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1 Introduction

This course concerns the stochastic modeling of population dynamics. In the first part,
we focus on monotypic populations described by one dimensional stochastic differential
equations with jumps. We consider their scaling limits for large populations and study
the long time behavior of the limiting processes. It is achieved thanks to martingale
properties, Poisson measure representations and stochastic calculus. These tools and
results will be used and extended to measure-valued processes in the second part. The
latter is dedicated to structured populations, where individuals are characterized by a
trait belonging to a continuum.

In Section 2, we define birth and death processes with rates depending on the state of
the population and recall some long time properties based on recursion equations. Two
pathwise representations of the processes using Poisson point measures and Time-changed
Poisson processes are introduced, from which we deduce some martingale properties. We
carefully study the probability of extinction and in the case it is one, the law and moments
of the extinction time. We also give a characterization of the property of coming down
from infinity, which means that the birth and death process can be constructed starting
from infinity, and immediately reaches finite value at all positive times. We finally study
quasi-stationary distributions for birth and death processes, i.e. distributions which are
stable conditionally on non-extinction of the population. We prove in particular that,
when the process comes down from infinity, there is a unique stationary distribution which
uniformly attracts all initial distributions. This result is based on coupling techniques.

In Section 3, we represent the carrying capacity of the underlying environment through
a scaling parameter K ∈ N and state convergence results in the limit of large K. Depend-
ing on the demographic rates, the population size renormalized by K is approximated by
the solution of an ordinary differential equation. We give two proofs, one based on time-
changed Poisson processes and Gronwall Lemma, and the other on martingale properties
and tightness-uniqueness arguments. When the per individual death rate is an affine
function of the population size, in the limit we obtain a so called logistic equation. This
approach can be generalized to a two-type birth and death process and leads in the large
size approximation to a competitive 2d Lotka-Volterra system, whose long-time behavior
is analyzed.

The second part of the document concerns structured populations whose individuals are
characterized by a type taking values in a continuum. In the mathematical modeling of
Darwinian evolution, this type is a heritable trait subject to selection and mutation. In
Section 4, the population size process is constructred as a measure-valued Markov process
with jumps. The population model includes mutations which may occur during each birth
event with some positive probability. The mutant inherits a random perturbation of the
ancestor’s trait. The individuals compete for resources and the individual death rate
depends on the whole population trait distribution, leading to nonlinearities in the limit.
We develop some stochastic tools for such processes and use a pathwise representation
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driven by Poisson point measures to obtain martingale properties.

In the limit of large population size (scaled by the resource parameter K), we derive
a nonlinear integro-differential equation in Section 5. The limiting theorem is proved
using compactness-uniqueness arguments and the semimartingale decomposition of the
measure-valued process. Simulations illustrate the convergence.

Section 6 focuses on the particular case of large population and rare mutations. The
time scale at which the process is considered is now much longer (to see the impact
of mutations) and the derivation in this case yields an evolutive jump process (for a
suitable mutation probability) describing the successive invasions of successful mutants.
When the initial population is monomorphic and as long as invasion implies fixation (this
assumption can be checked on the parameters), the process jumps from an equilibrium
state of the population to another one. This process is known as the Trait Substitution
Sequence (TSS) and was first heuristically introduced by Metz et al. [38]. Section 7 is
devoted to the study of the TSS in the limit of small mutational jumps. In this case, the
TSS converges to the canonical equation of adaptive dynamics, which describes evolution
as driven by a fitness gradient. Notation

For a Polish space E, P(E) denotes the space of probability measures on E.

The spaces C2
b (R), C2

b (R+), C2
b (Rd) are the spaces of bounded continuous functions whose

first and second derivatives are bounded and continuous, resp. on R, R+, Rd.

In all what follows, C denotes a constant real number whose value can change from one
line to the other.

2 Birth and Death Processes

In this part, we concentrate on one-dimensional models for population dynamics. We
recall the main properties of the birth and death processes.

2.1 Definition and non-explosion criterion

Definition 2.1. A birth and death process is a pure jump Markov process whose
jumps steps are equal to ±1. The transition rates are as follows:{

i→ i+ 1 at rate λi
i→ i− 1 at rate µi,

(λi)i∈N∗ and (µi)i∈N∗ being two sequences of positive real numbers and λ0 = µ0 = 0.

In this case, the infinitesimal generator is the matrix (Qi,j) defined on N× N by

Qi,i+1 = λi , Qi,i−1 = µi , Qi,i = −(λi + µi) , Qi,j = 0 otherwise.

The global jump rate for a population with size i ≥ 1 is λi + µi. After a random time
distributed according an exponential law with parameter λi + µi, the process increases
by 1 with probability λi

λi+µi
and decreases by −1 with probability µi

λi+µi
. If λi + µi = 0,

the process is absorbed at i. This construction gives a sequence of jump times (Tn)n≥1

and a jump chain (Yn)n≥0. In the case where T∞ = supn Tn < ∞, the process is taken
constant equal to an arbitrary value, say +∞, after time T∞. We thus obtain a process
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(Xt)t≥0 which is a right-continuous process taking values in N ∪ {+∞} such that, for all
n ≥ 0,

Xt = Yn, ∀t ∈ [Tn, Tn+1)

and Xt = +∞ if t ≥ T∞ = supn Tn, where T0 = 0,

• the jump chain (Yn)n≥0 is a discrete-time Markov chain on N such that Y0 = X0

and with transition probability λi
λi+µi

from i to i+ 1 and µi
λi+µi

from i to i− 1,

• the inter-jump times defined for all n ≥ 1 as Sn = Tn − Tn−1 satisfy that, for all
n ≥ 1, conditional on Y0, . . . , Yn−1, the random variables S1, . . . , Sn are indepen-
dent exponential with parameters λ(Y0)+µ(Y0), . . . , λ(Yn−1)+µ(Yn−1) respectively,
where we write λ(i) = λi and µ(i) = µi for all i ≥ 0.

Recall that if P (t) = (Pi,j(t)), t ∈ R+ denotes the transition semigroup of the process,
i.e. Pi,j(t) = P(Xt = j | X0 = i), then

Pi,i+1(h) = λi h+ o(h) ; Pi,i−1(h) = µi h+ o(h) ; Pi,i(h) = 1− (λi + µi)h+ o(h).

Examples: The constant numbers λ, µ, ρ, c are positive.
1) The Yule process corresponds to the case λi = iλ, µi = 0.
2) The branching process or linear birth and death process : λi = iλ, µi = iµ.
3) The birth and death process with immigration : λi = iλ+ ρ, µi = iµ.
4) The logistic birth and death process : λi = iλ, µi = iµ+ c i(i− 1).

The following theorem characterizes the non-explosion in finite time of the process. In
this case, the process will have a.s. finite value at any time t ∈ R+.

