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Abstract

We consider a supercritical branching population, where individuals have i.i.d. lifetime du-

rations (which are not necessarily exponentially distributed) and give birth (singly) at constant

rate. We assume that individuals independently experience neutral mutations, at constant rate θ

during their lifetimes, under the infinite-alleles assumption: each mutation instantaneously con-

fers a brand new type, called allele or haplotype, to its carrier. The type carried by a mother at

the time when she gives birth is transmitted to the newborn.

We are interested in the sizes and ages at time t of the clonal families carrying the most

abundant alleles or the oldest ones, as t → ∞, on the survival event. Intuitively, the results must

depend on how the mutation rate θ and the Malthusian parameter α > 0 compare. Hereafter,

N ≡ Nt is the population size at time t, constants a, c are scaling constants, whereas k, k′ are

explicit positive constants which depend on the parameters of the model.

When α > θ, the most abundant families are also the oldest ones, they have size cN1−θ/α and

age t− a.

When α < θ, the oldest families have age (α/θ)t+a and tight sizes; the most abundant families

have sizes k log(N)− k′ log log(N) + c and all have age (θ − α)−1 log(t).

When α = θ, the oldest families have age kt− k′ log(t) + a and tight sizes; the most abundant

families have sizes (k log(N)− k′ log log(N) + c)2 and all have age t/2.

Those informal results can be stated rigorously in expectation. Relying heavily on the theory

of coalescent point processes [13, 16], we are also able, when α ≤ θ, to show convergence in

distribution of the joint, properly scaled ages and sizes of the most abundant/oldest families and

to specify the limits as some explicit Cox processes.

This is in deep contrast with the largest/oldest families in the standard coalescent with Pois-

sonian mutations, which converge to some point processes after being rescaled by N [3, 4, 5].

MSC 2000 subject classifications: Primary 60J80; secondary 92D10, 60J85, 60G70, 60G51, 60G55,

60K15.
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3Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599 CNRS and UPMC Univ Paris 06, Case courrier 188,

4 Place Jussieu, F-75252 Paris Cedex 05, France, Email: amaury.lambert@upmc.fr

1



Key words and phrases: branching process – coalescent point process – splitting tree – Crump-Mode-

Jagers process – linear birth-death process – allelic partition – infinite alleles model – extreme values

– mixed Poisson point process – Cox process – Lévy process – scale function.

1 Introduction and motivation

We consider a general branching population, where individuals reproduce independently of each

other, have i.i.d. lifetime durations with arbitrary distribution, and give birth at constant rate during

their lifetime. We also assume that each birth gives rise to a single newborn. The genealogical tree

associated with this construction is known as a splitting tree [6, 7, 13]. The process (Nt; t ≥ 0)

counting the population size is a non-Markovian birth–death process belonging to the class of general

branching processes, or Crump–Mode–Jagers (CMJ) processes. Since births arrive singly and at

constant rate, these processes are sometimes called homogeneous, binary CMJ processes.

Also, individuals are given a type, called allele or haplotype. They inherit their type at birth

from their mother, and (their germ line) can change type throughout their lifetime, at the points

of independent Poisson point processes with rate θ, conditional on lifetimes (neutral mutations).

The type conferred by a mutation is each time an entirely new type, an assumption known as the

infinitely-many alleles model.

We are interested in the so-called allelic partition (partition into types) of the population alive

at time t. In [2, 12], we obtained explicit formulae for the expected frequency spectrum of the allelic

partition. The frequency spectrum is a convenient way of describing this partition without labelling

types. It is defined as the sequence of numbers (Aθ(k, t), k ≥ 0), where Aθ(k, t) is the number of

types carried by k individuals at time t. For example in [2], we have derived explicit formulae for the

expectation of Aθ(k, t) conditional on population size at t. From these formulae, using the theory of

branching processes counted by random characteristics, we have specified the a.s. limit, as t → ∞,

of the fraction of types carried by a fixed number k of individuals.

If we call clonal families, or simply families, the equivalence classes associated to identity by type

(i.e., the components of the allelic partition), it is usual to call small families the families of sizes k =

1, 2, 3,... Here, large families will refer to families with most frequent (i.e., abundant) types having

alive representatives, and old families to families having oldest types with alive representatives,

where the age of a type is the time elapsed since its original mutation. In the present work, we are

interested in the asymptotic behavior, as t→ ∞, of the sizes and ages of large and of old families.

The most celebrated mathematical result regarding allelic partitions is Ewens’ sampling formula,

which provides the distribution of the frequency spectrum for the Kingman coalescent tree with

neutral Poissonian mutations [5]. It has notably been shown [3, 4] that under this model, the largest

(resp. oldest) families converge, after being rescaled by the population size N , to the Poisson–

Dirichlet (resp. GEM) distribution. We will see here, that, for example, the largest families are

never of the order of N , but depending on how the Malthusian parameter α scales with the mutation

rate θ, of the order of N1−θ/α (case θ < α), order of (logN)2 (case θ = α), or order of logN

(case θ > α). The first case (θ < α) shows more similarities with the frequency spectrum of the

Beta-coalescent [1].
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We refer the reader to [2] for more references on the topic of allelic partitions, especially regarding

branching processes. For example, similar questions were studied for general CMJ processes, when

mutations occur at birth, in the monography due to Z. Täıb [18]. These results rely heavily on the

theory of branching processes counted by random characteristics, due to P. Jagers and O. Nerman

[8, 9, 10, 15], and more specifically on time dependent random characteristics as developed in [10]. Z.

Täıb obtains results of convergence in distribution of the (correctly rescaled) point process of ages,

similar to the results we obtain in Sections 4 and 5. However, the techniques of [18] do not apply to

the case where mutations occur during individuals’ lifetimes, since the genealogical tree of types is

not the one of a CMJ process in this case.

One of the initial motivations of [2] and of the present work was the following model inspired

from the works of P.C. Sabeti and her coauthors (see e.g. [17]). Inside a large population, consider a

subpopulation consisting of individuals carrying a specific selective gene called ‘core haplotype’ and

thus experiencing demographic growth. The haplotypic structure of the subpopulation restricted to

a portion of length L around the core haplotype on the chromosome carrying it, is assumed to be

altered by recombination. As long as the total population is sufficiently large w.r.t. the growing

subpopulation, each time a sequence belonging to (an individual in) this subpopulation recombines

with another sequence, with high probability this sequence will be a new sequence belonging to the

rest of the population. Therefore, the new sequence obtained after recombination can be treated

as a mutant under the infinitely-many alleles model. In this setting, mutation rate is an increasing

function of L. In [17], a tree representation of the allelic partition as a function of L is given for

each core haplotype in a given set of genes suspected to have been selected in humans. The tree

obtained this way is called “recombination tree”. An interesting question is to develop statistical

methods allowing to detect positive selection from the knowledge of this tree. Here, we assume that

our (sub)population grows at a Malthusian rate α (supercritical CMJ process). We are able to give

the asymptotic distribution of the rightmost part of the frequency spectrum for a given mutation

rate (this corresponds to fixing L in the recombination setting). Since θ can be seen as a death rate

when restricting the count to individuals carrying the same allele, the phase transition at θ = α

is intuitive. In the recombination tree, this phase transition should translate into a transition, at

a certain locus length L0, from a small number of thick branches (L < L0) to a large number of

thin branches (L > L0). We plan to extend this study to a full description of the structure of the

recombination tree.

In the next section, we define rigorously the model and recall some chosen results from [2]. Section

3 is concerned with the asymptotic behavior, as t → ∞, of the expected sizes and ages of the most

abundant/oldest families. Sections 4 and 5 deal with the joint convergence in distribution of these

sizes and ages in the respective cases when clonal families are subcritical or critical. A final appendix

is devoted to some technical lemmas for the control of moments of order 2 of largest sizes and ages.
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2 Model, preliminary results and statement of the main results

2.1 Model

In this work, we consider genealogical trees satisfying the branching property and called splitting

trees [6, 7]. Splitting trees are those random trees where individuals’ lifetime durations are i.i.d. with

an arbitrary distribution, but where birth events occur at Poisson times during each individual’s

lifetime. We call b this constant birth rate and we denote by V a r.v. distributed as the lifetime

duration. Then set Λ(dr) := bP(V ∈ dr) a finite measure on (0,∞] with total mass b called the

lifespan measure. We will always assume that a splitting tree is started with one unique progenitor

born at time 0.

The process (Nt; t ≥ 0) counting the number of alive individuals at time t is a homogeneous,

binary Crump–Mode–Jagers process, which is not Markovian unless Λ has an exponential density or

is a Dirac mass at {+∞}.

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Figure 1: A coalescent point process.

In [13], it is shown that the genealogy of a splitting tree conditioned to be extant at a fixed

time t is given by a coalescent point process, that is, a sequence of i.i.d. random variables Hi, i ≥ 1,

killed at its first value greater than t. In particular, conditional on Nt 6= 0, Nt follows a geometric

distribution with parameter P(H ≥ t), where H is distributed as the Hi. More specifically, for any

0 ≤ i < j ≤ Nt − 1, the coalescence time between the i-th individual alive at time t and the j-th

individual alive at time t (i.e., the time elapsed since the common lineage to both individuals split

into two distinct lineages) is the maximum of Hi+1, . . . ,Hj. The graphical representation in Figure

1 is straightforward. The common law of these so-called branch lengths is given by

P(H > s) =
1

W (s)
, (2.1)

where the nondecreasing function W is such that W (0) = 1 and is characterized by its Laplace

transform. More specifically, these branch lengths are the depths of the excursions of the jump
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contour process, say Y (t), of the splitting tree truncated below level t. They are i.i.d. because Y (t)

is a Markov process. Indeed, it is shown in [13] that Y (t) has the law of a Lévy process, say Y , with

no negative jumps, reflected below t and killed upon hitting 0. The function W is called the scale

function of Y , and is defined from the Laplace exponent ψ of Y :

ψ(x) = x−
∫

(0,+∞]

(

1− e−rx
)

Λ(dr) x ∈ R+. (2.2)

Let α denote the largest root of ψ. In the supercritical case (i.e.
∫

(0,∞] rΛ(dr) > 1), and in this

case only, α is positive and called the Malthusian parameter, because the population size grows

exponentially at rate α on the survival event. Then the function W is characterized by

∫ ∞

0
e−xrW (r) dr =

1

ψ(x)
x > α.

Actually, it is possible to show by path decompositions of the process Y that

W (x) = exp

(

b

∫ x

0
dtP(J > t)

)

, (2.3)

where J is the maximum of the path of Y killed upon hitting 0 and started from a random initial

value, distributed as V . Note that since Y is also the contour process of a splitting tree, J has the

law of the extinction time of the CMJ process N started from one individual.

Throughout this work, we further assume that individuals independently experience mutations at

Poisson times during their lifetime, that each new mutation event confers a brand new type (called

haplotype, or allele) to the individual, and that a newborn holds the same type as her mother at birth

time. The mutation rate is denoted by θ. From now on, Pt (resp. P
⋆) will denote the conditional

probability on survival up to time t (resp. on the survival event).

2.2 Expected frequency spectrum

Recall from the introduction that Aθ(k, t) is the number of types carried by k individuals at time t.

Also denote by Z0(t) the number of individuals carrying the ancestral type at time t.

In [2, Cor. 4.3], we obtained the following explicit formulae for the expected frequency spectrum

in the population at time t:

EtAθ(k, t) =W (t)

∫ t

0
e−θx

1

Wθ(x)2

(

1− 1

Wθ(x)

)k−1

(θ dx+ δt(dx)), (2.4)

and

Pt (Z0(t) = k) =W (t)
e−θt

Wθ(t)2

(

1− 1

Wθ(t)

)k−1

, (2.5)

and

Wθ(x) := e−θxW (x) + θ

∫ x

0
W (y)e−θydy, (2.6)
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i.e. W ′
θ(x) = e−θxW ′(x) ≥ 0 and Wθ(0) = W (0) = 1. Note that Wθ is the scale function associated

to the clonal splitting tree [2, Thm. 3.1], i.e.
∫ ∞

0
e−xrWθ(r)dr =

1

ψθ(x)
, x > α− θ,

where

ψθ(x) := x−
∫

(0,+∞]
(1− e−rx)bP(Vθ ∈ dr) =

xψ(x+ θ)

x+ θ
, (2.7)

where Vθ denotes the minimum of V and of an independent r.v. with parameter θ.

In addition, we were able to obtain the explicit expected age density of the frequency spectrum [2,

Eq. (4.5)]: for all y < t, defining Aθ(k, t, y; dy) as the number of haplotypes of age in the interval

(y, y + dy) represented by exactly k alive individuals at time t, we have

EtAθ(k, t, y; dy) = θ dyW (t)
e−θy

Wθ(y)2

(

1− 1

Wθ(y)

)k−1

. (2.8)

In [2], denoting by Aθ(t) =
∑

k≥1Aθ(k, t) the total number of haplotypes at time t, we deduced

from these expressions the a.s. large time convergence of the fraction Aθ(k, t)/Aθ(t). Recall that

families with given size k = 1, 2, 3, ... are referred to as small families. Large families are those who

have the largest sizes and old families are those whose original mutation is among the oldest. We

are interested in the sizes and ages of large and of old families. For example, the size of the largest

family is the largest k such that Aθ(k, t) ≥ 1.

2.3 Statement of results

Recall that we always assume that the Malthusian parameter α is positive. The asymptotic size

of the most frequent and oldest haplotypes strongly depends on the way α and the mutation rate

θ compare. Since θ is an additional death rate for clonal families, the case α > θ corresponds to

supercritical clonal families, the case θ = α corresponds to critical clonal families, and the case θ > α

corresponds to subcritical clonal families.

In the whole paper, we are going to use the following notation: for all x, s > 0, define

• Lt(x) the number of haplotypes carried by at least (or exactly) x individuals alive at time t (L

for large);

• Ot(s) the number of haplotypes with alive representatives at time t older than s, i.e. whose

original mutation has age greater than s (O for old);

• Mt(x, s) the number of haplotypes carried by at least x individuals alive at time t and whose

original mutation has age greater than s. By convention, we set Mt(x, s) = Mt(x, 0) = Lt(x)

when s < 0. For 0 ≤ s1 ≤ s2, we also define

Mt(x, s1, s2) =Mt(x, s1)−Mt(x, s2),

the number of haplotypes carried by at least x individuals alive at time t, whose original

mutation has age in (s1, s2].
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Our convergence results are of two kinds: convergence in expectation of Lt(xt) and Ot(st) for

conveniently chosen xt and st, which are directly obtained from (2.4), (2.5) and (2.8) (see Section 3),

and convergence in distribution of the point process of (correctly rescaled) largest families or oldest

families, which require to combine the previous equations with the theory of coalescent point pro-

cesses [13, 16] (see Sections 4 and 5). We obtain different results depending on whether the clonal

families are supercritical, subcritical or critical.

2.3.1 Supercritical clonal families

Our only result in the supercritical case (α > θ) is the following (Proposition 3.3): for all 0 ≤ a0 <

a1 ≤ +∞ and c ≥ 0,

lim
t→+∞

EtMt(ce
(α−θ)t, t− a1, t− a0) =

α− θ

α

∫ a1

a0

exp
(

αy − cψ′
θ(α− θ)e(α−θ)y

)

(θdy+ δ0(dy)), (2.9)

where δ0 denotes the Dirac measure at 0. Note that (2.7) yields

ψ′
θ(α− θ) =

(α− θ)ψ′(α)
α

.

This result means that the largest families at time t have a size of the order of e(α−θ)t, and that

their age is of the order of t minus a constant, i.e. were born in the first moments of the population

growth. In particular, the largest and oldest families are the same.

