)

(
f

(
x− 1

K

)
− f(x)

)
.

(1.4)
Let us recall some well-known results on the logistic case (θ = 1).

Proposition 1.2 (Thm. 3 and Thm. 4 of [2]). Assume θ = 1 and α ≥ 0.
Then, for all k ∈ N and all K ≥ 1,

P(∃t ≥ 0, ZK,α
t = 0 | ZK,α

0 = k/K) = 1

and there exists V > 0 such that, for all x0 > 0, if ZK,α
0 converges in law to

x0, then
lim

K→+∞
P(ZK,α

exp(V K) > 0) = 1.

In addition,

lim
K→+∞

P(∃t ≤ logK, ZK,α
t = 0 | ZK,α

0 = 1/K)

= lim
K→+∞

P(∃t ≤ eV K , ZK,α
t = 0 | ZK,α

0 = 1/K) =
α

1 + α
.

This result means that extinction always occurs in finite time in the lo-
gistic birth and death process, in an exponentially large time for positive
initial density. In addition, if the population starts from a very small den-
sity, even though the equilibrium 0 is unstable, the logistic birth and death
process has a positive probability to go extinct fast. Biologically, this prop-
erty is very relevant because the risk of extinction is ubiquitous for small
populations [7]. Note also that, since b(0) = d(0) = 0, 0 is an absorbing
point for the birth and death process, ZK,α

t = 0 for all t ≥ 0 if ZK,α
0 = 0.

The first hitting time of 0 by the process ZK,α is called extinction time. For
all values of θ, we can prove that extinction occurs almost surely in finite
time.

Proposition 1.3. For all θ ̸= 0 and all α ≥ 0 and for θ = 0 and α > 0,

P(∃t ≥ 0, ZK,α
t = 0) = 1.

Proof. We use the classical criterion of extinction of continuous-time birth
and death processes that can be found for example in [1]: a birth and death
process on N with birth (resp. death) rate λi > 0 (resp. µi > 0) in state
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i ∈ N∗ satisfies T0 < +∞ almost surely, where T0 is the first hitting time of
0 by the process, if and only if

+∞∑

k=1

µ1 . . . µk

λ1 . . . λk
= +∞.

We fix K ≥ 1, α ≥ 0 and θ > 0, and we check that, for the birth and
death process (KZK,α

t )t≥0, with the above notations,

µ1 . . . µk

λ1 . . . λk
=

k∏

i=1

(
i
K

)θ
+ αθ

1 + αθ
−−−−→
k→+∞

+∞.

Similarly, given K ≥ 1, α ≥ 0 and θ < 0, we have

µ1 . . . µk

λ1 . . . λk
=

k∏

i=1

1 + α|θ|
(

i
K

)−|θ|
+ α|θ|

−−−−→
k→+∞

+∞,

and for K ≥ 1, α > 0 and θ = 0,

µ1 . . . µk

λ1 . . . λk
=

k∏

i=1

| log(i/K)|1i>K + α

| log(i/K)|1i<K + α
−−−−→
k→+∞

+∞,

Therefore, in all cases, T0 < ∞ almost surely for the process (ZK,α
t )t≥0.

The following result studies the case of a small initial population. It
shows in particular that the extinction properties for negative values of θ
are very different from those of Proposition 1.2 in the logistic case.

Proposition 1.4. Let α ≥ 0. For all θ > 0, there exists V > 0 such that

lim
K→+∞

P(∃t ≤ eV K , ZK,α
t = 0 | ZK,α

0 = 1/K) =
αθ

1 + αθ
. (1.5)

For all θ ≤ 0, for all η > 0,

lim
K→+∞

P(∃t ≥ 0, ZK,α
t ≥ 1− η | ZK,α

0 = 1/K) = 1, (1.6)

and there exists a constant V > 0 such that

lim
K→+∞

P(∃t ≤ eV K , ZK,α
t = 0 | ZK,α

0 = 1/K) = 0. (1.7)
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In other words, extinction is impossible when θ ≤ 0, except on extremely
large time scales (exponential in K), even for small initial populations. Note
that the exponential bound in (1.7) may not be optimal: we actually conjec-
ture a superexponential extinction time if θ ≤ 0. This means that sublinear
birth and death models with θ ≤ 0 are completely irrelevant from the eco-
logical point of view.