Theorem 2.2. Suppose that λi > 0 for all i ≥ 1. Then the birth and death process has
almost surely an infinite life time if and only if the following series diverges:∑

i≥1

(
1

λi
+

µi
λiλi−1

+ · · ·+ µi · · ·µ2

λi · · ·λ2λ1

)
= +∞. (2.1)

Corollary 2.3. If for any i, λi ≤ λ i, with λ > 0, the process is well defined on R+.

Remark 2.4. One can check that the birth and death processes mentioned in the examples
above satisfy this property and are well defined on R+.

Proof of Theorem 2.2. Let (Tn)n be the sequence of jump times of the process and (Sn)n
the sequence of the inter-jump times,

Sn = Tn − Tn−1, ∀n ≥ 1; T0 = 0, S0 = 0.

We define T∞ = limn Tn. The process doesn’t explode almost surely and is well defined
on R+ if and only if for any i ≥ 1, Pi(T∞ < +∞) = 0.
The proof consists in showing that the process doesn’t explode almost surely if and only if
the unique non-negative and bounded solution x = (xi)i∈N of Qx = x is the null solution.
This proof is actually achieved for any integer valued pure jump Markov process. We will
then see that it is equivalent to (2.1) for birth and death processes.
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For any i ≥ 1, we set h
(0)
i = 1 and for n ≥ 1,

h
(n)
i = Ei(exp(−Tn)) = Ei

(
exp(−

n∑
k=1

Sk)

)
.

We have

Ei

(
exp

(
−
n+1∑
k=1

Sk

)∣∣S1

)
= exp(−S1) Ei

(
EXS1

(
exp(−

n∑
k=1

Sk)

))
,

by the Markov property, the independence of S1 and XS1 and since the jump times of
the shifted process are Tn − S1. Moreover,

Ei

(
EXS1

(
exp(−

n∑
k=1

Sk)

))
=
∑
j 6=i

Pi(XS1 = j) Ej

(
exp(−

n∑
k=1

Sk)

)
=
∑
j 6=i

Qi,j
qi

h
(n)
j ,

where qi =
∑

j 6=iQi,j . Therefore, for all n ≥ 0,

h
(n+1)
i = Ei

(
Ei

(
exp(−

n+1∑
k=1

Sk)
∣∣S1

))
=
∑
j 6=i

Qi,j
qi

h
(n)
j Ei(exp(−S1)).

Since Ei(exp(−S1)) =
∫∞

0 qie
−qise−sds = qi

1+qi
, we finally obtain that

h
(n+1)
i =

∑
j 6=i

Qi,j
1 + qi

h
(n)
j . (2.2)

Let (xi)i be a non-negative solution of Qx = x bounded by 1. We get h
(0)
i = 1 ≥ xi

and thanks to the previous formula, we deduce by induction that for all i ≥ 1 and for all

n ∈ N, h
(n)
i ≥ xi ≥ 0. Indeed if h

(n)
j ≥ xj , we get h

(n+1)
i ≥

∑
j 6=i

Qi,j
1+qi

xj . As x is solution
of Qx = x, it satisfies xi =

∑
j Qi,j xj = Qi,ixi+

∑
j 6=iQi,jxj = −qixi+

∑
j 6=iQi,jxj , thus∑

j 6=i
Qi,j
1+qi

xj = xi and h
(n+1)
i ≥ xi.

If the process doesn’t explode almost surely, we have T∞ = +∞ a.s. and limn h
(n)
i = 0.

Making n tend to infinity in the previous inequality, we deduce that xi = 0. Thus, in this
case, the unique non-negative and bounded solution of Qx = x is the null solution.
Let us now assume that the process explodes with a positive probability. Let zi =
Ei(e−T∞). There exists i such that Pi(T∞ < +∞) > 0 and for this integer i, zi > 0.

Going to the limit with T∞ = limn Tn and Tn =
∑n

k=1 Sk yields zj = limn h
(n)
j . Making

n tend to infinity proves that z is a non-negative and bounded solution of Qz = z, with
zi > 0. It ensures that the process doesn’t explode almost surely if and only if the unique
non-negative and bounded solution x = (xi)i∈N of Qx = x is x = 0.

We apply this result to the birth and death process. We assume that λi > 0 for i ≥ 1
and λ0 = µ0 = 0. Let (xi)i∈N be a non-negative solution of the equation Qx = x. For
n ≥ 1, introduce ∆n = xn − xn−1. Equation Qx = x can be written x0 = 0 and

λnxn+1 − (λn + µn)xn + µnxn−1 = xn , ∀n ≥ 1.
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Setting fn =
1

λn
and gn =

µn
λn

, we get

∆1 = x1 ; ∆2 = ∆1 g1 + f1 x1 ; . . . ; ∆n+1 = ∆n gn + fn xn.

Remark that for all n, ∆n ≥ 0 and the sequence (xn)n is non-decreasing. If x1 = 0, the
solution is zero. Otherwise we deduce that

∆n+1 = fnxn +
n−1∑
k=1

fk gk+1 · · · gn xk + g1 · · · gn x1.

Since (xk)k is non-decreasing and defining rn =
1

λn
+
n−1∑
k=1

µk+1 · · ·µn
λkλk+1 · · ·λn

+
µ1 · · ·µn
λ1 · · ·λn

, it

follows that rn x1 ≤ ∆n+1 ≤ rn xn, and by iteration

x1(1 + r1 + · · ·+ rn) ≤ xn+1 ≤ x1

n∏
k=1

(1 + rk).

Therefore we have proved that the boundedness of the sequence (xn)n is equivalent to
the convergence of

∑
k rk and Theorem 2.2 is proved.

2.2 Kolmogorov equations and invariant measure

Let us recall the Kolmogorov equations, (see for example Karlin-Taylor [29]).

Forward Kolmogorov equation: for all i, j ∈ N,

dPi,j
dt

(t) =
∑
k

Pi,k(t)Qk,j = Pi,j+1(t)Qj+1,j + Pi,j−1(t)Qj−1,j + Pi,j(t)Qj,j

= µj+1Pi,j+1(t) + λj−1Pi,j−1(t)− (λj + µj)Pi,j(t). (2.3)

Backward Kolmogorov equation: for all i, j ∈ N,

dPi,j
dt

(t) =
∑
k

Qi,k Pk,j(t) = Qi,i−1Pi−1,j(t) +Qi,i+1Pi+1,j(t) +Qi,iPi,j(t)

= µiPi−1,j(t) + λiPi+1,j(t)− (λi + µi)Pi,j(t). (2.4)

Let us define for all j ∈ N the probability measure

pj(t) = P(X(t) = j) =
∑
i

P(X(t) = j|X0 = i)P(X(0) = i) =
∑
i

P(X(0) = i)Pi,j(t).