This result can be interpreted as follows: If Nθ(t) denotes the size of a clonal family started at

time 0 from one individual, then conditional on its survival at time t, Nθ(t) e
−(α−θ)t converges in

distribution to an exponential r.v. with parameter ψ′
θ(α− θ) [13]. If we restrict the limit in the last

statement to its Dirac term, we recover the previous convergence stated for the ancestral type

lim
t→+∞

Pt(Z0(t) > ce(α−θ)t) =
α− θ

α
e−cψ

′
θ
(α−θ).

The prefactor α−θ
α is the probability of survival of the ancestral family conditional on the survival

of the whole population, which is the ratio of (α− θ)/b (survival probability of the ancestral family)

with α/b (survival probability of the whole population).

In order to recover EtMt(ce
(α−θ)t, t − a1, t − a0), we need to integrate the mutation rate per

branch θ dy against the expected number of individuals alive at time y having at least one alive (not

necessarily clonal) descendant at time t, times the probability that the splitting tree spanned by one of

these individuals has at least ce(α−θ)t clonal descendants, which is exactly Pt−y(Z0(t− y) > ce(α−θ)t)

since this splitting tree is not extinct after t− y time units, which converges to

α− θ

α
e−cψ

′
θ
(α−θ)e(α−θ)y

as t → +∞. Now, the number of individuals alive at time y having descendants at time t is given

by the number of branches deeper than t − y in the coalescent point process, i.e. has a geometric

distribution of parameter P(H > t | H > t − y) = W (t − y)/W (t). As will appear in Lemma 3.1
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below, this quantity converges to e−αy as t → +∞, which completes the interpretation of each term

of (2.9).

Using the theory of time-dependent random characteristics, Z. Täıb [18] was able to obtain

more precise results (but without considering ages of haplotypes) in the case of CMJ processes where

mutations occur at birth. In this case, using the notation α−θ for the (positive) Malthusian parameter

clonal families (to be consistent with our notation), he obtained in Theorem (4.6) the convergence

of the number of haplotypes carried by more than ce(α−θ)t individuals to a mixed Poisson r.v. with

parameter Cw∞/αcα/(α−θ) where the constant C is explicit and w∞ is the limit of Nte
−αt when

t→ +∞, where Nt is the population size at time t. This result is consistent with ours, although the

precise value of the constant C is not the same.

Although not stated in [18], one can easily extend this result using [14, Thm. A.1.] to obtain the

convergence in distribution on the event of non-extinction of the point measure ηt(·), where ηt([a0, a1])
is the number of haplotypes carried at time t by a number of individuals in [a0e

(α−θ)t, a1e(α−θ)t],
towards a mixed Poisson point process (also known as Cox process) on R+ with intensity measure

µ(dx) :=
Cw∞

(α− θ)x1+α/(α−θ)
dx.

This is actually the kind of results that we are able to prove when mutations occur during the life

of individuals and when clonal families are subcritical or critical (see below). Unfortunately, the

method we develop in Section 4 does not apply to the supercritical case.

2.3.2 Subcritical clonal families

When α < θ, we prove in Proposition 3.4 that for all a ∈ R

lim
t→+∞

EtOt

(

αt

θ
+ a

)

= k e−θa

for an explicit constant k, and that the maximal size of families older than αt/θ + a is tight when

t→ +∞ for all a ∈ R. We also prove in Proposition 3.5 that for all c ∈ R,

EtLt(xt(c)) ∼ k ϕ(θ)c+{−xt(c)}, (2.10)

where {x} denotes the fractional part of the real number x, i.e. {x} = x − ⌊x⌋ = x + ⌈−x⌉, where
⌊·⌋ (resp. ⌈·⌉) is the integer part (resp. ceiling) function, and

xt(c) = k′t− k′′ log t+ c

and

ϕ(θ) := 1− ψ(θ)

θ
, (2.11)

for explicit constants k, k′, k′′. In addition, we prove that the age of these large families is of the

order of log t/(θ − α). Hence the largest and oldest families are different in the subcritical case.
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Note that, both for large ages and large sizes, random fluctuations are of order 1 (the parameters

a and c are not multiplied by a function of t). This explains why the right-hand side of (2.10),

while remaining bounded, depends on t: on the one hand, the size of the largest families grows with

time as xt(0) and has fluctuations of order 1; on the other hand the size of the largest families is an

integer and hence Lt(xt(c)) only depends on ⌈xt(c)⌉. Therefore, as a function of c, the right-hand

side of (2.10) must only depend on ⌈xt(c)⌉, which is clear since c+ {−xt(c)} = −xt(0) + ⌈xt(c)⌉.
This suggests that, given any sequence of times (tk)k≥0 such that tk → +∞ and {xtk (0)} =: v does

not depend on k, the r.v. Ltk(xtk(c)) should converge in distribution, or that the r.v. X
(1)
tk

− xtk(0),

where X
(1)
t is the size of the largest family at time t, should converge in distribution to some r.v.

with values in Z − v = {b − v, b ∈ Z}. This is what we prove in Section 4. For example, we shall

state here Corollary 4.4.

Let us denote by X
(1)
t ≥ X

(2)
t ≥ . . . the ordered sequence of family sizes in the population at

time t. Let also M(R) be the set of nonnegative σ-finite measures on R, finite on R+, and let us

define the semi-vague topology on M(R) as the one induced by all maps of the form

ν ∈ M(R) 7→
∫

R

u(x)ν(dx),

for all bounded continuous functions u such that, for some x0 ∈ R, u(x) = 0 for all x ≤ x0. Then,

Corollary 4.4 states that the sequence of point measures (Zk)k≥0 on Z− v defined by

Zk :=
∑

n≥1

δ
X

(n)
tk

−xtk(0)

converges in P
⋆-distribution on M(R) equipped with the semi-vague topology to a mixed Poisson

point measure on Z− {xt0(0)} with intensity measure

E k
∑

c∈Z−{xt0(0)}
ϕ(θ)c δc,

where k is an explicit constant and the mixture coefficient E has exponential distribution with

parameter 1.

We obtain similar results for the oldest families (Theorem 4.5): if A
(1)
t ≥ A

(2)
t ≥ . . . denotes the

ordered sequence of family ages in the population at time t, the family of point measures (Zt, t ≥ 0)

on R defined by

Zt :=
∑

n≥1

δ
A

(n)
t −αt/θ

converges in P
⋆-distribution on M(R) equipped with the semi-vague topology to a mixed Poisson

measure on R with intensity measure

E k e−θada, (2.12)

where k is an explicit constant.

In the case of CMJ processes with mutations occuring at birth, Jagers and Nerman [10, Applic. C]

and Taib [18, Prop. (4.2)] obtained similar results for the extremes of the empirical age distribution.
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Proposition (4.2) of [18] states the convergence of the point measure Zt on the event of non-extinction

to a mixed Poisson measure on R with intensity measure

w∞ k′ e−θada. (2.13)

As already noted, in the case of splitting trees, the distribution of w∞ conditional on survival is

exponential [13], so that (2.12) has the same form as (2.13), although the constant k′ is different

from k.

The technique used in [18] makes use of so-called individual time-dependent random characteris-

tics: for any individual i in the population, we define a nonnegative random process, called random

characteristic (χti(u), u ∈ R), assigning some score to the individual at age u, such that χti(u) = 0

for all u < 0. The random characteristic depends on an extra parameter t. We can then define the

branching process counted with the time-dependent random characteristic χt as

Zχtt :=
∑

i

χti(t− σi),

where the sum covers the set of all individuals which lived at some time in the population, and σi is

the birth date of individual i. In such situations, the results of [10] allow one to prove the convergence

in distribution of Zχtt as t → +∞, under a set of assumptions, among which the more stringent is

that the random characteristic is individual, i.e. that for all t ≥ 0, the random processes (ξi, χti) for

i running in the set of all individuals in the population are i.i.d., where (ξi(u), u ≥ 0) is the process

counting the number of children of individual i before age u.

In [18], this method is applied to the population of haplotypes (i.e. individuals above have to be

understood as haplotypes), defining for any haplotype i (a variant of) the time-dependent random

characteristic

χti(u) := 1{αtθ +a≤u<λi},

where λi is the life length of haplotype i.

This method cannot be used when mutations occur during the life of individuals, since the age

of this individual when the mutation occurs influences the distribution of the progeny of the new

haplotype (except when lifetime durations are exponential r.v.), which contradicts the assumption

that (ξi, χti) are i.i.d. One may think of defining another random characteristic based on individuals

rather than haplotypes, counting the number of mutations experienced by each individual, which

occured more than αt/θ+a time units ago and which has descendants living at present time. With this

choice, the random characteristic does not depend on the age of the individual’s mother. However,

it depends on the whole progeny of the individual, so that (ξi, χi) and (ξi′ , χi′) are independent only

if the individuals i does not descend from i′ and conversely. Therefore, the method of [18] cannot be

applied to our case.

Proposition (4.2) of [18] makes use of precise estimates on the tail distribution of the extinction

time of a clonal family, which are well-known in this context. No results are given in [18] on the

size of large families in the subcritical case, presumably because their method would require precise

estimates on the tail distribution of the size of a clonal population at any time, which are to our

knowledge not known in general for CMJ processes. In our case of splitting trees with mutations
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occurring during the life of individuals, our formulae (2.4) and (2.5) for the expected frequency

spectrum are exact. This allows us to obtain precise estimates for the tail distribution of the size of

a clonal population at some time, conditionally on the survival of the (clonal or not clonal) progeny

of this population at time t. We are then able to deduce exact asymptotics for the tail distribution

of the size of the largest family using a different method than in [18] (see the proof of Theorem 4.2).

We chose here to present results on largest and oldest haplotypes, but our method easily applies

to intermediate regimes. For example, one can easily adapt our calculations to prove that, for all

γ ∈ [0, 1] and c ∈ R,

EtMt

(

xt(c),
αγ

θ
t
)

∼ k ϕ(θ)c+{−xt(c)},

where

xt(c) =
α(1− γ)t

− logϕ(θ)
+ c.

Similarly, one can prove the convergence of the point measure of sizes of families older than (αγ/θ)t

as t→ +∞ and compute the limit as a mixed Poisson point measure.

2.3.3 Critical clonal families

When α = θ, we prove in Proposition 3.6 that, for all a ∈ R,

lim
t→+∞

EtOt

(

t− log t

α
+ a

)

= ke−αa

for an explicit constant k, and that the maximal size of families older than t− log t/α+ a is tight as

t → +∞ for all a ∈ R. As in the subcritical case, fluctuations are of order 1 here. We also prove in

Proposition 3.7 that, for all c ∈ R,

lim
t→+∞

EtLt(xt(c)) = k exp

(

−2ψ′(α)
α

c

)

,

where

xt(c) = k′t2 + k′′t log t+ ct (2.14)

and the constants k, k′, k′′ are explicit. In addition, we prove that the age of these large families is of

the order of t/2. Here, since the fluctuations are of the order of t, the limit does not involve {−xt(c)}
as in (2.10)

We are then able to deduce from these estimates the convergence of correctly rescaled point

measures of the size of the largest and the age of the oldest families (Theorems 5.1 and 5.3): using

the same notation as in Section 2.3.2, the family of point measures (Zt, t ≥ 0) defined by

Zt :=
∑

n≥1

δ
X

(n)
t

−xt(0)

t

11



converges in P
⋆-distribution on M(R) equipped with the semi-vague topology to a mixed Poisson

measure on R with intensity measure

E k exp

(

−2ψ′(α)
α

c

)

dc,

where the constant k is explicit.

Note that this statement and the definition (2.14) are actually a little bit different than those of

Sections 3.4 and 5.1. However, the results stated here can be proved by slightly modifying the proofs

of Proposition 3.7 and Theorem 5.1. We have chosen to leave this to the interested reader.

Similarly, we obtain the convergence of the family of point measures (Zt, t ≥ 0) defined by

Zt :=
∑

n≥1

δ
A

(n)
t −t+ log t

α

to a mixed Poisson point measure on R with intensity measure

E e−αa. (2.15)

Again, in [10] and [18], a similar result is stated only for extreme ages. It takes the same form

as our result with E replaced by w∞ and with a different multiplicative constant in the intensity

measure (2.15).

3 Large time asymptotics for the expected number of frequent or

old haplotypes

Our goal here is to prove the convergence results on the expectation of Lt(xt) and Ot(st) stated above,

when clonal families are supercritical, subcritical or critical. We start with preliminary estimates on

the scale functions W and Wθ.

3.1 Preliminary results on scale functions

Lemma 3.1 The survival probability of the splitting tree is α/b, and the scale function W has the

following asymptotic behavior

W (t)e−αt =
1 +O(e−γt)

ψ′(α)

as t → +∞, for some constant γ > 0.

Proof. The expression of the survival probability and the fact that W (t) ∼ eαt/ψ′(α) were already
proved in [13]. In order to get the higher-order term, we use the fact that

P(J > t) =
α

b
+O(e−γt) (3.1)

as t → +∞, where J is the extinction time of the splitting tree started from one individual with

random lifespan, distributed as V . Indeed, we know from [13] that the law P
♮ := P(· | J < ∞)

12



is that of a subcritical splitting tree with lifespan measure e−αrΛ(dr). In particular, under P♮, the

lifetime V of a single individual has exponential moments, and the first hitting time τ0 of 0 by the

contour process of the spliting tree also has exponential moments (because its Laplace exponent is

the inverse of ψ♮(·) := ψ(·+α)). Since J ≤ τ0 a.s., J has exponential moments, that is, there is some

γ > 0 such that E♮(e2γJ ) <∞. As a consequence, also since α/b = P(J = ∞),

P(J > t)− α

b
=
(

1− α

b

)

P
♮(J > t) = O(e−γt).

Therefore, it follows from (2.3) that

W (t)e−αt =
exp

(

−
∫∞
t (bP(J > x)− α)dx

)

ψ′(α)
,

and the result then follows from (3.1). ✷

From this result and the definition (2.6) of Wθ, we can deduce the following lemma. We recall

that

ψθ(x) =
xψ(x+ θ)

x+ θ
and ψ′

θ(α− θ) =
(α− θ)ψ′(α)

α
.

Lemma 3.2 (i) Assume α > θ ≥ 0. Then

Wθ(t) ∼
e(α−θ)t

ψ′
θ(α− θ)

as t→ +∞.

(ii) Assume 0 < α < θ. Then

θ

ψ(θ)
−Wθ(t) ∼

e−(θ−α)t

|ψ′
θ(α− θ)| (3.2)

as t→ ∞, and

1− 1

Wθ(t)
= ϕ(θ)(1− ρ(t)),

where ϕ(θ) is defined in (2.11) and ρ(·) is a non-increasing function such that

ρ(t) ∼ ψ2(θ)

θ2ϕ(θ)|ψ′
θ(α− θ)| e

−(θ−α)t (3.3)

as t→ ∞.

(iii) Assume α = θ > 0. Then

Wα(t) =
αt

ψ′(α)
+

1

ψ′(α)
+ α

∫ +∞

0

(

W (y)e−αy − 1

ψ′(α)

)

dy + o(1)

as t→ +∞.
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Proof. Points (i) and (iii) are easy consequences of Lemma 3.1 and the definition (2.6) of Wθ.

Point (i) can also be seen as a trivial corollary of Lemma 3.1 since when α > θ, Wθ is the scale

function of a supercritical splitting tree.

For Point (ii), by Tauberian theorems (see [13]), we have Wθ(t) → 1/ψ′
θ(0) = θ/ψ(θ) as t → ∞.