Proof. We consider the embedded Markov chain of the birth and death
process ZK,α, i.e. the Markov chain (Z̃K,α

n )n∈N defined by Z̃K,α
n = ZK,α

Jn

where Jn is the n-th jump time of ZK,α. This Markov chain has transition
probability from n/K to (n + 1)/K of bα(n/K)

bα(n/K)+dα(n/K) and from n/K to

(n−1)/K of dα(n/K)
bα(n/K)+dα(n/K) . For all x > 0, we also denote by Tx (resp. T̃x)

the first hitting time by ZK,α (resp. Z̃K,α) of [x,+∞) and by T0 (resp. T̃0)
the first hitting time by ZK,α (resp. Z̃K,α) of 0. To simplify notations, we
also denote Pn = P(· | ZK,α

0 = Z̃K,α
0 = n/K) for all n ∈ N.

Fix ε > 0. We shall first prove that, for all θ ̸= 0 and all K ≥ 1, there
exist positive constants p

α,θ,K
(ε) < p̄α,θ,K(ε) such that:

p
α,θ,K

(ε) ≤ P1(T̃ε < T̃0) = P1(Tε < T0) ≤ p̄α,θ,K(ε)

satisfying:

lim
ε→0

lim
K→+∞

p
α,θ,K

(ε) = lim
ε→0

lim
K→+∞

p̄α,θ,K(ε) =

{
1

1+αθ if θ > 0,

1 if θ ≤ 0.
(1.8)

For all x ∈ (0, ε], if θ > 0,

bα(x)

bα(x) + dα(x)
=

1 + αθ

1 + 2αθ + xθ
∈
[

1 + αθ

1 + 2αθ + εθ
,
1 + αθ

1 + 2αθ

]
,

if θ = 0 and α > 0,

bα(x)

bα(x) + dα(x)
=

α+ | log(x)|
2α+ | log(x)| ∈

[
1− α

2α+ | log(ε)| , 1
]
,

and if θ < 0,

bα(x)

bα(x) + dα(x)
=

1 + α|θ|x|θ|
1 + (1 + 2α|θ|)x|θ| ∈

[
1 + α|θ|ε|θ|

1 + (1 + 2α|θ|)ε|θ| , 1
]
.

Therefore, usual coupling techniques show that, for all n ≤ T̃0 ∧ T̃ε, under
P1, almost surely,

An

K
≤ Z̃K,α

n ≤ Bn

K
,
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where (An)n≥0 and (Bn)n≥0 are random walks on Z with jumps ±1, such
that A0 = B0 = 1 and with probability of making a +1 jump at any time
step given by:





1+αθ
1+2αθ+εθ

for (An)n≥0 if θ > 0;

1− α
2α+| log(ε)| for (An)n≥0 if θ = 0;

1+α|θ|ε|θ|
1+(1+2α|θ|)ε|θ| for (An)n≥0 if θ < 0;

1+αθ
1+2αθ for (Bn)n≥0 if θ > 0;

1 for (Bn)n≥0 if θ ≤ 0.

Therefore,

p
α,θ,K

(ε) := P(An hits ⌈εK⌉ before 0)

≤ P1(T̃ε < T̃0) ≤ P(Bn hits ⌈εK⌉ before 0) =: p̄α,θ,K(ε)

and standard results on hitting times of random walks entail that

p
α,θ,K

(ε) =





εθ+αθ
1+αθ

−1
(

εθ+αθ
1+αθ

)⌈εK⌉
−1

if θ > 0,

α
α+| log(ε)|−1

(
α

α+| log(ε)|

)⌈εK⌉
−1

if θ = 0,

(1+α|θ|)ε|θ|
1+α|θ|ε|θ|

−1

(
(1+α|θ|)ε|θ|
1+α|θ|ε|θ|

)⌈εK⌉
−1

if θ < 0,

and

p̄α,θ,K(ε) =





αθ
1+αθ

−1

( αθ
1+αθ )

⌈εK⌉−1
if θ > 0,

1 if θ ≤ 0.