A straightforward computation shows that the forward Kolmogorov equation (2.3) reads

d pj
dt

(t) = λj−1 pj−1(t) + µj+1 pj+1(t)− (λj + µj) pj(t). (2.5)

This equation is useful to find an invariant measure, that is a sequence (qj)j of nonnegative
real numbers with

∑
j qj < +∞ and satisfying for all j,

λj−1 qj−1 + µj+1 qj+1 − (λj + µj) qj = 0.
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2.3 Two trajectorial representations of birth and death processes

We consider as previously a birth and death process with birth rates (λn)n and death
rates (µn)n. We write λn = λ(n) and µn = µ(n), where λ(.) and µ(.) are two functions
defined on R+. We assume further that there exist λ̄ > 0 and µ̄ > 0 such that for any
x ≥ 0,

λ(x) ≤ λ̄ x ; µ(x) ≤ µ̄(1 + x2). (2.6)

This assumption is satisfied for the logistic case where λ(x) = λx and µ(x) = cx(x−1) +
µx.

Assumption (2.6) is a sufficient condition ensuring the existence of the process on R+, as
observed in Corollary 2.3.

Proposition 2.5. On the same probability space, we consider a Poisson point mea-
sure N(ds, du) with intensity dsdu on R+ × R+ (see Appendix). We also consider
a random variable Z0 independent of N and introduce the filtration (Ft)t given by
Ft = σ(Z0, N((0, s]×A), s ≤ t, A ∈ B(R+)).

The left-continuous and right-limited non-negative Markov process (Zt)t≥0 defined by

Zt = Z0 +

∫ t

0

∫
R+

(
1{u≤λ(Zs−)} − 1{λ(Zs−)≤u≤λ(Zs−)+µ(Zs−)}

)
N(ds, du) (2.7)

is a birth and death process with birth (resp. death) rates (λn)n (resp. (µn)n).

If for p ≥ 1, E((Z0)p) < +∞, then for any T > 0,

E
(

sup
t≤T

(Zt)
p
)
< +∞. (2.8)

Proof. For n ∈ N, let us introduce the stopping times

Tn = inf{t > 0, Zt ≥ n}.

For s ≤ t, we have

Zps∧Tn = Zp0 +

∫ s∧Tn

0
((Zs− + 1)p − Zps−)1{u≤λ(Zs−)}N(ds, du)

+

∫ s∧Tn

0
((Zs− − 1)p − Zps−)1{λ(Zs−)≤u≤λ(Zs−)+µ(Zs−)}N(ds, du).

The second part of the r.h.s. is non-positive and the first part is increasing in time,
yielding the upper bound

sup
s≤t

Zps∧Tn ≤ Z
p
0 +

∫ t∧Tn

0
((Zs− + 1)p − Zps−)1{u≤λ(Zs−)}N(ds, du).

Since there exists C > 0 such that (1 + x)p − xp ≤ C(1 + xp−1) for any x ≥ 0 and by
(2.6), we get

E(sup
s≤t

Zps∧Tn) ≤ E(Zp0 ) + C λ̄E
(∫ t∧Tn

0
Zs (1 + Zp−1

s ) ds

)
≤ C̄

(
1 +

∫ t

0
E
(

sup
u≤s∧Tn

Zpu
)
ds

)
,
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where C̄ is a positive number independent of n. Since the process is bounded by n before
Tn, Gronwall’s Lemma implies the existence (for any T > 0) of a constant number CT,p
independent of n such that

E
(

sup
t≤T∧Tn

Zpt
)
≤ CT,p. (2.9)

In particular, the sequence (Tn)n tends to infinity almost surely. Indeed, otherwise
there would exist T0 > 0 such that P(supn Tn < T0) > 0. Hence E

(
supt≤T0∧Tn Z

p
t

)
≥

np P(supn Tn < T0), which contradicts (2.9). Making n tend to infinity in (2.9) and using
Fatou’s Lemma yield (2.8).

To prove that (Zt)t≥0 is a birth and death Markov chain, we first notice that for all
n ≥ 1, since λ and µ are bounded on {0, 1, . . . , n}, there is no accumulation of jump times
in (2.7) up to time Tn. Since T∞ = limn Tn = +∞, there is no accumulation of jump
times in (2.7). We can then define the sequences of inter-jump times (Sn)n≥1 and the
jump chain (Yn)n≥0 associated to (Zt)t≥0. We prove that these two sequences have the
appropriate law by induction: for all n ≥ 1, we define Jn = S0 + . . .+ Sn the n-th jump
time. We have from (2.7) that Sn+1 is t − Jn where t is the first time t > Jn such that
N((Jn, t]× [0, λ(Yn−1) + µ(Yn−1)]) = 1, and Yn = Yn−1 + 1 if N((Jn, t]× [0, λ(Yn−1)]) =
1 and Yn = Yn−1 − 1 if N((Jn, t] × [λ(Yn−1), λ(Yn−1) + µ(Yn−1)]) = 1. Hence, given
(Y0, . . . , Yn−1) and (S1, . . . , Sn), Sn+1 and Yn are independent, Sn+1 is exponential with
parameter λ(Yn−1) + µ(Yn−1) and

P(Yn = k + 1 | Yn−1 = k) = 1− P(Yn = k − 1 | Yn−1 = k) =
λ(k)

λ(k) + µ(k)
.

The conclusion then follows by induction on n.

Remark that given Z0 and N , the process defined by (2.7) is unique. Indeed it can be
inductively constructed. It is thus unique in law. Let us now recall its infinitesimal
generator and give some martingale properties.

Theorem 2.6. Let us assume that E(Zp0 ) <∞, for p ≥ 2.

(i) The infinitesimal generator of the Markov process Z is defined for any bounded mea-
surable function φ from R+ into R by

Lφ(z) = λ(z)(φ(z + 1)− φ(z)) + µ(z)(φ(z − 1)− φ(z)).

(ii) For any measurable function φ such that |φ(x)| + |Lφ(x)| ≤ C (1 + xp), the process
Mφ defined by

Mφ
t = φ(Zt)− φ(Z0)−

∫ t

0
Lφ(Zs)ds (2.10)

is a left-limited and right-continous (càdlàg) (Ft)t-martingale.

(iii) The process M defined by

Mt = Zt − Z0 −
∫ t

0
(λ(Zs)− µ(Zs))ds (2.11)

is a square-integrable martingale with quadratic variation

〈M〉t =

∫ t

0
(λ(Zs) + µ(Zs))ds. (2.12)
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Remark that the drift term of (2.11) involves the difference between the birth and death
rates (i.e. the growth rate), while (2.12) involves the sum of both rates. Indeed the drift
term describes the mean behavior whereas the quadratic variation reports the random
fluctuations.

Proof. (i) is well known.

(ii) Dynkin’s theorem implies that Mφ is a local martingale. By the assumption on φ,
all the terms of the r.h.s. of (2.10) are integrable. Therefore Mφ is a martingale.