Since
1

ψ(θ)
=

∫ ∞

0
W (y)e−θydy,

(2.6) yields

Wθ(t)−
θ

ψ(θ)
= e−θtW (t)− θ

∫ ∞

t
W (y)e−θydy.

Since W (t) ∼ eαt/ψ′(α), we have

∫ ∞

t
W (y)e−θydy ∼ 1

ψ′(α)

∫ ∞

t
e−(θ−α)ydy

as t→ +∞. This entails (3.2). Since one has

ρ(t) =
1

ϕ(θ)

(

1

Wθ(t)
− ψ(θ)

θ

)

and

1

Wθ(t)
− ψ(θ)

θ
=

θ
ψ(θ) −Wθ(t)

Wθ(t)
θ

ψ(θ)

,

the proof of (ii) is easily completed. ✷

3.2 The case of supercritical families (α > θ)

In the case of supercritical clonal families, the asymptotic expected number of frequent haplotypes

can be explicitly computed. Note that in the next statement and elsewhere in the paper, the Dirac

measure at time 0 corresponds to the contribution of the family carrying the ancestral type.

Proposition 3.3 Assume α > θ ≥ 0 and let 0 ≤ a0 < a1 ≤ +∞ and c ≥ 0. For all t ≥ 0, let

xt(c) = c exp((α − θ)t).

Then

lim
t→+∞

Et[Mt(xt(c), t − a1, t− a0)] =
α− θ

α

∫ a1

a0

exp
(

αy − cψ′
θ(α− θ) e(α−θ)y

)

(θ dy + δ0(dy)).
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Proof. Using (2.5), (2.8) and Lemma 3.1, for all t ≥ a, we have

Et[Mt(xt(c), t− a1, t− a0)] =

+∞
∑

k=⌈ce(α−θ)t⌉

[

W (t)
e−θt

Wθ(t)2

(

1− 1

Wθ(t)

)k−1 1{a=0}

+

∫ t−a0

(t−a1)∨0
θW (t)

e−θx

Wθ(x)2

(

1− 1

Wθ(x)

)k−1

dx

]

= 1{a0=0}
W (t)

Wθ(t)
e−θt

(

1− 1

Wθ(t)

)⌈ce(α−θ)t⌉−1

+W (t)

∫ t−a0

(t−a1)∨0
θ
e−θx

Wθ(x)

(

1− 1

Wθ(x)

)⌈ce(α−θ)t⌉−1

dx

∼ 1

ψ′(α)

∫ a1∧t

a0

eθy

Wθ(t− y)e−(α−θ)t exp
(

(⌈ce(α−θ)t⌉ − 1) log(1− 1/Wθ(t− y))
)

(θdy + δ0(dy)),

(3.4)

where we recall that ⌈·⌉ is the ceiling function. Since Wθ is nondecreasing and Wθ(0) = 1, it follows

from Lemma 3.2 (i) that there exists a constant C > 0 such that

1

C
e(α−θ)t ≤Wθ(t) ≤ Ce(α−θ)t, ∀t ≥ 0.

Therefore, for all y ≥ 0, the quantity inside the integral in the r.h.s. of (3.4) is smaller than

C ′eαy exp
(

−C ′′e(α−θ)y
)

for some constants C ′, C ′′ > 0. Now, using Lemma 3.2 (i) again, for all y ≥ 0, the quantity inside

the integral in the r.h.s. of (3.4) converges to

ψ′(α)(α − θ)

α
eαy exp

(

−cψ′
θ(α− θ)e(α−θ)y

)

when t→ +∞. Proposition 3.3 then follows from the dominated convergence theorem. ✷

3.3 The case of subcritical families (α < θ)

Our first result deals with ages and sizes of the oldest clonal families. Note that the scaling constant

a varies in R.

Proposition 3.4 When α < θ, for any a ∈ R,

lim
t→+∞

Et

[

Ot

(

α t

θ
+ a

)]

=
ψ(θ)

θψ′(α)
e−θa. (3.5)

In addition, for any xt → +∞ as t→ +∞,

lim
t→+∞

Et

[

Mt

(

xt,
α t

θ
+ a

)]

= 0. (3.6)
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Proof. Using (2.5) and (2.8) as in the proof of Proposition 3.3, we have

Et[Ot(αt/θ + a)] =W (t)

∫ t

α t
θ
+a

e−θx

Wθ(x)
(θdx+ δt(dx))

∼ ψ(θ)eαt

ψ′(α)

∫ t

α t
θ
+a
e−θx

(

dx+
1

θ
δt(dx)

)

,

where we used that Wθ(x) → θ/ψ(θ) as x→ +∞ (Lemma 3.2). Eq. (3.5) then easily follows.

Similarly,

Et[Mt(xt, αt/θ + a)] =W (t)

∫ t

α t
θ
+a

e−θx

Wθ(x)

(

1− 1

Wθ(x)

)⌈xt⌉−1

(θdx+ δt(dx))

≤
(

1− 1

Wθ(t)

)⌈xt⌉−1

W (t)

∫ t

α t
θ
+a

e−θx

Wθ(x)
(θdx+ δt(dx)),

since Wθ is nondecreasing. Eq. (3.6) then follows from (3.5) and the fact that (1− 1/Wθ(t))
⌈xt⌉ → 0

as t→ +∞, since Wθ(t) → θ/ψ(θ) > 1. ✷

Our next result gives the asymptotics of the expected number of large families (notice again that

the scaling constant c varies in R) and states that their ages all are asymptotically equivalent to

(θ − α)−1 log(t). We recall that ϕ(θ) < 1, so that | logϕ(θ)| = − logϕ(θ).

Proposition 3.5 Assume α < θ. For all c ∈ R, let

xt(c) :=
αt− θ

θ−α log t

| logϕ(θ)| + c.

Then, for all ε > 0,

Et[Lt(xt(c))] ∼ Et

[

Mt

(

xt(c),
1− ε

θ − α
log t,

1 + ε

θ − α
log t

)]

∼ A(θ)ϕ(θ)c−1+{−xt(c)} (3.7)

as t → +∞, where we recall that {·} is the fractional part function and

A(θ) :=
Γ
(

θ
θ−α

)

ψ(θ)

α
|ψ′
θ(α− θ)|

α
θ−α

(

θ2

αψ(θ)2
ϕ(θ) | logϕ(θ)|

)
θ

θ−α

, (3.8)

where Γ(s) =
∫∞
0 ys−1e−ydy is the Gamma function.

Proof. Proceeding similarly as in the proof of Proposition 3.3, we deduce from Lemma 3.2 (ii) that

Et[Lt(xt(c))] =W (t)ϕ(θ)⌈xt(c)⌉−1

∫ t

0

e−θx

Wθ(x)
(1− ρ(x))⌈xt(c)⌉−1 (θdx+ δt(dx))

∼ tθ/(θ−α) ϕ(θ)c−1+{−xt(c)}

ψ′(α)

∫ t

0

e−θx+(⌈xt(c)⌉−1) log(1−ρ(x))

Wθ(x)
(θdx+ δt(dx)) (3.9)
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as t→ +∞, where we used the relation ⌈xt(c)⌉ − 1 = xt(0) + c− 1 + {−xt(c)}. We will now abridge

xt(c) into xt.

Let ε > 0. Let us first bound from above the previous integral restricted to the complement

of
[

1−ε
θ−α log t, 1+εθ−α log t

]

. On the one hand, using the inequality log(1 − ρ(x)) ≤ 0 and the fact that

Wθ(x) converges to a positive constant when x→ +∞, we have for all ε > 0

∫ +∞

1+ε
θ−α

log t

e−θx+(⌈xt⌉−1) log(1−ρ(x))

Wθ(x)
(θdx+ δt(dx)) ≤ C

(

e−θt + e−θ
1+ε
θ−α

log t
)

= o(t−
θ

θ−α )

as t→ +∞.

On the other hand, since ρ(x) is non-increasing and using (3.3), ρ(x) ≥ ρ( 1−εθ−α log t) ≥ Ct−1+ε

for all 0 ≤ x ≤ (1− ε)/(θ − α) log t. Therefore,

∫ 1−ε
θ−α

log t

0

e−θx+(⌈xt⌉−1) log(1−ρ(x))

Wθ(x)
(θdx+ δt(dx)) ≤ C ′

∫ 1−ε
θ−α

log t

0
e−θx e−C(⌈xt⌉−1)t−1+ε

dx.

Since (⌈xt⌉−1)t−1+ε ≥ C ′′tε for t large enough, we deduce that the previous integral is also o(t−
θ

θ−α ).

In conclusion, Et[Lt(xt(a))] and Et

[

Mt

(

xt(a),
1−ε
θ−α log t, 1+ε

θ−α log t
)]

are both asymptotically equiv-

alent to Et(ε), provided that Et(ε) is uniformly bounded from below, where

Et(ε) :=
ψ(θ) tθ/(θ−α) ϕ(θ)a−1+{−xt(a)}

ψ′(α)

∫ 1+ε
θ−α

log t

1−ε
θ−α

log t
e−θx+(⌈xt⌉−1) log(1−ρ(x))dx. (3.10)

Note that, since Wθ(x) → ψ(θ)/θ when x→ +∞, the replacement of Wθ(x) by its limit in the r.h.s.

of (3.9) is justified. The proof of Proposition 3.5 will hence be completed if we can prove that

Et(ε) ∼ A(θ)ϕ(θ)c−1+{−xt(c)}.

This is the aim of the rest of the proof. Set

B :=
ψ2(θ)

θ2ϕ(θ)|ψ′
θ(α− θ)| , (3.11)

and we make the change of variable y := B(⌈xt⌉ − 1)e−(θ−α)x in (3.10):

Et(ε) ∼
ψ(θ) tθ/(θ−α) ϕ(θ)c−1+{−xt}

ψ′(α)(θ − α)(B(⌈xt⌉ − 1))θ/(θ−α)

∫ B(⌈xt⌉−1)t−1+ε

B(⌈xt⌉−1)t−1−ε

yθ/(θ−α)−1

exp

(

(⌈xt⌉ − 1) log

(

1− ρ

(

log B(⌈xt⌉−1)
y

θ − α

)))

dy. (3.12)

Now, using Lemma 3.2 (ii) again, we have for all y > 0

ρ

(

log B(⌈xt⌉−1)
y

θ − α

)

∼ Be
log y

B(⌈xt⌉−1) =
y

⌈xt⌉ − 1
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as t → +∞. Therefore, the exponential in the r.h.s. of (3.12) converges for all y > 0 to e−y when

t → +∞. In addition, using the inequalities log(1 − ρ(x)) ≤ −ρ(x) and ρ(x) ≥ Ce−(θ−α)x for all x

large enough, we have

y
θ

θ−α
−1 exp

(

(⌈xt⌉ − 1) log

(

1− ρ

(

log B(⌈xt⌉−1)
y

θ − α

)))

≤ y
α
θ−α e−Cy.

Since xtt
−1−ε → 0 and xtt

−1+ε → +∞ when t→ +∞, Lebesgue’s theorem finally yields

Et(ε) ∼
ψ(θ)ϕ(θ)c−1+{−xt}Γ( θ

θ−α)

ψ′(α)(θ − α)Bθ/(θ−α)

(

t

⌈xt⌉ − 1

)θ/(θ−α)
,

Remembering that xt ∼ αt/| log ϕ(θ)| as t→ +∞ concludes the proof of Proposition 3.5. ✷

3.4 The case of critical families (α = θ)

The following result gives the asymptotic expected number of old families and states that their sizes

are tight.

Proposition 3.6 Assume α = θ > 0. For all a ∈ R, we have

lim
t→+∞

Et

[

Ot

(

t− log t

α
+ a

)]

=
e−αa

α
.

In addition, for all xt → +∞,

lim
t→+∞

Et

[

Mt

(

xt, t−
log t

α
+ a

)]

= 0.

Proof. Using Lemma 3.2 (iii), a similar computation as for Proposition 3.4 yields

Et[Ot(t− log t/α+ a)] ∼ eαt
∫ t

t− log t
α

+a

e−αx

x
(dx+

1

α
δt(dx)) ∼

eαt

t

∫ t

t− log t
α

+a
e−αxdx+

1

αt
.

The first limit easily follows. The second limit is obtained exactly as in the proof of Proposition 3.4.

✷

The computations for the most frequent haplotypes are more involved. The following result

gives the asymptotics of the expected number of large families and states that their ages are all

asymptotically equivalent to t/2.

Proposition 3.7 Assume α = θ > 0. For all c ∈ R, we define

xt(c) :=
α2

4ψ′(α)

(

t− log t

2α
+ c

)2

.

Then, for all ε > 0,

lim
t→+∞

Et[Lt(xt(c))] = lim
t→+∞

Et

[

Mt

(

xt(c),
1− ε

2
t,

1 + ε

2
t

)]

=

√

2π

α
eB−ψ′(α)

2 e−α c,

where

B = 1 + α

∫ +∞

0

(

ψ′(α)W (y)e−αy − 1
)

dy. (3.13)
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Proof. Similarly as in the proof of Proposition 3.5, we have

Et[Lt(xt(c))] ∼
eαt

ψ′(α)

∫ t

0

e−αx

Wα(x)
e
(⌈xt(c)⌉−1) log

(

1− 1
Wα(x)

)

(αdx+ δt(dx)). (3.14)

Let ε > 0. Let us first bound from above the previous integral restricted to the complement of
[

1−ε
2 t, 1+ε2 t

]

. Fix η ∈ (0, 1). By Lemma 3.2 (iii), for all x large enough, 1 ≤ Wα(x) ≤ αt
ψ′(α)(1−η) .

Hence, using the fact that xt(c) ∼ α2t2/4ψ′(α), for t sufficiently large,

∫ t

1+ε
2
t

e−αx

Wα(x)
e
(⌈xt(c)⌉−1) log

(

1− 1
Wα(x)

)

(αdx+ δt(dx)) ≤
∫ t

1+ε
2
t
e−αx−(⌈xt(c)⌉−1)

(1−η)ψ′(α)
αx (αdx + δt(dx))

≤ α

∫ t

1+ε
2
t
e
−α

(

x+ (1−2η)t2

4x

)

dx+ e−αt(1+(1−2η)/4) .

The quantity inside the integral in the integral of the r.h.s. is maximal for x = (1− 2η)1/2t/2, which

is outside the integration domain, so that

∫ t

1+ε
2
t
e
−α

(

x+
(1−2η)t2

4x

)

dx ≤ t exp

(

−α
(

t(1 + ε)

2
+
t(1− 2η)

2(1 + ε)

))

.

This last quantity is o(e−αt) if one chooses η < ε2/2.

Using the fact that Wα(x) is non-decreasing, larger than (or equal to) 1 and that e−αx ≤ 1, we

have
∫ log t

0

e−αx

Wα(x)
e
(⌈xt(c)⌉−1) log

(

1− 1
Wα(x)

)

αdx ≤ αe
− ⌈xt(c)⌉−1
Wα(log t) log t.

Since xt(c) ∼ α2t2/4ψ′(α), using Lemma 3.2 (iii) again, for t large enough, the previous integral is

smaller than

α log(t) e−Ct
2/ log t = o(e−αt),

for a constant C > 0 independent of t.

Finally, using Lemma 3.2 (iii) similarly as above, for all η ∈ (0, 1), for t large enough,

∫ 1−ε
2
t

log t

e−αx

Wα(x)
e
(⌈xt(c)⌉−1) log

(

1− 1
Wα(x)

)

αdx ≤ α

∫ 1−ε
2
t

log t
e
−α

(

x+
(1−2η)t2

4x

)

dx.