It is straightforward to check (1.8) from these formula.
Fix η0 ∈ (0, 1/2) and δ > 0. There exists ε > 0 such that, if θ > 0,

1

1 + αθ
− δ ≤ p

α,θ,K
(ε) ≤ p̄α,θ,K(ε) ≤ 1

1 + αθ
+ δ

and if θ ≤ 0,
1− δ ≤ p

α,θ,K
(ε) ≤ p̄α,θ,K(ε) ≤ 1.

Let ϕε(t) be the solution to Eq. (1.1), (1.2) or (1.3) (depending on the value
of θ) with initial condition ϕε(0) = ε. Since ϕε(t) → 1 when t → +∞,
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there exists a deterministic time tε such that ϕε(tε) > 1 − η0/2. Applying
Proposition 1.1, we deduce that, for K large enough,

P
(
T1−η0 < T0

∣∣∣∣Z
K,α
0 =

⌈Kε⌉
K

)
≥ P

(
ZK,α
tε ≥ 1− η0

∣∣∣∣Z
K,α
0 =

⌈Kε⌉
K

)

≥ 1− δ.

Finally, we can deduce from large deviation estimates exactly as in Theorem
3(c) of [2] that there exists a constant V = V (η0) > 0 such that

P
(
∀t ≤ eKV , ZK,α

t ∈ [1− 2η0, 1 + 2η0]

∣∣∣∣Z
K,α
0 =

⌈K(1− η0)⌉
K

)
−−−−−→
K→+∞

1.

Therefore, assuming θ > 0 and applying the strong Markov property at time
Tε on the event {Tε < T0} and at time T1−η on the event {T1−η0 < T0}, we
have for K large enough

P1(∃t ≤ eV K , ZK,α
t = 0) ≥ E1

[
1Tε<T0E

(
1T1−η0<T0P

(
∀t ≤ eKV ,

ZK,α
t ∈ [1− 2η0, 1 + 2η0] | ZK,α

0 = ⌈K(1− η0)⌉/K
)
| ZK,α

0 = ⌈Kε⌉/K
)]

≥ P1(Tε < T0)− 2δ

≥ 1

1 + αθ
− 3δ.

Similarly,

P1(∃t ≤ eV K , ZK,α
t = 0) ≤ P1(Tε < T0) + δ ≤ 1

1 + αθ
+ 2δ.

Since δ > 0 was arbitrary, we have proved (1.5).
When θ ≤ 0, the same computation gives, for arbitrary values of η > 0

and δ > 0, for K large enough,

P1(T1−η < T0) = E1

[
1Tε<T0P

(
T1−η < T0 | ZK,α

0 = ⌈K(1− η)⌉/K
)]

≥ P1(Tε < T0)− δ ≥ 1− 2δ,

so (1.6) is proved. Similarly, (1.7) follows when θ ≤ 0 using the same
calculation as the one used to prove (1.5) above with V = V (η0) for the
same fixed value of η0 chosen above.
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2 Diffusion models of sublinear growth