(iii) We first assume that E(Z3
0 ) < +∞. By (2.6), we may apply (ii) to both functions

φ1(x) = x and φ2(x) = x2. Hence Mt = Zt − Z0 −
∫ t

0 (λ(Zs) − µ(Zs))ds and Z2
t −

Z2
0 −

∫ t
0

(
λ(Zs)(2Zs + 1)− µ(Zs)(1− 2Zs)

)
ds are martingales. The process Z is a semi-

martingale and Itô’s formula applied to Z2 gives that Z2
t −Z2

0−
∫ t

0 2Zs
(
λ(Zs)−µ(Zs)

)
ds−

〈M〉t is a martingale. The uniqueness of the Doob-Meyer decomposition leads to (2.12).
The general case E(Z2

0 ) < +∞ follows by a standard localization argument.

We end this section with another trajectorial construction of birth and death processes
as time changed Poisson processes.

Proposition 2.7. On the same probability space, we consider two independent (standard)
Poisson processes (P1(t))t≥0 and (P2(t))t≥0, independent of the random variable X0. We
make no assumption on the infinitesimal generator Q we consider here. In particular, it
may be explosive. Then the equation

Xt =

X0 + P1

(∫ t

0
λ(Xs)ds

)
− P2

(∫ t

0
µ(Xs)ds

)
, ∀t ≥ 0 s.t. both integrals are finite,

+∞ otherwise.

(2.13)
admits a.s. a unique solution which is a birth and death process with generator Q.

Proof. Since the jump times of Poisson processes are isolated, the construction of (Xt)t≥0

can be done pathwise inductively along the successive jump times of Xt. Given the n
first values of the jump chain Y0, . . . , Yn−1 and the n first holding times S1, . . . , Sn, we
set Tn = S1 + . . . + Sn the n-th jump time. Then the next jump time Tn + Sn+1 is the
first time t > Tn such that

P1

(∫ Tn

0
λ(Xs)ds+ λ(Yn−1)(t− Tn)

)
− P1

(∫ Tn

0
λ(Xs)ds

)
6= 0, (2.14)

or P1

(∫ Tn

0
µ(Xs)ds+ µ(Yn−1)(t− Tn)

)
− P1

(∫ Tn

0
µ(Xs)ds

)
6= 0, (2.15)

and the next value Yn of the jump chain is Yn−1 +1 (resp. Yn−1−1) if (2.14) (resp. (2.15))
is satisfied first. By Markov’s property for Poisson processes, the process in (2.14) is a
Poisson process with rate λ(Yn−1) and the one in (2.15) is a Poisson process with rate
µ(Yn−1) independent of the first one. Hence, we deduce that, conditional on (Y0, . . . , Yn−1)
and (S1, . . . , Sn), Sn is the infimum of two exponential variables with parameters λ(Yn−1)
and µ(Yn−1), hence is exponential of parameter λ(Yn−1)+µ(Yn−1), and Yn is independent

of Sn+1, with value Yn−1 + 1 with probability λ(Yn−1)
λ(Yn−1)+µ(Yn−1) and Yn−1 − 1 otherwise.
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This proves that the sequences (Yn)n and (Sn)n have the distribution corresponding to
that of a birth and death process with infinitesimal generator Q.

Since the jump times of Poisson processes are isolated, it is also clear that the first
accumulation point of the sequence of jump times (Tn)n is exactly the first time where
either

∫ t
0 λ(Xs)ds = +∞ or

∫ t
0 µ(Xs)ds = +∞.

2.4 Extinction criterion

Let us come back to the general case.

Some of the following computation can be found in [29] or in [2], but they are finely
developed in [4].

Let T0 denote the extinction time and ui = Pi(T0 <∞) the probability to see extinction
in finite time starting from state i.
Conditioning by the first jump XT1 ∈ {−1,+1}, we get the following recurrence property:
for all i ≥ 1,

λiui+1 − (λi + µi)ui + µiui−1 = 0 (2.16)

This equation can also be easily obtained from the backward Kolmogorov equation (2.4).
Indeed

ui = Pi(∃t > 0, Xt = 0) = Pi(∪t{Xt = 0}) = lim
t→∞

Pi,0(t),

and
dPi,0
dt

(t) = µiPi−1,0(t) + λiPi+1,0(t)− (λi + µi)Pi,0(t).

Let us solve (2.16). We know that u0 = 1. Let us first assume that for a state N , λN = 0

and λi > 0 for i < N . Define u
(N)
i = Pi(T0 < TN ), where TN is the hitting time of N .

Thus uN0 = 1 et uNN = 0. Setting

UN =

N−1∑
k=1

µ1 · · ·µk
λ1 · · ·λk

,

straightforward computations using (2.16) yield that for i ∈ {1, · · · , N − 1}

u
(N)
i = (1 + UN )−1

N−1∑
k=i

µ1 · · ·µk
λ1 · · ·λk

and in particular u
(N)
1 =

UN
1 + UN

.

For the general case, let N tend to infinity. We observe that extinction will happen (or

not) almost surely in finite time depending on the convergence of the series
∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

.

Theorem 2.8. (i) If

∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

= +∞, then the extinction probabilities ui are equal

to 1. Hence we have almost-sure extinction of the birth and death process for any finite
initial condition.
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(ii) If
∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

= U∞ <∞, then for i ≥ 1,

ui = (1 + U∞)−1
∞∑
k=i

µ1 · · ·µk
λ1 · · ·λk

.

There is a positive probability for the process to survive for any positive inital condition.

Application of Theorem 2.8 to the binary branching process (linear birth and
death process): any individual gives birth at rate λ and dies at rate µ. The population
process is a binary branching process and individual life times are exponential variables
with parameter λ+ µ. An individual either gives birth to 2 individuals with probability
λ

λ+µ or dies with probability µ
λ+µ .

Applying the previous results, one gets that when λ ≤ µ, i.e. when the process is sub-
critical or critical, the sequence (UN )N tends to infinity with N and there is extinction
with probability 1. Conversely, if λ > µ, the sequence (UN )N converges to µ

λ−µ and

straightforward computations yield ui = (µ/λ)i.

Application of Theorem 2.8 to the logistic birth and death process. Let us
assume that the birth and death rates are given by

λi = λ i ; µi = µ i+ c i(i− 1). (2.17)

The parameter c models the competition pressure between two individuals. It’s easy

to show that in this case, the series
∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

diverges, leading to the almost sure

extinction of the process. Hence the competition between individuals makes the extinction
inevitable.

2.5 Extinction time

Let us now come back to the general case and assume that the series

∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

diverges. The extinction time T0 is well defined and we wish to compute its moments.

We use the standard notation

π1 =
1

µ1
; πn =

λ1 . . . λn−1

µ1 . . . µn
∀n ≥ 2.