Taking η small enough so that (1−η)1/2t/2 > t(1−ε)/2, the previous quantity can be bounded from

above by

αte−
αt
2 (1−ε+

1−2η
1−ε ) = o(e−αt)

if one takes again η < ε2/2. In conclusion, Et[Lt(xt(c))] and Et

[

Mt

(

xt(c),
1−ε
2 t, 1+ε

2 t
)]

are both

asymptotically equivalent to Et(ε), provided that Et(ε) is uniformly bounded from below, where

Et(ε) :=
αeαt

ψ′(α)

∫ 1+ε
2
t

1−ε
2
t

e−αx

Wα(x)
e
(⌈xt(c)⌉−1) log

(

1− 1
Wα(x)

)

dx.
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Therefore, it only remains to prove that

lim
t→+∞

Et(ε) =

√

2π

α
eB−ψ′(α)

2 e−α c.

Using the facts that Wα(x) ∼ αx/ψ′(α) and that | log(1 − 1/Wα(x))| ≤ C/t for all x large enough,

we have

Et(ε) ∼ eαt
∫ 1+ε

2
t

1−ε
2
t
e−αx e

xt(c) log
(

1− 1
Wα(x)

)

dx

x
,

when t→ +∞.

It follows from Lemma 3.2 (iii) that

log

(

1− 1

Wα(x)

)

= −ψ
′(α)
αx

+
ψ′(α)(B − ψ′(α)/2)

α2x2
+ o

(

1

x2

)

(3.15)

as x→ +∞. Therefore,

F (t) := xt(c) sup
1−ε
2
t≤x≤ 1+ε

2
t

[

log

(

1− 1

Wα(x)

)

+
ψ′(α)
αx

− ψ′(α)(B − ψ′(α)/2)
α2x2

]

→ 0

as t→ +∞. Hence, using the facts that xt(c) ∼ α2t2

4ψ′(α) and that x ∈ [1−ε2 t, 1+ε2 t], for t large enough,

2e−Cε

(1 + ε)t
eB−ψ′(α)

2 eαt
∫ 1+ε

2
t

1−ε
2
t
e−αx−

xt(c)ψ
′(α)

αx dx ≤ Et(ε)

≤ 2eCε

(1− ε)t
eB−ψ′(α)

2 eαt
∫ 1+ε

2
t

1−ε
2
t
e−αx−

xt(c)ψ
′(α)

αx dx, (3.16)

for a constant C independent of ε and t.

Now, let us compute the asymptotic behavior of the integral involved in these inequalities: first,

the change of variable x = βty with βt =
√

xt(c)ψ′(α)/α yields

∫ 1+ε
2
t

1−ε
2
t
e−αx−

xt(c)ψ
′(α)

αx dx = βt

∫ 1+ε
2βt

t

1−ε
2βt

t
e
−αβt

(

y+ 1
y

)

dy.

Next, we introduce the new change of variable

y =
2 + z2 + z

√
z2 + 4

2
.

This defines a C1-diffeomorphism from z ∈ (−∞,+∞) to y ∈ (0,+∞) such that

y +
1

y
= 2 + z2.

Note that z > 0 if and only if y > 1, which means that

z = sgn(y − 1)

√

y +
1

y
− 2,
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where sgn(x) = 1 if x ≥ 0 and −1 if x < 0. Since

βt =
t− log t

2α + c

2
∼ t

2
, (3.17)

the inequality (1− ε)t/2βt < 1 < (1 + ε)t/2βt holds for t large enough, which yields

∫ 1+ε
2
t

1−ε
2
t
e−αx−

xt(c)ψ
′(α)

αx dx = βt

∫

√

(1+ε)t
2βt

+
2βt

(1+ε)t
−2

−
√

(1−ε)t
2βt

+
2βt

(1−ε)t
−2
e−αβt(2+z

2)

(

z +
z2 + 2√
z2 + 4

)

dz.

Now,

lim
t→+∞

√

(1− ε)t

2βt
+

2βt
(1− ε)t

− 2 =
ε√
1− ε

and lim
t→+∞

√

(1 + ε)t

2βt
+

2βt
(1 + ε)t

− 2 =
ε√
1 + ε

.

Since z + z2+2√
z2+4

is C1 in the neighborhood of 0, with value 1 at z = 0, we obtain

(1− Cε)βte
−2αβt

∫

√

(1+ε)t
2βt

+
2βt

(1+ε)t
−2

−
√

(1−ε)t
2βt

+
2βt

(1−ε)t
−2
e−αβtz

2
dz ≤

∫ 1+ε
2
t

1−ε
2
t
e−αx−

xt(c)ψ
′(α)

αx dx

≤ (1 +Cε)βte
−2αβt

∫

√

(1+ε)t
2βt

+
2βt

(1+ε)t
−2

−
√

(1−ε)t
2βt

+
2βt

(1−ε)t
−2
e−αβtz

2
dz

for t large enough. Making the last change of variable u =
√
2αβt z finally yields

(1− C ′ε)

√

πβt
α
e−2αβt ≤

∫ 1+ε
2
t

1−ε
2
t
e−αx−

xt(c)ψ
′(α)

αx dx ≤ (1 + C ′ε)

√

πβt
α
e−2αβt

for t large enough. Combining this with (3.16), we obtain that, for all ε > 0 small enough, there

exists t0 > 0 such that, for all t > t0,

(1− C ′′ε)
2

t
eB−ψ′(α)

2 eαt
√

πβt
α
e−2αβt ≤ Et(ε) ≤ (1 + C ′′ε)

2

t
eB−ψ′(α)

2 eαt
√

πβt
α
e−2αβt ,

where the constant C ′′ is independent of ε and t. It then follows from (3.17) that

(1− C ′′ε)

√

2π

α
eB−ψ′(α)

2 e−αc ≤ Et(ε) ≤ (1 + C ′′ε)

√

2π

α
eB−ψ′(α)

2 e−αc.

Since we have shown in the beginning of the proof that Et(ε) = Et(ε
′) + o(1) for all ε′ < ε, the

previous inequality applied to Et(ε
′) concludes the proof of Proposition 3.7. ✷

4 Large or old families: convergence in distribution for subcritical

clonal families

In all this section, we assume α < θ. Our goal is to compute the joint limiting distribution when

t → +∞ of the sizes of the largest families living at time t, and of the ages of the oldest families

living at time t. Before this, we give estimates on the second factorial moment of the number of

large families, used repeatedly in the sequel.
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4.1 A preliminary lemma

Let us recall that, under Pt, we can adopt the representation of the genealogy at time t by the

coalescent point process H0,H1,H2, . . ., where H0 = +∞ and the (Hi; i ≥ 1) are i.i.d., killed at their

first value (= HNt) larger than t. For all i ≥ 0, we call branch i the lineage represented by Hi.

For all t > 0, x ≥ 1, 0 ≤ s1 < s2 ≤ +∞, we define Kt(x, s1, s2) as the number of haplotypes

carried by more than x individuals alive at time t, whose original mutation occurred on the ancestral

lineage (branch 0), and has age in (s1, s2] (or, equivalently, in (s1, s2 ∧ t]).

Lemma 4.1 For all t > 0, x ≥ 1, 0 ≤ s1 < s2 ≤ t, we have

Et[Mt(x, s1, s2)(Mt(x, s1, s2)− 1)] ≤ 2 EtKt(x, s1, s2)

[

1 +

1
W (s1)

− 1
W (t)

1− 1
W (t)

EtNt

]

×

×
[

b(1 + θ(s2 − s1))

α

(

1− 1

Wθ(s2)

)⌈x⌉−1(

e−θs1 +
∫ s1

0
θe−θz

Wθ(s2)−Wθ(s1 − z)

Wθ(s2)
dz

)

+4

1
W (s1)

− 1
W (t)

1− 1
W (t)

EtNt EtKt (⌈x/2⌉, s1, s2)
]

. (4.1)

and

EtKt(x, s1, s2) ≤
b

α

∫ s2

s1

(

1− 1

Wθ(y)

)⌈x⌉−1(

e−θy +
∫ y

0
θe−θz

Wθ(y)−Wθ(y − z)

Wθ(y)
dz

)

(θdy + δt(dy))

(4.2)

≤ b

α

∫ s2

s1

(

1− 1

Wθ(y)

)⌈x⌉−1

(θdy + δt(dy)). (4.3)

This lemma is proved in the Appendix.

4.2 Convergence in distribution of the size of the most frequent haplotype

Let us recall the notation X
(1)
t ≥ X

(2)
t ≥ . . . ≥ X

(k)
t ≥ . . . for the ordered sequence of sizes of all

living families in the population at time t (with the convention that X
(k)
t = 0 when k is larger than

the number of living haplotypes at time t). Our first goal is to prove the convergence in distribution

of X(1) using only the exact formulae (2.4) and (2.5) and the coalescent point process construction

of the genealogy of the splitting tree.

The general idea is the following one. We divide the population at time t into several sub-

populations corresponding to distinct ancestors at a given time s, as shown in Fig. 2. This gives

a sequence of sub-trees (Ti)1≤i≤Nt,s , where Nt,s is the number of individuals alive at time s having

descendants at time t. These individuals are represented by crosses in Fig. 2. We choose s = st in

such a way that Nt,st → ∞ and the event under consideration (here, the event that there exists a

haplotype carried by more than xt individuals at time t) has a small probability in each sub-tree and

are “nearly independent” (in a sense specified in the proofs below) in distinct sub-trees. The key

argument of the proof, for which Lemma 4.1 is needed, consists in checking that, in each subtree, the
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0

st

t

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Figure 2: The definition of the sub-trees (Ti)1≤i≤Nt,st . The first vertical line represents the ancestral

lineage (branch 0) and the other vertical lines have i.i.d. lengths H1,H2, . . . The rightmost vertical

line is the first one higher than t, with length HNt. The crosses represent the Nt,st individuals alive

at time st and having descendants at time t. Here, Nt,st = 10.

unknown probability that there exists a haplotype satisfying the property under consideration (here,

carried by more than xt individuals) is close to the expected number of such haplotypes, which is

known explicitly. Here, this reads

Pt[Lt−st(xt) ≥ 1] ∼ EtLt−st(xt).

Theorem 4.2 Assume α < θ. For all c ∈ R, let

xt(c) :=
αt− θ

θ−α log t

| logϕ(θ)| + c. (4.4)

Then

Pt(X
(1)
t < xt(c)) ∼

1

1 +A(θ)ϕ(θ)c−1+{−xt(c)}

as t → +∞, where A(θ) is defined in (3.8).

Proof. Set

F (t, x) := Pt(X
(1)
t ≥ x) = Pt[Lt(x) ≥ 1], G(t, x) := Et[Lt(x)]
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and

F (t, x, s) := Pt[Mt(x, s) ≥ 1].

We have for all s < t

0 ≤ F (t, x)− Pt

(

∃i ∈ {1, . . . , Nt,s} : Ti contains a haplotype

carried by more than x individuals
)

≤ F (t, x, t− s).

which also reads

0 ≤ F (t, x)− 1 + Et[(1− F (t− s, x))Nt,s ]

= F (t, x)− 1

1 + P(H > t | H > t− s)
(

1
F (t−s,x) − 1

) ≤ F (t, x, t− s), (4.5)

since Nt,s is a geometric random variable of parameter P(H > t | H > t − s). In view of this, in

order to find a non-trivial limit for F (t, xt), we need to find st and xt such that F (t, xt, t− st) = o(1)

and F (t− st, xt) = o(1) and is asymptotically equivalent to

P(H > t | H > t− st) =W (t− st)/W (t) ∼ e−αst (4.6)

as t → +∞. In order to find an explicit asymptotic equivalent of F (t − st, xt), we will compare it

with G(t− st, xt).

Let us check that the choice xt(c) in (4.4) for xt and

st = st(b) = t− b log t

satisfy the above properties for all b > 1/(θ − α).

On the one hand, the fact that F (t, xt(c), t − st(b)) = o(1) is an immediate consequence of

Proposition 3.5, since b log t > (1 + ε) log t/(θ − α) for some ε > 0. On the other hand, we can

compute an asymptotic equivalent of G(t − st(b), xt(c)) following closely the computation of the

proof of Proposition 3.5. Here are the main steps of the computation: we have

G(t− st(b), xt(c)) =W (t− st(b))

(

1− ψ(θ)

θ

)⌈xt(c)⌉−1 ∫ t−st(b)

0

e−θx

Wθ(x)
(1− ρ(x))⌈xt(c)⌉−1(θdx+ δt−st(b)(dx))

∼ e−αst(b) tθ/(θ−α) ϕ(θ)c−1+{−xt(c)}

ψ′(α)

∫ t−st(b)

0

e−θx

Wθ(x)
(1− ρ(x))⌈xt(c)⌉−1(θdx+ δt−st(b)(dx)).

It is easy to deduce from Lemma 3.2 (ii) that the contribution of the Dirac mass and of the integral

on the interval [0, (1 − ε) log t/(θ − α)] for any fixed ε ∈ (0, 1) are both o(e−αst(b)). Using the fact

that Wθ(x) → θ/ψ(θ) when x → +∞ and the change of variable y = B(⌈xt(c)⌉ − 1)e−(θ−α)x, the
contribution of the integral on the interval [(1 − ε) log t/(θ − α), b log t] is asymptotically equivalent

to

ψ(θ)e−αst(b)ϕ(θ)c−1+{−xt(c)}

ψ′(α)(θ − α)

(

t

B(⌈xt(c)⌉ − 1)

)θ/(θ−α)

∫ B(⌈xt(c)⌉−1) t−(1−ε)

B(⌈xt(c)⌉−1) t−b(θ−α)
yα/(θ−α) exp



(⌈xt(c)⌉ − 1) log



1− ρ





log B(⌈xt(c)⌉−1)
y

θ − α











 dy.
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As in the proof of Proposition 3.5, Lebesgue’s dominated convergence theorem then yields

G(t− st(b), xt(c)) ∼ A(θ)ϕ(θ)c−1+{−xt(c)}P(H > t | H > t− st(b)) (4.7)

as t→ +∞, where we used the fact that xt(c)t
−b(θ−α) → 0 when t→ +∞ since b > 1/(θ − α).

Now, it only remains to check that

G(t− st(b), xt(c)) ∼ F (t− st(b), xt(c)) (4.8)

when t→ +∞. Since for all t, x > 0

0 ≤ G(t, x) − F (t, x) = Et(Lt(x))− Pt(Lt(x) ≥ 1) ≤ Et[Lt(x)(Lt(x)− 1)],

it is sufficient to prove that

Et

[

Lt−st(b)(xt(c))
(

Lt−st(b)(xt(c))− 1
)]

= o (G(t− st(b), xt(c))) = o(e−αst(b)). (4.9)

Taking s1 = 0 and s2 = t− st(b) in Lemma 4.1 (4.1) yields

Et

[

Lt−st(b)(xt(c))
(

Lt−st(b)(xt(c))− 1
)]

≤ 2EtKt−st(b)(xt(c))(1 + EtNt−st(b))×

×
[

b(1 + θ(t− st(b)))

α

(

1− 1

Wθ(t− st(b))

)⌈xt(c)⌉−1

+ 4EtNt−st(b)EtKt−st(b)(xt(c)/2)

]

,

where we used the notation Ks(x) := Ks(x, 0, s). Using the inequality EtKs(x) ≤ EtLs(x) = G(s, x)

and the estimates

EtNt−st(b) =
1

P(H > t− st(b))
=W (t− st(b)) ∼

eα(t−st(b))

ψ′(α)
, (4.10)

(

1− 1

Wθ(t− st(b))

)⌈xt(c)⌉−1

≤ ϕ(θ)⌈xt(c)⌉−1 ≤ Ce−αttθ/(θ−α),

and

G(t− st(b), xt(c)/2) ∼ 2θ/(θ−α) A(θ)ϕ(θ)c/2−1+{−xt(c)/2} e−α(st(b)−t/2) t−θ/2(θ−α),

which can be proved following the same computation as above, we finally obtain for t large enough

Et

[

Lt−st(b)(xt(c))
(

Lt−st(b)(xt(c))− 1
)]

≤ C G(t− st(b), xt(c))
(

eα(t−st(b)) log t e−αttθ/(θ−α) + e2α(t−st(b)) e−α(st(b)−t/2) t−θ/2(θ−α)
)

,

which entails (4.9) and concludes the proof of Theorem 4.2. ✷
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4.3 Joint convergence in law of the sizes of the most abundant families

The general idea of the previous argument can be summarized as follows: we construct a random

number Nt,st of i.i.d. random variables X1, . . . ,XNt,st
—the sizes of the most frequent haplotype in

each sub-tree—such thatX
(1)
t = max{X1, . . . ,XNt,st

} with high probability. Our previous result then

corresponds to a classical argument of extreme value theory, which is known to extend easily to com-

pute the extremes statistics and the joint law of the largest random variables among X1, . . . ,XNt,st
.