Similarly, we consider diffusion models associated to the ODE model of
sublinear growth. Three methods are usual to construct such models: either
consider a stochastic differential equation (SDE) with noise proportional to
the population density, or with noise proportional to the square root of
the population density, or consider diffusion approximation of the birth and
death process of Section 1. The first one takes the form

dXt = Xt
1−Xθ

t

θ
dt+ σXtdBt (2.1)

for some σ > 0, where (Bt)t≥0 is a standard Brownian motion, the second
one takes the form

dXt = Xt
1−Xθ

t

θ
dt+

√
γXtdBt (2.2)

for some γ > 0, and the third one will be discussed in Subsection 2.2.
The stochastic term in the SDE (2.1) can be interpreted as modeling

an environmental noise: indeed, the term σdBt can be considered as being
added to the growth rate per individual of every individual in the popula-
tion, i.e. each individual is influenced by a common, environmental noise.
The stochastic term in the SDE (2.2) is similar to the one of Feller’s classi-
cal branching diffusion (which is an example of continuous state branching
process). The rationale for this term is that independent randomness of
birth and death events is attached to each individual in the population, so
that the variance of noise scales linearly with the population size. In this
sense, this term models demographic stochasticity, rather than environmen-
tal stochasticity.

It is standard to check that no solution to (2.1) can hit 0 in finite time, so
this model is not relevant for our discussion here. Therefore, we will focus in
the sequel on Feller’s diffusion with sublinear growth (2.2) in Subsection 2.1,
and on diffusion approximation in Subsection 2.2.

2.1 Feller’s branching diffusion with sublinear growth

Let us recall some well-known properties of the logistic Feller diffusion, given
by (2.2) with θ = 1 (cf. e.g. [6]): there is strong existence and pathwise
uniqueness for this SDE, 0 is an absorbing point which is an exit boundary
and +∞ is an entrance boundary. In particular, this implies that, for all
x > 0,

P(∃t ≥ 0, Xt = 0 | X0 = x) = 1. (2.3)
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This means that extinction in finite time occurs almost surely, regardless of
the initial condition. This is biologically relevant.

For general θ, since the coefficients are locally Lipschitz, there is strong
existence and pathwise uniqueness of a solution to (2.2) up to the first hitting
time of 0 or a possibly finite explosion time. Let us call S this random time.
The next result shows that the property (2.3) is not true for all values of
θ. In particular, Feller’s diffusion with sublinear growth is not relevant for
ecological modeling.

Proposition 2.1. For all x > 0, if θ ≥ −1,

P(∃t ≥ 0, Xt = 0 | X0 = x) = 1 (2.4)

and if θ < −1,

P(S = ∞ | X0 = x) = P( inf
t∈R+

Xt = 0 | X0 = x)

= P( sup
t∈R+

Xt = +∞ | X0 = x) = 1. (2.5)

Proof. A scale function of the SDE (2.2) is given, for all x > 0, by

p(x) =

∫ x

1
exp

(
− 2

γθ

∫ y

1
(1− zθ)dz

)
dy

∝
∫ x

1
exp

(
2

γθ

(
y1+θ

1 + θ
− y

))
dy.

One can then check that p(+∞) = +∞ for all θ ∈ R∗ and that p(0+) > −∞
if θ ≥ −1 and p(0+) = −∞ if θ < −1. Therefore, if θ < −1, (2.5) follows
from [4, Prop. 5.22], and if θ ≥ 1, we deduce from the same result that

P
(
lim
t→S

Xt = 0

∣∣∣∣ X0 = x

)
= P

(
sup

0≤t<S
Xt < +∞

∣∣∣∣∣ X0 = x

)
= 1.

The almost sure finiteness of the time S follows from Feller’s test for explo-
sion [4, Thm. 5.29], so (2.4) will follow if we can prove that

∫ 1

0
p′(x)

∫ 1

x

2dy

γyp′(y)
dx < +∞, (2.6)

i.e.
∫ 1

0
exp

(
2

γθ

(
x1+θ

1 + θ
− x

))∫ 1

x
exp

(
− 2

γθ

(
y1+θ

1 + θ
− y

))
dy

y
dx < +∞.
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If θ ≥ −1, exp( 2
γθ (

x1+θ

1+θ − x)) is bounded and bounded away from 0 for
x ∈ [0, 1] and converges to 1 when x → 0, so, when x → 0,

∫ 1

x
exp

(
− 2

γθ

(
y1+θ

1 + θ
− y

))
dy

y
∼
∫ 1

x

dy

y
= log(1/x),

hence (2.6) follows and the proof is completed.