We now focus on the time spent by the process (X(t), t ≥ 0) to go from level n + 1 to
level n. For n ≥ 0, we introduce the function

Gn(a) := En+1(exp(−aTn)), a > 0,

where Tn is the first hitting time of the level n.
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Proposition 2.9. Let us assume that

∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

=
∑
n

1

λnπn
= +∞. (2.18)

Then
(i) For any a > 0 and n ≥ 1,

Gn(a) = En+1(exp(−aTn)) = 1 +
µn + a

λn
− µn
λn

1

Gn−1(a)
. (2.19)

(ii) E1(T0) =
∑

k≥1 πk and for every n ≥ 2,

En+1(Tn) =
1

λnπn

∑
i≥n+1

πi , (2.20)

En(T0) =
∑
k≥1

πk +
n−1∑
k=1

1

λkπk

∑
i≥k+1

πi =
n−1∑
k=1

 ∑
i≥k+1

λk+1 . . . λi−1

µk+1 . . . µi

 . (2.21)

Proof. (i) Let τn be a random variable distributed as Tn under Pn+1 and consider the
Laplace transform of τn. Following [3, p. 264] and by the Markov property, we have

τn−1
(d)
= 1{Yn=−1}En + 1{Yn=1}

(
En + τn + τ ′n−1

)
where Yn, En, τ ′n−1 and τn are independent random variables, En is an exponential random
variable with parameter λn + µn and τ ′n−1 is distributed as τn−1 and P(Yn = 1) =
1− P(Yn = −1) = λn/(λn + µn). Hence, we get

Gn−1(a) =
λn + µn

a+ λn + µn

(
Gn(a)Gn−1(a)

λn
λn + µn

+
µn

λn + µn

)
and (2.19) follows.

(ii) Differentiating (2.19) at a = 0, we get

En(Tn−1) =
λn
µn

En+1(Tn) +
1

µn
, n ≥ 1.

Following the proof of Theorem 2.8, we first deal with the particular case when λN = 0
for some N > n, EN (TN−1) = 1

µN
and a simple induction gives

En(Tn−1) =
1

µn
+

N∑
i=n+1

λn . . . λi−1

µn . . . µi
.

We get E1(T0) =
∑N

k=1 πk and writing En(T0) =
∑n

k=1 Ek(Tk−1), we deduce that

En(T0) =

N∑
k=1

πk +

n−1∑
k=1

1

λkπk

N∑
i=k+1

πi.
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In the general case, let N > n. Thanks to (2.18), T0 is finite and the process a.s. does
not explode in finite time for any initial condition. Then TN → ∞ Pn-a.s., where we
use the convention {TN = +∞} on the event where the process does not attain N . The
monotone convergence theorem yields

En(T0;T0 ≤ TN ) −→
N→+∞

En(T0).

Let us consider a birth and death process XN with birth and death rates (λNk , µ
N
k : k ≥ 0)

such that (λNk , µ
N
k ) = (λk, µk) for k 6= N and λNN = 0, µNN = µN .

Since (Xt : t ≤ TN ) and (XN
t : t ≤ TNN ) have the same distribution under Pn, we get

En (T0;T0 ≤ TN ) = En
(
TN0 ;TN0 ≤ TNN

)
,

which yields
En(T0) = lim

N→∞
En
(
TN0 ;TN0 ≤ TNN

)
≤ lim

N→∞
En
(
TN0
)
,

where the convergence of the last term is due to the stochastic monotonicity of TN0 with
respect to N under Pn. Using now that TN0 is stochastically smaller than T0 under Pn,
we have also

En(T0) ≥ En(TN0 ).

We deduce that

En(T0) = lim
N→∞

En(TN0 ) = lim
N→∞

N∑
k=1

πk +

n−1∑
k=1

1

λkπk

N∑
i=k+1

πi,

which ends up the proof.

The proof of the next proposition is left to the reader.

Proposition 2.10. Assume (2.18). Show that for every n ≥ 0,

En+1(T 2
n) =

2

λnπn

∑
i≥n

λiπi Ei+1(Ti)
2;

En+1(T 3
n) =

6

λnπn

∑
i≥n

λiπi Ei+1(Ti) Vari+1(Ti).

2.6 Coming down from infinity

The first lemma allows us to define the law of the process starting from infinity. As in
Donnelly [15], our main tool is a monotonicity argument. We set N := {0, 1, . . .} ∪ {∞}
and for any T > 0, we denote by DN([0, T ]) the Skorohod space of càdlàg functions on
[0, T ] with values in N.

Lemma 2.11. Under (2.18), the sequence (Pn)n converges weakly in the space of proba-
bility measures on DN([0, T ]) to a probability measure P∞.

At this point, the limiting process is not assumed to be finite for positive times.
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Proof. We follow the tightness argument given in the first part of the proof of Theorem 1
by Donnelly in [15]. Indeed, no integer is an instantaneous state for the process (λn, µn <
∞ for each n ≥ 0) and the process is stochastically monotone with respect to the initial
condition. It ensures that Assumption (A1) of [15] holds. In addition, Assumption (2.18)
ensures that the process almost surely does not explode and (A2) of [15, Thm. 1] is also
satisfied by denoting BN

n the birth and death process X issued from n and stopped in N .
Then the tightness holds and we identify the finite marginal distributions by noticing
that for k ≥ 1, for t1, . . . , tk ≥ 0 and for a1, . . . , ak ∈ N, the quantities Pn(X(t1) ≤
a1, · · · , X(tk) ≤ ak) are non-increasing with respect to n ∈ N (and thus converge).

When the process starting from infinity is non-degenerate, it hits finite values in finite
time with positive probability. More precisely, we say that the process comes down from
infinity if there exist t > 0 and y ∈ R+, such that P∞(Ty < t) > 0.

Characterizations of the coming down from infinity have been given in [3, 8]. They rely on
the convergence of the mean time of absorption when the initial condition goes to infinity
or equivalently to the convergence of the non-decreasing sequence En(T0) as n→∞:

S = E∞(T0) =
∑
i≥1

πi +
∑
n≥1

1

λnπn

∑
i≥n+1

πi =
∑
n≥0

 1

µn+1
+
∑
i≥n+2

λn+1 · · ·λi−1

µn+1 · · ·µi

 < +∞.

(2.22)
This is equivalent to the existence and uniqueness of the quasi-stationary distribution
related to the absorbing point zero (see [40], [8]) and to the finiteness of some exponential
moments of T0.

In the next lines, we show, using monotonicity properties, that it is also equivalent to
instantaneous almost-sure coming down from infinity (Proposition 2.13). The latter is a
stronger notion of coming down from infinity corresponding to the behavior of birth and
death processes under (2.18) and (2.22).