The object of this subsection is to prove that this argument is valid in our situation.

Theorem 4.3 Assume α < θ and recall the definition of xt(c) in (4.4). For all n ∈ N, k1, . . . , kn ∈
Z+ and c1, . . . , cn such that ci ≥ ci+1 + 1 for all i ∈ {1, . . . , n− 1}, we have, as t→ +∞,

Pt

[

Lt(xt(c1)) = k1, Lt(xt(c2))− Lt(xt(c1)) = k2, . . . , Lt(xt(cn))− Lt(xt(cn−1)) = kn

]

∼
(

k1 + . . . + kn
k1, . . . , kn

)

τt(c1)
k1(τt(c2)− τt(c1))

k2 . . . (τt(cn)− τt(cn−1))
kn

(1 + τt(cn))k1+...+kn+1
, (4.11)

with

τt(c) := A(θ)ϕ(θ)c−1+{−xt(c)}

for all c ∈ R, where the constant A(θ) is defined in (3.8).

Proof. Let us denote by A(t; c1, . . . , cn; k1, . . . , kn) the event in the probability in the l.h.s. of (4.11).

Using the notation of the proof of Theorem 4.2, for all b > 1/(θ−α), we defineB(t, b; c1, . . . , cn; k1, . . . , kn)

the event that among the sub-trees T1, . . . ,TNt,st(b) , there are exactly ki haplotypes carried by a num-

ber of living individuals at time t belonging to [xt(ci+1), xt(ci)) for all 0 ≤ i ≤ n − 1, with the

convention c0 = +∞. Then

∣

∣

∣
Pt(A(t; c1, . . . , cn; k1, . . . , kn))− Pt(B(t, b; c1, . . . , cn; k1, . . . , kn)

∣

∣

∣

≤ Pt[Mt(xt(cn), t− st(b)) ≥ 1] = F (t, xt(cn), t− st(b)) = o(1).

Now, for all fixed t ≥ 0, using the notation X1, . . . ,XNt,st
introduced above, we define for all a ∈ R

St(a) = #{i ≤ Nt,st : Xi ≥ a}.

Defining

C(t, b; c1, . . . , cn; k1, . . . , kn) :=
{

St(xt(c1)) = k1, St(xt(c2))− St(xt(c1)) = k2, . . . , St(xt(cn))− St(xt(cn−1)) = kn

}

,
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we have

∣

∣

∣
Pt(B(t, b; c1, . . . , cn; k1, . . . , kn))− Pt(C(t, b; c1, . . . , cn; k1, . . . , kn))

∣

∣

∣

≤ Pt

[

∃i ≤ Nt,st(b) : Ti contains at least 2 haplotypes carried by more than xt(cn) individuals
]

≤
∑

k≥1

P(H > t | H > t− st(b))P(H ≤ t | H > t− st(b))
k−1 k Et

[

Lt−st(b)(xt(cn))(Lt−st(b)(xt(cn))− 1)
]

=
Et

[

Lt−st(b)(xt(cn))(Lt−st(b)(xt(cn))− 1)
]

P(H > t | H > t− st(b))
,

where we used the fact that Nt,st(b) has geometric distribution with parameter P(H > t | H >

t− st(b)). Equations (4.6) and (4.9) then yield

∣

∣

∣Pt(A(t; c1, . . . , cn; k1, . . . , kn))− Pt(C(t, b; c1, . . . , cn; k1, . . . , kn)
∣

∣

∣ = o(1).

Next, Pt(C(t, b; c1, . . . , cn; k1, . . . , kn)) can be computed using standard extreme value techniques:

conditioning on Nt,st(b) and considering all the possible ways to realize this event, we have

Pt(C(t, b; c1, . . . , cn; k1, . . . , kn))

=
∑

k≥k1+...+kn
P(H > t | H > t− st(b))P(H ≤ t | H > t− st(b))

k−1

(

k

k1, . . . , kn

)

×

Pt

[

X1, . . . ,Xk1 ≥ xt(c1) > Xk1+1, . . . ,Xk1+k2 ≥ xt(c2) > . . . ≥ xt(cn) > Xk1+...+kn+1, . . . ,Xk

]

=
∑

k≥k1+...+kn
P(H > t | H > t− st(b))P(H ≤ t | H > t− st(b))

k−1

(

k1 + . . . + kn
k1, . . . , kn

)(

k

k1 + . . .+ kn

)

×

F (t− st(b), xt(c1))
k1 [F (t− st(b), xt(c2))− F (t− st(b), xt(c1))]

k2 × . . .

. . .× [F (t− st(b), xt(cn))− F (t− st(b), xt(cn−1))]
kn [1− F (t− st(b), xt(cn))]

k−k1−...−kn .

The equation
∑

k≥m

(

k

m

)

xk−m =
1

(1− x)m+1
, ∀x ∈ (−1, 1), m ∈ N

yields

Pt(C(t, b; c1, . . . , cn; k1, . . . , kn))

=
P(H > t | H > t− st(b))P(H ≤ t | H > t− st(b))

k1+...+kn−1

[P(H > t | H > t− st(b)) + F (t− st(b), xt(cn))P(H ≤ t | H > t− st(b))]
k1+...+kn+1

×
(

k1 + . . .+ kn
k1, . . . , kn

)

F (t− st(b), xt(c1))
k1 [F (t− st(b), xt(c2))− F (t− st(b), xt(c1))]

k2 × . . .

. . . × [F (t− st(b), xt(cn))− F (t− st(b), xt(cn−1))]
kn ,

and Theorem 4.3 then follows from (4.6), (4.7) and (4.8). ✷
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In order to state our next result, we define the number tn by the equation xtn(0) = n. In view

of (4.4), this equation has a unique solution tn if n is large enough, say larger than n0. In addition,

tn ∼ | logϕ(θ)| (θ − α)

θ
n,

and hence tn → +∞ as n→ +∞.

We also recall the notation M(R) for the set of nonnegative σ-finite measures on R, finite on R+,

and the definition of the semi-vague topology as the one induced by all maps of the form

ν ∈ M(R) 7→
∫

R

u(x)ν(dx),

for all continuous bounded function u on R such that there exists x0 ∈ R such that u(x) = 0 for

all x ≤ x0. Note that this topology is stronger than the usual vague topology, but weaker than the

usual weak topology.

Corollary 4.4 Assume α < θ. Then, the sequence of point measures (Zn)n≥n0 on Z, defined by

Zn :=
∑

k≥1

δ
X

(k)
tn

−n,

converges as n → +∞ in P
⋆-distribution on the set M(R) equipped with the semi-vague topology to

a mixed Poisson point measure on Z with intensity measure

EA(θ)ψ(θ)
θ

∑

c∈Z
ϕ(θ)c−1 δc,

where the mixture coefficient E has exponential distribution with parameter 1.

The proof of such results is quite standard (cf. [11] in the general context of point measures

and [14] more specifically on extreme values). However, we shall give a proof for sake of completeness

and because of the specificity of the semi-vague topology.

Note that one can also easily obtain the convergence, in the sense of finite-dimensional distribu-

tions, of any finite sequence of translated extreme family sizes towards the corresponding sequence

of extreme points of the limit point measure in the previous result. We shall not prove this, but

instead we refer to [14] for the proof of similar standard results.

Proof. Let us first prove the convergence in distribution when M(R) is equipped with the vague

topology. This amounts to prove the joint convergence in distribution of the random variables

Ltn(n+i)−Ltn(n+i+1)) = Ltn(xtn(i))−Ltn(xtn(i+1)), giving the number of haplotypes represented

by exactly n+ i individuals at time tn, for b ≤ i ≤ a for all a < b in Z. Fix b < a in Z and kb, . . . , ka
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in Z+. On the one hand, we claim that

lim
n→+∞

Ptn(Ltn(n+ i)− Ltn(n+ i+ 1) = ki, ∀b ≤ i ≤ a)

= lim
n→+∞

∑

k≥0

Ptn(Ltn(xtn(i))− Ltn(xtn(i+ 1)) = ki, ∀b ≤ i ≤ a and Ltn(xtn(a+ 1)) = k)

=
∑

k≥0

(

ka + . . . + kb + k

ka, . . . , kb, k

)

τtn(a+ 1)k(τtn(a)− τtn(a+ 1))ka . . . (τtn(b)− τtn(b+ 1))kb

(1 + τt(b))k+kb+...+ka+1

=

(

ka + . . .+ kb
ka, . . . , kb

)

[A(1− ϕ)]ka+...+kb ϕ(a−1)ka+...+(b−1)kb

[1 +A(ϕb−1 − ϕa)]ka+...+kb+1
,

where we used the fact that, for all x ∈ Z and n ≥ n0,

τtn(x) = Aϕx−1 with A = A(θ) and ϕ = ϕ(θ) := 1− ψ(θ)

θ
.

This is an immediate consequence of Theorem 4.3, provided we can justify the exchange of the sum

over k and the limit n → +∞, i.e. that we can control the remainder of the series uniformly over

n ≥ n0. The following inequality, making use of Proposition 3.5, solves this question: for all N ∈ N,

Ptn(Ltn(xtn(i))− Ltn(xtn(i+ 1)) = ki, ∀b ≤ i ≤ a and Ltn(xtn(a+ 1)) ≥ N)

≤ Ptn(Ltn(xtn(a+ 1)) ≥ N) ≤ EtnLtn(xtn(a+ 1))

N
≤ 1

N
sup
t≥0

EtLt(xt(a+ 1)) ≤ C

N

for some constant C > 0.

On the other hand, assume that E is an exponential random variable with parameter 1, and

(Px)x∈Z is a sequence of r.v. with Px distributed as a mixed Poisson with parameter EA(1−ϕ)ϕx−1

and such that the r.v. (Px)x∈Z are independent conditionally on E . Then,

P(Pi = ki, ∀b ≤ i ≤ a) =

∫ ∞

0
dx e−x e−A(1−ϕ)x

∑a
m=b ϕ

m−1 (xA(1 − ϕ))ka+...+kb ϕ(a−1)ka+...+(b−1)kb

ka! . . . kb!

=
[A(1 − ϕ)]ka+...+kb ϕ(a−1)ka+...+(b−1)kb

ka! . . . kb! [1 +A(1− ϕ)
∑a

m=b ϕ
m−1]ka+...+kb+1

∫ ∞

0
yka+...+kbe−ydy

=

(

ka + . . . + kb
ka, . . . , kb

)

[A(1 − ϕ)]ka+...+kb ϕ(a−1)ka+...+(b−1)kb

[1 +A(ϕb−1 − ϕa)]ka+...+kb+1
,

where we used the change of variable y = x(1+A(1−ϕ)∑a
m=b ϕ

m−1). Observing that Ptn converges

to P
⋆ for the total variation norm, this ends the proof of Corollary 4.4 when M(R) is equipped with

the vague topology.

To complete the proof of Corollary 4.4, since all the point measures Zn have support in Z, we

need to check that, for any continuous bounded function f on R and any sequence (u(k))k∈Z such

that u(k) = 0 for all k ≤ k0 for some k0 ∈ Z,

lim
n→+∞

Etn f

(
∫

Z

u(x)Zn(dx)

)

= E f

(

∑

k>k0

u(k)Pk

)

.
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Note first that the sum in the r.h.s. is almost surely finite since, conditional on E , this is a sum of

independent r.v. with only finitely many of them being non-zero by Borel-Cantelli’s lemma.

Next, fix ε > 0 and let a and T be large enough so that

τtn(a)

1 + τtn(a)
=

Aϕa−1

1 +Aϕa−1
≤ Aϕa−1 ≤ ε,

and, by Theorem 4.2,

sup
t≥T

Pt

(

X
(1)
t ≥ xt(a)

)

≤ 2ε.

Then, for all n such that tn ≥ T ,
∣

∣

∣

∣

∣

Etn f

(∫

Z

u(x)Zn(dx)

)

− Etn f

(

a
∑

k=k0+1

u(k)
(

Ltn(xtn(k)) − Ltn(xtn(k + 1))
)

)∣

∣

∣

∣

∣

≤ 4ε‖f‖∞.

The first step of the proof then yields
∣

∣

∣

∣

∣

Etn f

(∫

Z

u(x)Zn(dx)

)

− E f

(

a
∑

k=k0+1

u(k)Pk
)

)∣

∣

∣

∣

∣

≤ (4‖f‖∞ + 1)ε

for all n large enough. Since

P(∃k ≥ a : Pk ≥ 1) ≤
∑

k≥a
P(Pk ≥ 1) =

∑

k≥a
(1− e−Aϕ

k−1
) ≤ A

∑

k≥a
ϕk−1 ≤ ε

1− ϕ
,

we finally obtain
∣

∣

∣

∣

∣

Etn f

(∫

Z

u(x)Zn(dx)

)

− E f

(

∑

k>k0

u(k)Pk
)

)∣

∣

∣

∣

∣

≤ (4‖f‖∞ + 1 + (1− ϕ)−1)ε,

which ends the proof of Corollary 4.4. ✷

4.4 Convergence in distribution of the ages of oldest families

The previous method can easily be extended to prove the convergence of the ages of the oldest

families. Let us recall the notation A
(1)
t ≥ A

(2)
t ≥ . . . ≥ A

(k)
t ≥ . . . for the ordered sequence of ages

of all alive families at time t (with the convention that A
(k)
t = 0 when k is larger than the number

of alive families at time t).

Theorem 4.5 Assume α < θ and define for all a ∈ R

xt(a) =
αt

θ
+ a.

For all n ∈ N, k1, . . . , kn ∈ Z+ and a1 > a2 > . . . > an, we have

lim
t→+∞

Pt

[

Ot(xt(a1)) = k1, Ot(xt(a2))−Ot(xt(a1)) = k2, . . . , Ot(xt(an))−Ot(xt(an−1)) = kn

]

=
θψ′(α)
ψ(θ)

(

k1 + . . .+ kn
k1, . . . , kn

)

e−θk1a1(e−θa2 − e−θa1)k2 . . . (e−θan − e−θan−1)kn
(

θψ′(α)
ψ(θ) + e−θan

)k1+...+kn+1
. (4.12)
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In addition, the family of M(R)-valued random variables (Zt, t ≥ 0), defined for all t ≥ 0 by

Zt :=
∑

k≥1

δ
A

(k)
t −αt

θ

,

converges as t → +∞ in P
⋆-distribution in M(R) equipped with the semi-vague topology to a mixed

Poisson point measure on R with intensity measure

E ψ(θ)
ψ′(α)

e−θa da, (4.13)

where the mixture coefficient E has exponential distribution with parameter 1.