2.2 Diffusion approximation of birth and death processes
with sublinear growth

The diffusion approximation of a birth and death process with carrying
capacityK is obtained heuristically by expanding the infinitesimal generator
of the birth and death process in a Taylor series as K → +∞ and dropping
terms beyond the second order [5, 3]. The operator thus obtained is the
generator of the diffusion approximation. Here, a second-order expansion
of (1.4) gives for all f ∈ C2(R+)

Aαf(x) = (bα(x)− dα(x))f
′(x) +

bα(x) + dα(x)

2K
f ′′(x).

Hence, for any θ ̸= 0, the diffusion approximation (Zt)t≥0 is solution to the
SDE

dZt = Zt
1− Zθ

t

θ
dt+

√
Zt

K|θ|(1 + 2α|θ|+ Zθ
t )dBt

and for θ = 0

dZt = Zt log(1/Zt)dt+

√
Zt

K
(| log(Zt)|+ 2α)dBt,

where (Bt)t≥0 is a standard Brownian motion.
We can carry out a similar analysis as in Subsection 2.1 to obtain the fol-

lowing result, which entails that the diffusion approximation of the sublinear
birth and death model is biologically relevant for all values of θ.

Proposition 2.2. For all θ ̸= 0 and α ≥ 0 of for θ = 0 and all α > 0, for
all x > 0,

P(∃t ≥ 0, Zt = 0 | Z0 = x) = 1.

Proof. The arguments go along the same lines as in the proof of Proposition
2.1. We start with the case θ ̸= 0. In this case, a speed function for the
diffusion is given by:

p(x) =

∫ x

1
exp

{
−2Ksign(θ)

∫ y

1

1− zθ

1 + 2α|θ|+ zθ
dz

}
dy.
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Observe that for θ > 0:

1. the integrand is bounded in a neighborhood of 0, and in particular
p(0+) > −∞.

2. For large z, the fraction in the integral of the exponential is close to
−1, and in particular p(+∞) = +∞.

If instead θ < 0:

1. the innermost integrand is close to 1/(1 + 2α|θ|) for large values of z,
so the outemost integrand grows exponentially fast as y → +∞; in
particular p(+∞) = +∞.

2. For z close to 0, the fraction in the integral of the exponential is close
to −1, and in particular p(0+) > −∞.

We deduce p(+∞) = +∞, p(0+) > −∞ in all cases.
Next, consider:

v(0+) :=

∫ 1

0+

{
p′(x)

∫ 1

x

2K|θ|
p′(y)(1 + 2α|θ|+ yθ)

dy

}
dx. (2.7)

Observe that:

p′(x) = exp

{
2Ksign(θ)

∫ 1

x

1− zθ

1 + 2α|θ|+ zθ
dz

}
; (2.8)

consequently, for θ > 0, p′ is positive, continuous and bounded in a neigh-
borhood of 0, and we easily verify from equation (2.7) that v(0+) is finite
in this case. In the case θ < 0, the integrand in (2.8) is close to −1 in
a neighborhood of 0; so, the innermost integrand in (2.7) is O(y−θ) in a
neighborhood of 0; once again, we deduce v(0+) < ∞ in this case.

If θ = 0, we obtain

p(x) =

∫ x

1
exp

{
−2K

∫ y

1

log(1/z)

2α+ | log(z)|dz
}
dy

and

v(0+) :=

∫ 1

0+

{
p′(x)

∫ 1

x

2K

y(2α+ | log(y)|)dy
}
dx.

The innermost integral in the definition of p(x) converges to 1 when z → 0
and to −1 when z → +∞, thus p(0+) > −∞ and p(+∞) = +∞. In the
definition of v(0+), p′(x) converges to a positive constant when x → 0 and
the innermost integral is O(log(log(1/z))) when z → 0, so v(0+) < ∞ and
we conclude as above.
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