Definition 2.12. The process (X(t), t ≥ 0) instantaneously comes down from infinity if

P∞(∀t > 0, X(t) < +∞) = 1. (2.23)

Using Lemma 2.11 and that X ∈ DN([0, T ]), is quasi-left continuous and +∞ is not
accessible from N, we have for any 0 < t0 < T ,

P∞(∀t ∈ [t0, T ), X(t) < +∞) = lim
m→∞

lim
k→∞

Pk(∀t ∈ [t0, T ), X(t) ≤ m),

we get the equivalence between (2.23) and

∀t ∈ [0, T ], lim
m→∞

lim
k→+∞

Pk(Tm < t) = 1.

In particular, a process satisfying (2.23) comes down from infinity.

Let us now show that (2.23) is satisfied under (2.18) and (2.22). In fact we give several
necessary and sufficient conditions for (X(t), t ≥ 0) to come down from infinity. The first
two ones are directly taken from [8]. We add here an exponential moment criterion. We
also mention that it is equivalent to the existence (cf. [40]) and uniqueness (cf. [8]) of a
quasi-stationary distribution for the process X.
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Proposition 2.13. Under condition (2.18), the following assertions are equivalent:

(i) The process (X(t), t ≥ 0) comes down from infinity.

(ii) The process (X(t), t ≥ 0) instantaneously comes down from infinity.

(iii) Assumption (2.22) is satisfied: S < +∞.

(iv) supk≥0 Ek[T0] < +∞.

(v) For all a > 0, there exists ka ∈ N such that E∞ (exp(aTka)) < +∞.

Proof. (iii) and (iv) are clearly equivalent, using (2.21). As already mentioned, (ii)
implies (i). From [3], Section 8.1, we have that (iii) and (i) are equivalent. We now
prove that (v) implies (i) and that (iii) implies (v) and that (iii) implies (ii) to complete
the proof.

First, we check that (v) implies that X comes down from infinity. Indeed, taking a = 1
in (v), we have M := E∞ (exp(Tk1)) < +∞. Then, Markov inequality ensures that for
all k ≥ k1 and t ≥ 0, Pk(Tk1 < t) ≥ 1 − exp(−t)M . Choosing t large enough ensures
P∞(Tk1 < t) > 0 and (i) holds.
We then prove that (iii) implies (v). We fix a > 0 and using S < +∞, there exists ka > 1
such that ∑

n≥ka−1

1

λnπn

∑
i≥n+1

πi ≤
1

a
.

We now define the Lyapounov function Ja as

Ja(m) :=


m−1∑

n=ka−1

1

λnπn

∑
i≥n+1

πi if m ≥ ka ,

0 if m < ka .

We notice that Ja is non-decreasing and bounded and we introduce the infinitesimal
generator L of X, defined by

L(f)(n) = (f(n+ 1)− f(n))λn + (f(n− 1)− f(n))µn,

for any bounded function f and any n ≥ 1. Then, the process

Mt := eatJa(X(t))−
∫ t

0
eau (aJa(X(u)) + LJa(X(u))) du, (t ≥ 0)

is a martingale with respect to the natural filtration of X. Adding that LJa(m) = −1 for
any m ≥ ka and that Ja(X(u)) ≤ Ja(∞) ≤ 1/a , we get for all k ≥ ka and t ≥ 0,

Ek
(
eat∧TkaJa(X(t ∧ Tka))

)
= Ek

(∫ t∧Tka

0
eau (aJa(X(u)) + LJa(X(u))) du

)
+ Ja(k)

= Ek
(∫ t∧Tka

0
eau (aJa(X(u))− 1) du

)
+ Ja(k)

≤ Ja(k).
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Adding that for any k ≥ ka, pk-a.s. Ja(X(t∧Tka)) ≥ Ja(ka), we get Ek
(
eat∧Tka

)
≤ Ja(k)

Ja(ka) .

Then (v) follows from the monotone convergence theorem and Assumption (iii).

It remains to show that (iii) implies (ii). On the one hand, according to (2.20), E∞(Tn) =∑
i≥n Ei+1(Ti) and Assumption (iii) entails that E∞(Tn) vanishes as n→∞ as the rest

of the finite series S. On the other hand, under P∞, the sequence (Tn)n≥0 decreases to the
random variable TN. Then, from the monotone convergence theorem, E∞(Tn) decreases
to E∞(TN) and E∞(TN) = 0. It ensures that TN = 0 P∞ a.s. and X instantaneously
comes down from infinity. The proof is then complete.

2.7 Quasi-stationary distributions

2.7.1 Some coupling properties of birth and death processes

Given a pair of random variables (X̄0, Ȳ0) and the infinitesimal generator Q of a non-
explosive birth and death process, we can construct on the same probability space two
birth and death processes (Xt)t≥0 and (Yt)t≥0 with the same infinitesimal generator Q
such that (X0, Y0) has the same law as (X̄0, Ȳ0) and such that, for all i, j ∈ N, given
(X0, Y0) = (i, j), the processes (Xt)t≥0 and (Yt)t≥0 are independent. We define their
coupling time τ as

τ = inf{t ≥ 0, Xt = Yt}.

We also define the process (X̃t)t≥0 as

X̃t =

{
Xt if t < τ,

Yt if t ≥ τ.
(2.24)

Proposition 2.14. The process (X̃t)t≥0 is a birth and death process with initial value
X0 and infinitesimal generator Q.

Proof. The process (Xt, Yt)t≥0 is a strong Markov process in N2 and τ is a stopping time
for this process. Hence, defining Ft = σ(Xs, Ys, s ≤ t) and the stopped σ-field Fτ as
usual, for fixed n ≥ 1, 0 = t0 ≤ . . . ≤ tn and i0, . . . , in ∈ N,

P(X̃t0 = i0, . . . , X̃tn = in | Fτ )

=
n∑
k=0

1tk≤τ<tk+1
P(Xt0 = i0, . . . , Xtk = ik, Ytk+1

= ik+1, . . . , Ytn = in | Fτ ),

with tn+1 = +∞. Hence, denoting P(i,j) = P(· | (X0, Y0) = (i, j)) and Pi = P(· | X0 = i),
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it follows from the Markov property at time τ that

P(X̃t0 = i0, . . . , X̃tn = in | Fτ )

=
n∑
k=0

1tk≤τ<tk+1
1Xt0=i0,...,Xtk=ik P(Xτ ,Yτ )(Ytk+1−τ = ik+1, . . . , Ytn−τ = in)

=

n∑
k=0

1tk≤τ<tk+1
1Xt0=i0,...,Xtk=ik PXτ (Xtk+1−τ = ik+1, . . . , Xtn−τ = in)

=

n∑
k=0

1tk≤τ<tk+1
1Xt0=i0,...,Xtk=ik P(Xtk+1

= ik+1, . . . , Xtn = in | Fτ )

= P(Xt0 = i0, . . . , Xtn = in | Fτ ).

Taking the expectation of both sides, we deduce that the processes (X̃t)t≥0 and (Xt)t≥0

have the same law.

This property allows to give bounds on the total variation distance between the dis-
tributions of two birth and death processes. Let us first recall the definition of the total
variation distance between probability measures.