The proof follows closely the lines of those of Theorems 4.2 and 4.3 and Corollary 4.4. As a first

step, we prove the following lemma.

Lemma 4.6 With the same notation as in Theorem 4.5, we have for all a ∈ R

lim
t→+∞

Pt

(

A
(1)
t ≤ αt

θ
+ a

)

=
1

1 + ψ(θ)
θψ′(α) e

−θa
.

Proof. The proof of this lemma is similar to the one of Theorem 4.2. Defining for all t, x ≥ 0

F (t, x) = Pt(A
(1)
t ≥ x) = Pt[Ot(x) ≥ 1] and G(t, x) = Et[Ot(x)],

we have for all x < s < t

0 ≤ F (t, x)− Pt

(

∃i ∈ {1, . . . , Nt,s} : Ti contains at time t a haplotype older than x
)

= F (t, x)− 1

1 + P(H > t | H > t− s)
(

1
F (t−s,x) − 1

) ≤ F (t, t− s) ≤ G(t, t− s). (4.14)

Defining

st(b) = bt with b ∈ (0, 1 − α/θ),

following the proof of Proposition 3.4, one easily checks that G(t, t− st(b)) = o(1) and

G(t− st(b), xt(a)) ∼
ψ(θ)

θψ′(α)
e−θa−αst(b), (4.15)

where we stick to the notation xt(a) =
αt
θ + a. Then Lemma 4.6 follows from (4.6) and the fact that

G(t− st(b), xt(a)) ∼ F (t− st(b), xt(a))

as t→ ∞. To prove this last equation, it is sufficient to prove that

Et[Ot−st(b)(xt(a))(Ot−st(b)(xt(a))− 1)] = o(e−αst(b)), (4.16)

as in (4.9).

31



Now, we observe that

P(H > s | H ≤ t) =

1
W (s) − 1

W (t)

1− 1
W (t)

∼ 1

W (s)
∼ ψ′(α)e−αs when s, t→ +∞ with t− s→ +∞ (4.17)

and, by Lemma 3.2 (ii), for a constant C that may change from line to line,

e−θxt(a) +
∫ xt(a)

0
θe−θz

Wθ(t− st(b)) −Wθ(xt(a)− z)

Wθ(t− st(b))
dz

= e−θxt(a) +
∫ xt(a)

0
θe−θzWθ(xt(a)− z)ϕ(θ)[ρ(xt(a)− z)− ρ(t− st(b))]dz

≤ e−θxt(a) + C

∫ xt(a)

0
e−θz e−(θ−α)(xt(a)−z)dz

≤ Ce−(θ−α)xt(a).

Combining these two facts with (4.10) and Lemma 4.1 (4.1) in which we take x = 1, s1 = xt(a) and

s2 = t− st(b), we have

Et

[

Ot−st(b)(xt(a))
(

Ot−st(b)(xt(a)) − 1
)]

≤ CEtKt−st(b)(1, xt(a), t−st(b))
(

1 + e−αxt(a) eα(t−st(b))
)

×

×
[

(1 + t)e−(θ−α)xt(a) + e−αxt(a) eα(t−st(b)) EtKt−st(b)(1, xt(a), t− st(b))
]

. (4.18)

Here, in contrast with the proof of Theorem 4.2, the bound Ks(1, x, s) ≤ Os(x) is not sufficient to

obtain the desired result. Instead, we use Lemma 4.1 (4.2):

EtKt−st(b)(1, xt(a), t− st(b))

≤ b

α

∫ t−st(b)

xt(a)

(

e−θy +
∫ y

0
θe−θzWθ(y − z)ϕ(θ)[ρ(y − z)− ρ(y)]dz

)

(θdy + δt−st(b)(dy)).

Hence, by Lemma 3.2 (ii) again,

EtKt−st(b)(1, xt(a), t− st(b)) ≤ C

∫ t−st(b)

xt(a)

(

e−θy +
∫ y

0
e−(θ−α)(y−z)e−θzdz

)

(θdy + δt−st(b)(dy))

≤ C

∫ t−st(b)

xt(a)
e−(θ−α)y(θdy + δt−st(b)(dy))

≤ Ce−(θ−α)xt(a).

Together with (4.18), this yields

Et

[

Ot−st(b)(xt(a))
(

Ot−st(b)(xt(a))− 1
)]

≤ C(a)e−αst(b)
(

te−(1−α/θ)αt + e−αbt
)

= o(e−αst(b)),

where the constant C(a) depends on a but not on t. This concludes the proof of Lemma 4.6. ✷
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Proof of Theorem 4.5 Equation (4.12) can be deduced from Lemma 4.6 exactly as Theorem 4.3

was deduced from Theorem 4.2. We leave the details to the reader.

In view of (4.12), the computation in the proof of Corollary 4.4 immediately proves (replacing

τtn(a) with
ψ(θ)
θψ′(α) e

−αa) that, for all a1 > a2 > . . . > an, the random vector

(

Ot(xt(a2))−Ot(xt(a1)), . . . , Ot(xt(an))−Ot(xt(an−1))
)

converges in distribution as t→ +∞ to a vector whose coordinates are independent conditionally on

E and have mixed Poisson distributions with mixture coefficient E and parameters

E ψ(θ)

θψ′(α)
(e−θa2 − e−θa1), . . . , E ψ(θ)

θψ′(α)
(e−θan − e−θan−1).

It is then standard to deduce the convergence in distribution of Zt to P on M(R) equipped with

the vague topology (cf. e.g. [11, Thm. 4.7]). The semi-vague topology can then be handled similarly

as in the proof of Corollary 4.4. Again, we leave the details to the reader. ✷

5 Large or old families: convergence in distribution for critical

clonal families

The method that we used in the previous section can also be applied to the case where α = θ. All

the proofs are similar, and we will only give details at places where the proofs differ. We use the

same notation as in the previous section.

5.1 Frequent haplotypes

Theorem 5.1 Assume α = θ. For all c ∈ R, let

xt(c) =
α2

4ψ′(α)

(

t− log t

2α
+ c

)2

.

For all n ∈ N, k1, . . . , kn ∈ Z+ and c1 > c2 > . . . > cn, we have

lim
t→+∞

Pt

[

Lt(xt(c1)) = k1, Lt(xt(c2))− Lt(xt(c1)) = k2, . . . , Lt(xt(cn))− Lt(xt(cn−1)) = kn

]

=

√

α

2π
e−B+ψ′(α)

2

(

k1 + . . .+ kn
k1, . . . , kn

)

e−αk1c1(e−αc2 − e−αc1)k2 . . . (e−αcn − e−αcn−1)kn
(

√

α
2π e

−B+ψ′(α)
2 + e−αcn

)k1+...+kn+1
,

where the constant B is defined in (3.13). In addition, the family of M(R)-valued random variables

(Zt, t ≥ 0), defined for all t ≥ 0 by

Zt :=
∑

k≥1

δ√
X

(k)
t − α

2
√
ψ′(α)

(t− log t
2α )

,
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converges as t → +∞ in P
⋆-distribution in M(R) equipped with the semi-vague topology to a mixed

Poisson point measure on R with intensity measure

E
√
2πα eB−ψ′(α)

2 e−αc dc, (5.1)

where the mixture coefficient E has exponential distribution with parameter 1.

The proof of this result is exactly the same as for Theorems 4.3 and 4.5, provided we can prove the

following lemma.

Lemma 5.2 With the same notation as in Theorem 5.1, for all c ∈ R,

lim
t→+∞

Pt(X
(1)
t < xt(c)) =

1

1 +
√

2π
α eB−ψ′(α)

2 e−αc
.

Proof. The proof of this result is similar to the one of Theorem 4.2. Fix ε > 0. We first observe

that Proposition 3.7 implies that

Pt

(

Mt

(

xt(c), 0,
1− ε

2
t
)

≥ 1

)

≤ EtMt

(

xt(c), 0,
1− ε

2
t
)

= o(1),

and thus

Pt(X
(1)
t ≥ xt(c)) = Pt

(

Mt

(

xt(c),
1− ε

2
t
)

≥ 1

)

+ o(1),

so that it is enough for us to study Pt(Mt(xt(c), s
(1)
t ) ≥ 1), where we put

s
(1)
t :=

1− ε

2
t.

Defining

F (t, x) = Pt[Mt(x, s
(1)
t ) ≥ 1], G(t, x) = Et[Mt(x, s

(1)
t )]

and

F (t, x, s) = Pt[Mt(x, s) ≥ 1],

we can make the same computation as in the proof of Theorem 4.2 to show that (4.5) holds true if

t− s > s
(1)
t . So let us define

st(b) = bt, where b ∈ (0, 1/2).

By Proposition 3.7, we immediately have F (t, xt(c), t − st(b)) = o(1). We observe that

G(t− st(b), xt(c)) =W (t− st(b))

∫ t−st(b)

s
(1)
t

e−αx

Wα(x)
e(⌈xt(c)⌉−1) log(1−1/Wα(x))(αdx+ δt−st(b)(dx)).

Using the inequality log(1−x) ≤ −x, Lemma 3.2 (iii) entails that the contribution of the Dirac mass

is

O

(

1

t
e−xt(c)/Wα(t−st(b))

)

.
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Fix η ∈ (0, 1). Using the expression of xt(c) and the fact that 1/Wα(t) ≥ (1 − η)ψ′(α)/(αt) for t

large enough, this last quantity is

O

(

e
−α(1−η)

4(1−b)
t
t
−
(

1− 1−η
4(1−b)

))

= o
(

e−αst(b)
)

,

where the last equality is valid if one chooses η < (1− 2b)2.

Hence

G(t− st(b), xt(c)) =W (t− st(b))

∫ t−st(b)

s
(1)
t

e−αx

Wα(x)
e(⌈xt(c)⌉−1) log(1−1/Wα(x))αdx+ o

(

e−αst(b)
)

.

Now, the integral in the r.h.s. is exactly the same as in (3.14), except for the interval of integration.

We actually proved in the proof of Proposition 3.7 that, since (1−b) > 1/2, this integral is equivalent

to
∫ 1+ε

2
t

1−ε
2
t

e−αx

Wα(x)
e(⌈xt(c)⌉−1) log(1−1/Wα(x))αdx,

which is itself equivalent to

1

W (t)

√

2π

α
eB−ψ′(α)

2 e−αc.

Therefore,

G(t− st(b), xt(c)) ∼ e−αst(b)
√

2π

α
eB−ψ′(α)

2 e−αc, (5.2)

and, recalling that (4.5) holds (with our current notation), the proof of Lemma 5.2 will be completed

if we can prove that

G(t− st(b), xt(c)) ∼ F (t− st(b), xt(c))

as t→ +∞. Again, this is implied by the estimate

Et[Mt−st(b)(xt(c), s
(1)
t )(Mt−st(b)(xt(c), s

(1)
t )− 1)] = o(e−αst(b)), (5.3)

which we now prove.

Applying Lemma 4.1 (4.1) with x = xt(c), s1 = s
(1)
t and s2 = t− st(b), and combining the result

with (4.17) and the fact that, for all s ≤ t,

e−αs +
∫ s

0
αe−αz

Wα(t)−Wα(s− z)

Wα(t)
dz ≤ e−αs +

∫ s

0
αe−αz = 1,

we obtain

Et[Mt−st(b)(xt(c), s
(1)
t )(Mt−st(b)(xt(c), s

(1)
t )− 1)]

≤ C EtKt−st(b)(xt(c), s
(1)
t , t− st(b))

(

1 + e−αs
(1)
t eα(t−st(b))

)

×
[

(1 + t)

(

1− 1

Wα(t− st(b))

)⌈xt(c)⌉−1

+ e−αs
(1)
t eα(t−st(b)) EtKt−st(b)

(

xt(c)

2
, s

(1)
t , t− st(b)

)

]

. (5.4)
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Fix again η ∈ (0, 1). Using the inequality log(1 − x) ≤ −x and Lemma 3.2 (iii), we have for t large

enough,

(

1− 1

Wα(t− st(b))

)⌈xt(c)⌉−1

≤ C exp

(

− α2

4ψ′(α)

(

t2 − t log t

α
+ 2ct

)

(1− η)ψ′(α)
α(t− st(b))

)

≤ C exp

(

−α(1− η)

4(1− b)
t

)

t1/2,

where we used the inequality 1/(1 − b) < 2 to upper bound the exponent of t in the last inequality.

Using Lemma 4.1 (4.3), this last inequality yields

EtKt−st(b)(xt(c), s
(1)
t , t− st(b)) ≤

b

α

∫ t−st(b)

s
(1)
t

(

1− 1

Wα(y)

)⌈xt(c)⌉−1

(αdy + δ0(dy))

≤ b

α

(

1− 1

Wα(t− st(b))

)⌈xt(c)⌉−1 ∫ t−st(b)

s
(1)
t

(αdy + δ0(dy))

≤ C exp

(

−α(1− η)

4(1− b)
t

)

t3/2.

Similarly,

EtKt−st(b)(xt(c)/2, s
(1)
t , t− st(b)) ≤

b

α

(

1− 1

Wα(t− st(b))

)⌈xt(c)/2⌉−1 ∫ t−st(b)

s
(1)
t

(αdy + δ0(dy))

≤ C exp

(

−α(1− η)

8(1− b)
t

)

t5/4.

Combining the previous inequalities with (5.4), we finally obtain

Et[Mt−st(b)(xt(c), s
(1)
t )(Mt−st(b)(xt(c), s

(1)
t )− 1)]

≤ C t3 e−αst(b) exp

(

−αt
(

1− ε

2
+

1− η

4(1 − b)
− 1

))

×
[

exp

(

−αt 1− η

4(1− b)

)

+ exp

(

−αt
(

b+
1− ε

2
+

1− η

8(1− b)
− 1

))]

.

Remember now that ε and η are free parameters in (0, 1). We may assume that they are linked to b

by the equation
1− η

4(1− b)
=

1− ε

2
, or b =

1

2
− ε− η

2(1− ε)

which is always possible since b < 1/2. This yields

Et[Mt−st(b)(xt(c), s
(1)
t )(Mt−st(b)(xt(c), s

(1)
t )− 1)]

≤ C t3 e−αst(b)
[

exp

(

−αt 1− 3ε

2

)

+ exp

(

−αt
(

1

4
− ε− η

2(1 − ε)
− 7ε

4

))]

.

Taking b close enough to 1/2 allows to take both ε and η as close to 0 as desired. Therefore, (5.3) is

proved and the proof of Lemma 5.2 is completed. ✷
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5.2 Old haplotypes

Theorem 5.3 Assume α = θ and define for all a ∈ R

xt(a) = t− log t

α
+ a.

For all n ∈ N, k1, . . . , kn ∈ Z+ and a1 > a2 > . . . > an, we have

lim
t→+∞

Pt

[

Ot(xt(a1)) = k1, Ot(xt(a2))−Ot(xt(a1)) = k2, . . . , Ot(xt(an))−Ot(xt(an−1)) = kn

]

= α

(

k1 + . . . + kn
k1, . . . , kn

)

e−αk1a1(e−αa2 − e−αa1)k2 . . . (e−αan − e−αan−1)kn

(α+ e−αan)k1+...+kn+1
. (5.5)

In addition, the family of M(R)-valued random variables (Zt, t ≥ 0), defined for all t ≥ 0 by

Zt :=
∑

k≥1

δ
A

(k)
t −t+ log t

α

,

converges as t → +∞ in P
⋆-distribution in M(R) equipped with the semi-vague topology to a mixed

Poisson point measure on R with intensity measure

E e−θa da, (5.6)

where the mixture coefficient E has exponential distribution with parameter 1.