Definition 2.15. Given π, ν two probability measures on N, their total variation distance
is given by one the following equivalent formulas

‖π−ν‖TV = 2 sup
A⊂N
|π(A)−ν(A)| =

∑
i∈N
|π(i)−ν(i)| = sup

f :N→R, ‖f‖∞≤1
|π(f)−ν(f)|, (2.25)

where π(f) =
∑

i∈N f(i)π(i).

For the next result, we use standard semigroup notations: for all x ∈ N and f : N→ R
bounded, we denote δxPtf = Ptf(x) = Exf(Xt) and for all probability measure π on N,
πPtf =

∑
i≥0 π(i)δiPtf = Eπf(Xt). Hence δxPt is the distribution of the random variable

Xt given X0 = x.

Corollary 2.16. For all x, y ∈ N and all t ≥ 0, there exists a probability measure ν on
N∗ such that

δxPt(1A) ≥ ν(A)P(τ ≤ t) and δyPt(1A) ≥ ν(A)P(τ ≤ t), ∀A ⊂ N∗, (2.26)

where τ is constructed as above with X̄0 = x and Ȳ0 = y. In particular,

‖δxPt − δyPt‖TV ≤ 2P(t < τ), ∀t ≥ 0. (2.27)

Proof. From the above construction we see that, for all A ⊂ N,

P(Xt ∈ A) = P(X̃t ∈ A) = P(Yt ∈ A, τ ≤ t) + P(Xt ∈ A, t < τ) ≥ P(Yt ∈ A, τ ≤ t).

Since the same inequality is trivial for (Yt)t≥0, we have proved (2.26) with

ν(A) =
P(Yt ∈ A, τ ≤ t)

P(τ ≤ t)
.

We also deduce that

|P(Xt ∈ A)− P(Yt ∈ A)| = |P(Xt ∈ A, t < τ)− P(Yt ∈ A, t < τ)| ≤ P(t < τ).

Taking the supremum over A ⊂ N entails (2.27).
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Since birth and death processes only make jumps of size ±1, it is also clear that Xt−Yt
has constant sign before time τ . The next result is then clear.

Corollary 2.17. If X̄0 ≤ Ȳ0 a.s., then Xt ≤ Yt a.s. for all t ≥ 0. In particular,
x 7→ Px(Xt ≥ z) is non-decreasing for all z ∈ N, and if T0 denotes the first hitting time
of 0 by the birth and death process, x 7→ Px(t < T0) is non-decreasing for all t ≥ 0.

2.7.2 First properties of quasi-stationary distributions

We will assume in all this section that the birth and death process (Xt)t≥0 gets
almost surely extinct after a finite time T0, i.e. that its infinitesimal generator satisfies
the condition of Theorem 2.8(i). In this case the stationary behavior of the process is
trivial and δ0 is the only stationary distribution. However, it may happen that extinction
only occurs after a long time and it is then interesting to characterize a stationary behavior
of the process before extinction. This can be done using the notions of quasi-stationary
distribution and quasi-limiting distribution as defined below.

Definition 2.18. (a) A probability measure ν on N∗ is a quasi-stationary distribution
for the birth and death process (Xt)t≥0 if, for all t ≥ 0 and all A ⊂ N,

Pν(Xt ∈ A | t < T0) = ν(A).

(b) A probability measure ν on N∗ is a quasi-limiting distribution for the birth and death
process (Xt)t≥0 if there exists a probability measure π on N such that

lim
t→+∞

Pπ(Xt ∈ · | t < T0) = ν.

where the convergence holds in total variation.

The next results shows that the two notions are the same.

Proposition 2.19. ν is a quasi-stationary distribution if and only if ν is a quasi-limiting
distribution.

Proof. A quasi-stationary distribution ν is a quasi-limiting distribution since Defini-
tion 2.18(b) holds for π = ν.

Assume that ν is a quasi-limiting distribution and take π as in Definition 2.18(b).
Then, for all f : N→ R bounded,

ν(f) =
∑
i≥0

ν(i)f(i) = lim
t→+∞

Eπ(f(Xt) | t < T0).

Now, for fixed s > 0, and A ⊂ N∗,

Pν(Xs ∈ A | s < T0) =
Pν(Xs ∈ A, s < T0)

Pν(s < T0)
=

Pν(Xs ∈ A)

Pν(s < T0)
=
ν(fs)

ν(gs)
,

where fs(x) = Px(Xs ∈ A) and gs(x) = Px(s < T0) > 0 for all x ∈ N. Then

Pν(Xs ∈ A | s < T0) = lim
t→∞

Eπ(fs(Xt) | t < T0)

Eπ(gs(Xt) | t < T0)
= lim

t→∞

Eπ(fs(Xt))

Eπ(gs(Xt))
= lim

t→∞

Pπ(Xt+s ∈ A)

Pπ(t+ s < T0)
,

where we used Markov’s property in the last equality. Hence

Pν(Xs ∈ A | s < T0) = lim
t→∞

Pπ(Xt+s ∈ A | t+ s < T0) = ν(A).

Therefore ν is a quasi-stationary distribution.
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A birth and death process started from its quasi-stationary distribution has remark-
able properties.

Proposition 2.20. Let ν be a quasi-stationary distribution for the birth and death process
(Xt)t≥0. Then

(i) there exists θ > 0 such that

Pν(t < T0) = e−θt, ∀t ≥ 0,

i.e. T0 has exponential distribution with parameter θ under Pν .

(ii) under Pν , XT0 is independent of T0.

Note that (i) implies that Eν(eαT0) <∞ for 0 < α < θ and hence that Ex(eαT0) <∞
for some x ∈ N∗. Proposition 2.13 then suggests that there may exist a quasi-stationary
distribution when the birth and death process comes down from infinity. We will see that
this condition is actually necessary and sufficient for the existence and uniqueness of a
quasi-stationary distribution.

Proof. To prove (i), we use Markov’s property:

Pν(t+ s < T0) = Eν [1t<T0PXt(s < T0)]

= Eν [PXt(s < T0) | t < T0]Pν(t < T0)

= Pν(s < T0)Pν(t < T0).

This is the standard property of lack of memory characterizing exponential distributions
with some parameter θ ∈ [0,+∞]. The case θ = 0 corresponds to T0 = +∞ a.s., which is
excluded by assumption, and the case θ = +∞ corresponds to T0 = 0 a.s., which never
holds for birth and death processes.

To prove (ii), we use a similar computation: given f : N→ R bounded and t ≥ 0,

Eν [f(XT0)1t<T−0] = Eν [1t<T0EXt(f(XT0))]

= Eν [EXt(f(XT0)) | t < T0]Pν(t < T0)

= EXt(f(XT0))Pν(t < T0).

Hence XT0 and T0 are independent under Pν .

To conclude these first properties, we give the characterization of quasi-stationary
distributions as eigenfunctions of the adjoint generator.