Again, this result follows from the next lemma exactly as Theorem 4.5 followed from Lemma 4.6.

Lemma 5.4 For all a ∈ R

lim
t→+∞

Pt

(

A
(1)
t ≤ t− log t

α
+ a

)

=
1

1 + 1
α e

−αa .

Proof. We define F (t, x) and G(t, x) exactly as in the proof of Lemma 4.6 and we put

st(b) =
b

α
log t with b ∈ (0, 1).

With this new notation, (4.14) holds true and Proposition 3.6 implies that G(t, t− st(b)) = o(1). In

addition, one checks exactly as in the proof of Proposition 3.6 that

G(t− st(b), xt(a)) ∼
e−αa

α
e−αst(b)

when t → +∞. The proof will then be completed if we can prove (4.16). We first observe that

W ′
α(x) = e−αxW ′(x) is bounded thanks to (2.3). Therefore, by Lemma 3.2 (iii),

e−αxt(a) +
∫ xt(a)

0
αe−αz

Wα(t− st(b))−Wα(xt(a)− z)

Wα(t− st(b))
dz

≤ C

(

te−αt +
∫ xt(a)

0
e−αz

t− st(b)− xt(a) + z

t− st(b)
dz

)

≤ C
log t

t
.
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Combining this inequality with (4.17) and Lemma 4.1 (4.1) in which we take x = 1, s1 = xt(a) and

s2 = t− st(b) yields

Et

[

Ot−st(b)(xt(a))
(

Ot−st(b)(xt(a)) − 1
)]

≤ CEtKt−st(b)(1, xt(a), t− st(b))
(

1 + eα(t−st(b)−xt(a))
)

×
[

(1 + log t)
log t

t
+ eα(t−st(b)−xt(a))EtKt−st(b)(1, xt(a), t− st(b))

]

. (5.7)

By Lemma 4.1 (4.2), we have

EtKt−st(b)(1, xt(a), t−s(b)) ≤
b

α

∫ t−st(b)

xt(a)
(αdy+δt−st(b)(dy))

(

e−αy +
∫ y

0
αe−αz

Wα(y)−Wα(y − z)

Wα(y)
dz

)

.

Using again the fact that W ′
α(x) is bounded and that 1/Wα(y) ≤ C/y for all y large enough, we

deduce that

EtKt−st(b)(1, xt(a), t− st(b)) ≤
∫ t−st(b)

xt(a)
(αdy + δt−st(b)(dy))

(

e−αy +
C

y

∫ y

0
ze−αzdz

)

≤ C

∫ t−st(b)

xt(a)

1

y
(αdy + δt−st(b)(dy))

≤ C
log t

t
.

Therefore, it follows from (5.7) that

Et

[

Ot−st(b)(xt(a))
(

Ot−st(b)(xt(a))− 1
)]

≤ C e−αst(b) log t

(

(log t)2

t
+

log t

tb

)

= o(e−αst(b)).

This completes the proof of Lemma 5.4. ✷

A Proof of Lemma 4.1

Recall the notation introduced in Section 4.1.

As seen in the proof of Theorem 4.2, this result (and actually all the results of Sections 4 and 5)

are consequences of estimates of the form

Pt(Mt(xt, st) ≥ 1) ∼ EtMt(xt, st)

as t→ +∞, for convenient choices of xt and st. We chose to prove this result using the inequality

0 ≤ EtMt(xt, st)− Pt(Mt(xt, st) ≥ 1) ≤ Et[Mt(xt, st)(Mt(xt, st)− 1)],

i.e. proving that

Et[Mt(xt, st)(Mt(xt, st)− 1)] = o (EtMt(xt, st)) .

Such results are obtained using Lemma 4.1, which is an immediate consequence of the following two

lemmas.
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We need to define the random variable K ′
t(x, s1, s2) by slightly modifying the definition of

Kt(x, s1, s2): introducing an independent random variable H ′ distributed as Hi conditional on

{Hi < t}, K ′
t(x, s1, s2) is the number of haplotypes carried by more than x individuals alive at

time t, whose last mutation occurred on branch 0, and is older than s1 and younger than s2 ∧H ′.

As a first step, we compute an upper bound of Et[Mt(x, s1, s2)(Mt(x, s1, s2) − 1)] expressed in

terms of Kt and K
′
t.

Lemma A.1 For all t > 0, x ≥ 1, 0 ≤ s1 ≤ s2 ≤ +∞, we have

Et[Mt(x, s1, s2)(Mt(x, s1, s2)− 1)] ≤ Et[Kt(x, s1, s2)(Kt(x, s1, s2)− 1)]

+ (EtNt)Et[K
′
t(x, s1, s2)(K

′
t(x, s1, s2)− 1)]

+ 8(EtNt)(EtKt(⌈x/2⌉, s1, s2))(EtK ′
t(x, s1, s2))

+ 8(EtNt)
2(EtK

′
t(⌈x/2⌉, s1, s2))(EtK ′

t(x, s1, s2)).

Proof. We let Mi be the number of mutations on branch i (this branch has length Hi), considering

only the mutations younger than t when i = 0. For all j ≤ Mi, we define ℓij the duration elapsed

since the j-th oldest mutation on branch i, with ℓi(Mi+1) = 0, ℓi0 = Hi and ℓ00 = t. We also define

M ′
0 as the smallest k ≥ 1 such that ℓ0k ≤ H ′ (and M ′

0 = 0 there is no such k ≥ 1).

For 0 ≤ j ≤Mi, denote by R
ij
t the number of individuals alive at time t descending clonally from

the time interval Iij := (t− ℓij, t− ℓi(j+1)) on branch i. More specifically, for a progenitor individual

alive on the time interval (a, b) and experiencing no mutation between times a and b, we refer to

‘clonal descendants from the time interval (a, b)’ as those individuals alive at t (including possibly

the progenitor) descending from those daughters of the progenitor who were born during the time

interval (a, b), and that still carry the same type the progenitor carried at time a. Using the notation

Aij = Aij(t, x, s1, s2) := {Rijt ≥ x, ℓij ∈ [s1, s2)}, we have

Mt(x, s1, s2) =
∑

0≤j≤M0

1A0j +
∑

1≤i<Nt

∑

1≤j≤Mi

1Aij ,
Kt(x, s1, s2) =

∑

0≤j≤M0

1A0j

and

K ′
t(x, s1, s2) =

∑

0≤j≤M ′
0

1A0j .

Therefore, by construction of the coalescent point process,

EtMt(x, s1, s2) = EtKt(x, s1, s2) +
∑

i≥1

∑

j≥1

Pt(Aij , i < Nt, j ≤Mi)

= EtKt(x, s1, s2) +
∑

i≥1

∑

j≥1

Pt(Aij , j ≤Mi | i < Nt)Pt(i < Nt)

= EtKt(x, s1, s2) +
∑

i≥1

∑

j≥1

Pt(A0j , j ≤M ′
0)Pt(i < Nt)

= EtKt(x, s1, s2) + (EtNt − 1)EtK
′
t(x, s1, s2).
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Now,

Mt(x, s1, s2)(Mt(x, s1, s2)− 1) = 2
∑

0≤k<j≤M0

1A0k
1A0j + 2

Nt−1
∑

i=1

∑

1≤k<j≤Mi

1Aik1Aij
+ 2

M0
∑

k=0

Nt−1
∑

i=1

Mi
∑

j=1

1A0k
1Aij + 2

∑

1≤l<i<Nt

Ml
∑

k=1

Mi
∑

j=1

1Alk1Aij .
Hence, using a similar computation as above,

EtMt(x, s1, s2)(Mt(x, s1, s2)− 1)

= EtKt(x, s1, s2)(Kt(x, s1, s2)− 1) + 2
∑

i≥1

∑

k≥1

∑

j>k

Pt(A0k ∩A0j , j ≤M ′
0)Pt(i < Nt)

+ 2
∑

k≥0

∑

i≥1

∑

j≥1

Pt(A0k ∩Aij , k ≤M0, i < Nt, j ≤Mi)

+ 2
∑

l≥1

∑

k≥1

∑

i>l

∑

j≥1

Pt(A0k ∩A(i−l)j , k ≤M ′
0, i− l < Nt, j ≤Mi−l)Pt(l < Nt)

= EtKt(x, s1, s2)(Kt(x, s1, s2)− 1) + (EtNt − 1)EtK
′
t(x, s1, s2)(K

′
t(x, s1, s2)− 1)

+ 2
∑

k≥0

∑

i≥1

∑

j≥1

Pt(A0k ∩Aij , k ≤M0, i < Nt, j ≤Mi)

+ 2(EtNt − 1)
∑

k≥1

∑

i≥1

∑

j≥1

Pt(A0k ∩Aij, k ≤M ′
0, i < Nt, j ≤Mi).

For short, we write

EtMt(x, s1, s2)(Mt(x, s1, s2)− 1)

≤ EtKt(x, s1, s2)(Kt(x, s1, s2)− 1) + (EtNt)EtK
′
t(x, s1, s2)(K

′
t(x, s1, s2)− 1)

+ 2
∑

k≥0

∑

i≥1

∑

j≥1

Pt(A0k ∩Aij ∩Bijk) + 2(EtNt)
∑

k≥1

∑

i≥1

∑

j≥1

Pt(A0k ∩Aij ∩B′
ijk) (A.1)

where Bijk := {k ≤M0, i < Nt, j ≤Mi} and B′
ijk := {k ≤M ′

0, i < Nt, j ≤Mi}.
Now for any positive integers i, k, define the three following events

αik := {max
1≤j≤i

Hj > ℓ0k}, βik := {ℓ0(k+1) < max
1≤j≤i

Hj ≤ ℓ0k}, γik := {max
1≤j≤i

Hj ≤ ℓ0(k+1)}.

We are going to state and prove six inequalities, where the left-hand side is obtained by intersecting

each event A0k ∩ Aij ∩ Bijk or A0k ∩ Aij ∩ B′
ijk with each of the preceding ones αik, βik, γik, and

summing over i, j ≥ 1 and k ≥ 0 for the events involving Bijk, and k ≥ 1 for the events involving
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B′
ijk.

∑

i,j,k

Pt(αik ∩A0k ∩Aij ∩Bijk) ≤ (EtNt)(EtKt(x, s1, s2))(EtK
′
t(x, s1, s2)), (A.2)

∑

i,j,k

Pt(αik ∩A0k ∩Aij ∩B′
ijk) ≤ (EtNt)(EtK

′
t(x, s1, s2))

2, (A.3)

∑

i,j,k

Pt(γik ∩A0k ∩Aij ∩Bijk) ≤ (EtNt)(EtKt(x, s1, s2))(EtK
′
t(x, s1, s2)), (A.4)

∑

i,j,k

Pt(γik ∩A0k ∩Aij ∩B′
ijk) ≤ (EtNt)(EtK

′
t(x, s1, s2))

2, (A.5)

∑

i,j,k

Pt(βik ∩A0k ∩Aij ∩Bijk) ≤ 2(EtNt)(EtKt(⌈x/2⌉, s1, s2))(EtK ′
t(x, s1, s2)), (A.6)

∑

i,j,k

Pt(βik ∩A0k ∩Aij ∩B′
ijk) ≤ 2(EtNt)(EtK

′
t(⌈x/2⌉, s1, s2))(EtK ′

t(x, s1, s2)). (A.7)

Combining these six equations with (A.1) and with the inequalities Kt(x, s1, s2) ≤ Kt(⌈x/2⌉, s1, s2)
and K ′

t(x, s1, s2) ≤ K ′
t(⌈x/2⌉, s1, s2) yields the inequality given in the lemma.

We are going to detail the proof of the inequalities (A.2), (A.4) and (A.6) (in this order). The other

inequalities can be proved using the same computations. Let us start with (A.2). Hereafter we denote

by A
(i)
0k the event {I0k has more than x clonal descendants within {0, . . . , i− 1} and ℓ0k ∈ [s1, s2)}.

Pt(αik ∩A0k ∩Aij ∩Bijk) = Pt(αik ∩A(i)
0k ∩Aij ∩Bijk)

≤ Pt(k ≤M0, A
(i)
0k , i < Nt, j ≤Mi, Aij)

= Pt(k ≤M0, A
(i)
0k , i < Nt, j ≤Mi, Aij | i < Nt)Pt(i < Nt)

= Pt(k ≤M0, A
(i)
0k | i < Nt)Pt(Aij , j ≤Mi | i < Nt)Pt(i < Nt)

= Pt(k ≤M0, A
(i)
0k , i < Nt)Pt(A0j , j ≤M ′

0). (A.8)

Then, denoting ρk the index of the ⌈x⌉-th individual carrying the type of interval I0k (:= +∞ if

there is no such individual),

∑

i,j,k

Pt(αik ∩A0k ∩Aij ∩Bijk) ≤ Et





∑

0≤k≤M0

∑

i≥1

1ℓ0k∈[s1,s2)1ρk≤i<NtEt

∑

j≤M ′
0

1A0j

= Et





∑

0≤k≤M0

1ℓ0k∈[s1,s2)(Nt − ρk)
+



EtK
′
t(x, s1, s2).
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Now, the lack of memory property of geometric distributions yields

Et





∑

0≤k≤M0

1ℓ0k∈[s1,s2)(Nt − ρk)
+





=
∑

k≥0

Et (Nt − ρk | k ≤M0, ℓ0k ∈ [s1, s2), ρk <∞)Pt (k ≤M0, ℓ0k ∈ [s1, s2), ρk <∞)

= (EtNt)
∑

k≥0

Pt (k ≤M0, A0k)

= (EtNt)(EtKt(x, s1, s2)),

which entails (A.2).

Next, let us proceed with (A.4) and let σk denote the label of the first branch with length

greater than ℓ0(k+1). Observe that conditionally on ℓ0(k+1), A0k is independent of the branch lengths

occurring before σk, and further, the events {i ≤ σk} = {maxj≤i−1Hj ≤ ℓ0(k+1)}, {Hi ≤ ℓ0(k+1), j ≤
Mi, Aij} and {k ≤M0, A0k} are independent. As a consequence,

Pt(γik ∩A0k ∩Aij ∩Bijk) = Pt(i < σk, k ≤M0, A0k, j ≤Mi, Aij)

= Pt(i ≤ σk, k ≤M0, A0k,Hi ≤ ℓ0(k+1), j ≤Mi, Aij)

= Et(Pt(i ≤ σk | ℓ0(k+1))Pt(A0k, k ≤M0 | ℓ0(k+1))Pt(Hi ≤ ℓ0(k+1), j ≤Mi, Aij | ℓ0(k+1)))

≤ Et(Pt(i ≤ σk, A0k, k ≤M0 | ℓ0(k+1))Pt(j ≤Mi, Aij | ℓ0(k+1)))

= Et(Pt(i ≤ σk, A0k, k ≤M0 | ℓ0(k+1))Pt(j ≤Mi, Aij))

= Pt(j ≤M ′
0, A0j)Pt(i ≤ σk, A0k, k ≤M0).

As a consequence, since σk and {k ≤M0, A0k} are independent conditionally on ℓ0(k+1),

∑

i,j,k

Pt(γik ∩A0k ∩Aij ∩Bijk) ≤ (EtK
′
t(x, s1, s2))

∑

k≥0

Et





∑

i≤σk
1k≤M0,A0k





= (EtK
′
t(x, s1, s2))

∑

k≥0

Et

(

Pt(k ≤M0, A0k | ℓ0(k+1))Et(σk | ℓ0(k+1))
)

≤ (EtK
′
t(x, s1, s2))

∑

k≥0

Et

(

Pt(k ≤M0, A0k | ℓ0(k+1))Et(Nt)
)

= (EtK
′
t(x, s1, s2))(EtKt(x, s1, s2))(EtNt),

which is (A.4).

Finally, let us turn to (A.6). Denote by A
′(i)
0k (resp. A

′′(i)
0k ) the event that there exists at least

⌈x/2⌉ individual with label smaller (resp. larger) than i descending clonally from the time interval

I0k and that ℓ0k ∈ [s1, s2). Then

Pt(βik ∩A0k ∩Aij ∩Bijk) ≤ Pt(βik ∩A′(i)
0k ∩Aij ∩Bijk) + Pt(βik ∩A′′(i)

0k ∩Aij ∩Bijk).
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Let us deal with the first term of the right-hand side of this last inequality. Exactly as in the proof

of (A.2),

Pt(βik, k ≤M0, A
′(i)
0k , j ≤Mi, Aij , i < Nt) ≤ Pt(k ≤M0, A

′(i)
0k , j ≤Mi, Aij , i < Nt)

= Pt(k ≤M0, A
′(i)
0k , i < Nt)Pt(Aij , j ≤Mi | i < Nt)

= Pt(k ≤M0, A
′(i)
0k , i < Nt)Pt(A0j , j ≤M ′

0),

and we finally get

∑

i,j,k

Pt(βik ∩A′(i)
0k ∩Aij ∩Bijk) ≤ (EtNt)(EtKt(⌈x/2⌉, s1, s2))(EtK ′

t(x, s1, s2)). (A.9)

As for the second term, we need to define Ji the unique integer satisfying ℓ0(Ji+1) < max1≤j≤iHj ≤
ℓ0Ji (Ji := +∞ on {i ≥ Nt} and Ji = k on βik). Then

∑

i,j,k

Pt(βik ∩A′′(i)
0k ∩Aij ∩Bijk) =

∑

i,j

Pt(A
′′(i)
0Ji

, Aij , j ≤Mi, i < Nt). (A.10)

Set also ℓ∗i := ℓiMi
the age of the oldest mutation on branch Hi (ℓ

∗
i = 0 if Mi = 0). Then conditional

on {i < Nt} and on the value of ℓ∗i , the numbers of clonal descendants Rijt of the interval Iij and the

number, say K(i), of haplotypes whose last mutation is older than ℓ∗i and s1, younger than s2, and

occurred on lineage 0, and with more than ⌈x/2⌉ alive clonal descendants with labels larger than i,

are independent, so that

Pt(A
′′(i)
0Ji

, Aij , j ≤Mi, i < Nt) ≤ Pt(K
(i) ≥ 1, Aij , j ≤Mi, i < Nt)

= Et(1i<NtPt(K(i) ≥ 1 | i < Nt, ℓ
∗
i )Pt(Aij , j ≤Mi | i < Nt, ℓ

∗
i ))

≤ Et(1i<NtPt(Kt(⌈x/2⌉, s1, s2) ≥ 1)Pt(Aij , j ≤Mi | i < Nt, ℓ
∗
i ))

= Pt(Kt(⌈x/2⌉, s1, s2) ≥ 1)Pt(Aij , j ≤Mi | i < Nt)Pt(i < Nt) (A.11)

≤ (EtKt(⌈x/2⌉, s1, s2))Pt(A0j , j ≤M ′
0)Pt(i < Nt). (A.12)

We finally obtain

∑

i,j,k

Pt(βik ∩A′′(i)
0k ∩Aij ∩Bijk) ≤ (EtNt)(EtKt(⌈x/2⌉, s1, s2))(EtK ′

t(x, s1, s2)),

which completes the proof of (A.6) by summing the last inequality and inequality (A.9).

The proof of (A.7) is very similar, but needs further explanation. Let us define the events A
′(i)
0k

and A
′′(i)
0k similarly as above, with the additional condition that ℓ0k ≤ H ′. Then, we first prove that

∑

i,j,k

Pt(βik ∩A′(i)
0k ∩Aij ∩B′

ijk) ≤ (EtNt)(EtK
′
t(⌈x/2⌉, s1, s2))(EtK ′

t(x, s1, s2))

following the very same computation as for (A.9). Next, we observe that Pt(A
′′(i)
00 ) = 0 since H ′ < t

a.s. and ℓ00 = t. Therefore, (A.10) also holds true with our new definition of A
′′(i)
0k . Thus, definingK(i)

as the number of haplotypes whose last mutation is older than ℓ∗i and s1, younger than s2 and H ′,
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and occurred on lineage 0, and with more than ⌈x/2⌉ alive clonal descendants with labels larger than

i, the computation of (A.12) is true, provided that Kt(⌈x/2⌉, s1, s2) is replaced by K ′
t(⌈x/2⌉, s1, s2).

We then obtain
∑

i,j,k

Pt(βik ∩A′′(i)
0k ∩Aij ∩B′

ijk) ≤ (EtNt)(EtK
′
t(⌈x/2⌉, s1, s2))(EtK ′

t(x, s1, s2)),

and the proof of (A.7) is completed. ✷

Lemma 4.1 follows from the combination of the previous lemma with the following estimates on

K ′
t(x, s1, s2) and Kt(x, s1, s2).

Lemma A.2 For all t > 0, x ≥ 1, 0 ≤ s1 < s2 ≤ t, we have

EtK
′
t(x, s1, s2) ≤

1
W (s1)

− 1
W (t)

1− 1
W (t)

EtKt(x, s1, s2), (A.13)

EtKt(x, s1, s2) ≤
b

α

∫ s2

s1

(

1− 1

Wθ(y)

)⌈x⌉−1(

e−θy +
∫ y

0
θe−θz

Wθ(y)−Wθ(y − z)

Wθ(y)
dz

)

(θdy+δt(dy)),

(A.14)

EtK
′
t(x, s1, s2)(K

′
t(x, s1, s2)− 1) ≤

1
W (s1)

− 1
W (t)

1− 1
W (t)

EtKt(x, s1, s2)(Kt(x, s1, s2)− 1), (A.15)

EtKt(x, s1, s2)(Kt(x, s1, s2)− 1) ≤ 2b

α
(EtKt(x, s1, s2)) (1 + θ(s2 − s1))×

×
(

1− 1

Wθ(s2)

)⌈x⌉−1(

e−θs1 +
∫ s1

0
θe−θz

Wθ(s2)−Wθ(s1 − z)

Wθ(s2)
dz

)

. (A.16)

Proof. With the notation of the proof of Lemma A.1, we have

EtK
′
t(x, s1, s2) =

∑

k≥1

Pt(A0k, k ≤M ′
0)

=
∑

k≥1

Pt(A0k, k ≤M0,H
′ ≥ ℓ0k)

≤
∑

k≥1

Pt(A0k, k ≤M0)P(H
′ ≥ s1)

≤ EtKt(x, s1, s2)P(H ≥ s1 | H < t),

which is inequality (A.13). Similarly,

EtK
′
t(x, s1, s2)(K

′
t(x, s1, s2)− 1) = 2

∑

k≥1

∑

j>k

Pt(A0k, A0j , j ≤M ′
0)

≤
∑

k≥1

∑

j>k

Pt(A0k, A0j , j ≤M0)P(H
′ ≥ s1)

≤ Et[Kt(x, s1, s2)(Kt(x, s1, s2)− 1]P(H ≥ s1 | H < t),
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which is inequality (A.15).

For the two other inequalities, let us define R
(a,b)
t the number of individuals alive at time t

descending clonally from the time interval (a, b). More specifically, given a progenitor individual

alive on the time interval (a, b) and experiencing no mutation between times a and b, R
(a,b)
t is the

number of individuals alive at time t (including this progenitor if b ≥ t) descending from those

daughters (including the daughters themselves) of the progenitor who were born during the time

interval (a, b), and that still carry the same type that the progenitor carried at time a. Since Wθ is

the scale function associated with the clonal reproduction process, for all k ≥ 0,

P(R
(a,b)
t = k) = P(N θ

t−a = k | ζ = b− a)

= P(N θ
t−a 6= 0 | ζ = b− a)P(N θ

t−a = k | N θ
t−a 6= 0)

=

(

1− 1t>bWθ(t− b)

Wθ(t− a)

)(

1− 1

Wθ(t− a)

)k−1 1

Wθ(t− a)
, (A.17)

whereN θ is the population size process of a clonal splitting tree and ζ is the lifetime of the progenitor.

(This result is actually Eq. (5.3) of [2].)

Note that, by construction of the splitting tree, replacing in the definition of R
(a,b)
t the progenitor

individual alive on the time interval (a, b) by a clonal lineage alive on the time interval (a, b), does

not change anything to the distribution of R
(a,b)
t . By lineage alive on the time interval (a, b), we

mean here a finite sequence of individuals (ik)1≤k≤K such that individual i1 was alive at time a,

individual iK was alive at time b, and for all 1 ≤ k ≤ K−1, individual ik+1 was born from individual

ik at some time ak such that a1 > a and aK−1 < b. By clonal lineage alive on the time interval (a, b)

we mean in addition that for all 1 ≤ k ≤ K, individual ik experienced no mutation during the time

interval (ak−1, ak), where a0 = a and aK = b.

Now, by definition of Kt(x, s1, s2), we have

EtKt(x, s1, s2) =
∑

k≥0

Et

[1ℓ0k∈[s1,s2] Pt (R0k
t ≥ x | ℓ0j, j ≥ 0

)]

,

where

Pt

(

R0k
t ≥ x | ℓ0j , j ≥ 0

)

=
P
(

R0k
t ≥ x, Nt ≥ 1 | ℓ0k, ℓ0(k+1)

)

P(Nt ≥ 1)

≤ b

α
P

(

R0k
t ≥ x, Nt ≥ 1 | ℓ0k, ℓ0(k+1)

)

,

since P(Nt ≥ 1) ≥ P(Ns ≥ 1, ∀s ≥ 0) and the survival probability of the splitting tree is α/b. Now,

the event {Nt ≥ 1, R0k
t ≥ x} is the event where Nt ≥ 1 and the clonal lineage on branch 0 on the

time interval (t− ℓ0k, t− ℓ0(k+1)) has more than x clonal descendants alive at time t. Therefore,

Pt

(

R0k
t ≥ x | ℓ0j , j ≥ 0

)

≤ b

α
P

(

R
(t−ℓ0k ,t−ℓ0(k+1))
t ≥ x | ℓ0k, ℓ0(k+1)

)

. (A.18)

Now, for all k ≥ 0, t − ℓ0k is distributed as the minimum of t and a sum of k i.i.d. exponential

random variables of parameter θ, and t− ℓ0(k+1) as the minimum of t and the sum of t− ℓ0k and an
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exponential random variable of parameter θ, independent of t−ℓ0k. Therefore, it follows from (A.17)

that

α

b
EtKt(x, s1, s2) ≤

∫ ∞

0
dz θe−θz 1s2=t P(R(0,z)

t ≥ x)

+
∑

k≥1

∫ ∞

0
dz θe−θz

∫ z

0
dy

θkyk−1

(k − 1)!
1y∈[t−s2,t−s1] P(R(y,z)

t ≥ x)

= 1s2=t ∫ ∞

0
dz θe−θz

(

1− 1z<tWθ(t− z)

Wθ(t)

)(

1− 1

Wθ(t)

)⌈x⌉−1

+

∫ t−s1

t−s2
dy θeθy

∫ ∞

y
dz θe−θz

(

1− 1z<tWθ(t− z)

Wθ(t− y)

)(

1− 1

Wθ(t− y)

)⌈x⌉−1

=

∫ t−s1

t−s2
(θdy + δ0(dy))

(

1− 1

Wθ(t− y)

)⌈x⌉−1(

1−
∫ t

y
dz θe−θ(z−y)

Wθ(t− z)

Wθ(t− y)

)

.

Equation (A.14) then follows from the changes of variables z′ = z−y and y′ = t−y, and the identity

1 = e−θy +
∫ y
0 θe

−θzdz.
Finally, let us turn to (A.16): first,

EtKt(x, s1, s2)(Kt(x, s1, s2)− 1) = 2
∑

0≤j<k
Pt(A0j , A0k, k ≤M0). (A.19)

Now, fix k > l ≥ 0. Since ℓ0j > ℓ0(j+1) ≥ ℓ0k > ℓ0(k+1), on the event {A0j , A0k, k ≤ M0}, we have

ℓ0(j+1) − ℓ0k ≤ s2 − s1, ℓ0k ≤ s2 and ℓ0(k+1) ≥ s1 − (ℓ0k − ℓ0(k+1)). Therefore, using (A.18) as before,

Pt(A0j , A0k, k ≤M0) = Et

[1ℓ0j∈[s1,s2]Pt (R0j
t ≥ x | ℓ0j , ℓ0(j+1)

)1ℓ0k∈[s1,s2]Pt (R0k
t ≥ x | ℓ0k, ℓ0(k+1)

)]

≤ Et

[1ℓ0j∈[s1,s2] Pt (R0j
t ≥ x | ℓ0j , ℓ0(j+1)

)1ℓ0(j+1)−ℓ0k≤s2−s1×

× 1ℓ0k≥s1 bα (1− 1ℓ0k−ℓ0(k+1)<s1

Wθ(s1 − (ℓ0k − ℓ0(k+1)))

Wθ(s2)

)(

1− 1

Wθ(s2)

)⌈x⌉−1 1ℓ0k>0

]

,

where the last indicator comes from the fact that 1 − 1/Wθ(ℓ0k) = 0 when ℓ0k = 0. Now, on the

event {ℓ0k > 0}, one has

ℓ0n = t− E1 − . . . − En, ∀0 ≤ n ≤ k

and

ℓ0(k+1) = 0 ∨ (t− E1 − . . .− Ek+1),

where (En)n≥1 is a sequence of i.i.d. exponential r.v. of parameter θ. In addition, on the event

{ℓ0k ≥ s1, ℓ0k − ℓ0(k+1) < s1}, one has ℓ0k − ℓ0(k+1) = Ek+1. Hence,

Pt(A0j , A0k, k ≤M0) ≤
b

α
Et

[1L0j∈[s1,s2] Pt
(

R0j
t ≥ x | ℓ0j = L0j, ℓ0(j+1) = L0(j+1)

)

×

× 1Ej+2+...+Ek≤s2−s1

(

1− 1Ek+1<s1

Wθ(s1 − Ek+1)

Wθ(s2)

)(

1− 1

Wθ(s2)

)⌈x⌉−1
]

,
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where

L0j = 0 ∨ (t− E1 − . . .− Ej) and L0(j+1) = 0 ∨ (t− E1 − . . . − Ej+1).

Since (L0j , L0(j+1)), (Ej+2, . . . , Ek) and Ek+1 are independent, we finally obtain

∑

0≤j<k
Pt(A0j , A0k, k ≤M0) ≤

b

α

∑

0≤j<k
Pt(A0j , j ≤M0)P(Ej+2 + . . . + Ek ≤ s2 − s1)×

×
(

1− E

(1Ek+1<s1

Wθ(s1 − Ek+1)

Wθ(s2)

))(

1− 1

Wθ(s2)

)⌈x⌉−1

=
b

α
(EtKt(x, s1, s2))

∑

i≥0

P(E1 + . . .+ Ei ≤ s2 − s1)×

×
(

1−
∫ s1

0
θe−θz

Wθ(s1 − z)

Wθ(s2)
dz

)(

1− 1

Wθ(s2)

)⌈x⌉−1

. (A.20)

Now, we have
∑

i≥0

P(E1 + . . .+ Ei ≤ s2 − s1) = 1 + E(P ) = 1 + θ(s2 − s1),

where P is a Poisson r.v. of parameter θ(s2 − s1). Combining this equation with (A.19) and (A.20)

ends the proof of (A.16). ✷
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