Proposition 2.21. Let ν be a probability measure on N∗. Then ν is a quasi-stationary
distribution if and only if there exists θ > 0 such that

λi−1ν(i− 1)− (λi + µi)ν(i) + µi+1ν(i+ 1) = −θν(i), ∀i ≥ 1. (2.28)

Proof. If ν is a quasi-stationary distribution, we deduce from Proposition 2.20 that, for
all i ∈ N∗,

ν(i) =
νPt1i
νPt1N∗

= eθtνPt1i.
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Now, Kolmogorov’s forward equation entails that∣∣∣∣∂Pt1i∂t
(x)

∣∣∣∣ = |Pt(Q1i)(x)| ≤ ‖Q1i‖∞ <∞.

Hence one can differentiate νPt1i =
∑

j≥1 ν(j)Pt1i(j) under the sum, which imples that
ν(Q1i) = −θν(i). Hence (2.28) is proved.

Conversely, assume that (2.28) holds true for some θ > 0. Since f = 1j belongs to
the domain of the infinitesimal generator Q, for all x ∈ N∗,

∂Ptf

∂t
(x) = PtQf(x) = QPtf(x).

As above, this is a bounded function of x and we can differentiate ν(Ptf) as

dν(Ptf)

dt
= ν(LPtf) =

∑
i≥1

Ptf(i)[λi−1ν(i− 1)− (λi +µi)ν(i) +µi+1ν(i+ 1)] = −θν(Ptf).

Solving this ODE gives
νPt1j = e−θtν(j).

By monotone convergence, we deduce that, for all A ⊂ N∗, νPt1A = e−θtν(A) and, in
particular, νPt1N∗ = e−θt. This implies that ν is a quasi-stationary distribution.

2.7.3 Exponential convergence in total variation to the quasi-stationary dis-
tribution

The goal of this section is to prove the next result.

Theorem 2.22 (Martinez, San Martin, Villemonais [35]). If the birth and death process
(Xt)t≥0 comes down from infinity, then (Xt)t≥0 admits a unique quasi-stationary distri-
bution ν and there exist constants C, γ > 0 such that, for all probability measure π on
N∗,

‖Pπ(Xt ∈ · | t < T0)− ν‖TV ≤ Ce−γt, ∀t ≥ 0. (2.29)

The proof given here is adapted from [12]. We start with some Lemmas.

Lemma 2.23. Let (Xt)t≥0 be a birth and death process coming down from infinity. Then,
there exists a constant c > 0 such that

inf
x∈N∗

Px(t < T0) ≥ c sup
x∈N∗

Px(t < T0), ∀t ≥ 0.

Proof. Let us recall from Corollary 2.17 that infx∈N∗ Px(t < T0) = P1(t < T0) and from
the property of coming down from infinity that supx∈N∗ Px(t < T0) = P∞(t < T0).

In view of Proposition 2.13(v), setting a = 1 + µ1 + λ1, we can find z ≥ 1 such that,
defining the finite set K = {1, 2, . . . , z} and TK = inf{t ≥ 0, Xt ∈ K},

A := sup
x≥1

Ex(ea(TK∧T0)) <∞. (2.30)

Let us first observe that for all y, z ∈ K, Py(X1 = z)Pz(t < T0) ≤ Py(t + 1 <
T0) ≤ Py(t < T0). Therefore, the constant C−1 := infy,z∈K Py(X1 = z) > 0 satisfies the
following inequality:

sup
x∈K

Px(t < T0) ≤ C inf
x∈K

Px(t < T0), ∀t ≥ 0. (2.31)
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Moreover, since a is larger than λ1 + µ1, the jump rate of X from 1,

e−asP1(t− s < T0) ≤ P1(Xs = 1)P1(t− s < T0) ≤ P1(t < T0).

For all x ≥ 1, we deduce from Chebyshev’s inequality and (2.30) that

Px(t < TK ∧ T0) ≤ Ae−at.

Using the last three inequalities and the strong Markov property, we have

Px(t < T0) = Px(t < TK ∧ T0) + Px(TK ∧ T0 ≤ t < T0)

≤ Ae−at +

∫ t

0
sup

y∈K∪{0}
Py(t− s < T0)Px(TK ∧ T0 ∈ ds)

≤ AP1(t < T0) + C

∫ t

0
P1(t− s < T0)Px(TK ∧ T0 ∈ ds)

≤ AP1(t < T0) + C P1(t < T0)

∫ t

0
eas Px(TK ∧ T0 ∈ ds)

≤ A(1 + C)P1(t < T0).

Combining this with (2.31) ends the proof of the lemma.

Lemma 2.24. Let us define, for all 0 ≤ s ≤ t ≤ T the linear operator RTs,t by

RTs,tf(x) = Ex(f(Xt−s) | T − s < τ∂)

= E(f(Xt) | Xs = x, T < τ∂),

by the Markov property. This family of operators forms a time-inhomogeneous semigroup,
in the sense that, for all 0 ≤ u ≤ s ≤ t ≤ T , all x ≥ 1 and all f : N∗ → R bounded,

RTu,s(R
T
s,tf)(x) = RTu,tf(x).

Proof. We have, for all 0 ≤ u ≤ s ≤ t ≤ T ,

RTu,s(R
T
s,tf)(x) = Ex(EXs−u(f(Xt−s) | T − s < T0) | T − u < T0).

For any bounded measurable function g, the Markov property implies that

Ex (g(Xs−u)1T−u<T0) = Ex
(
g(Xs−u)PXs−u(T − u− (s− u) < T0)

)
= Ex

(
g(Xs−u)PXs−u(T − s < T0)

)
Applying this equality to g : y 7→ Ex(f(Xt−s) | T − s < T0), we deduce that

RTu,s(R
T
s,tf)(x) =

Ex(EXs−u(f(Xt−s)1T−s<T0))

Px(T − u < T0)

=
Ex(f(Xt−s+(s−u))1T−s+(s−u)<T0))

Px(T − u < T0)

= RTu,tf(x),

where we have used the Markov property a second time.
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Lemma 2.25. Assume that there exist constants C, γ > 0 such that, for all x, y ∈ N∗,

‖Px(Xt ∈ · | t < T0)− Py(Xt ∈ · | t < T0)‖TV ≤ Ce−γt, ∀t ≥ 0.

Then, for all probability measures π1, π2 on N∗,

‖Pπ1(Xt ∈ · | t < T0)− Pπ2(Xt ∈ · | t < T0)‖TV ≤ Ce−γt, ∀t ≥ 0.

Proof. Let π1 be a probability measure on E and x ∈ E. We have

‖Pπ1(Xt ∈ · | t < T0)− Px(Xt ∈ · | t < T0)‖TV

=
1

Pπ1(t < T0)
‖Pπ1(Xt ∈ ·)− Pπ1(t < T0)Px(Xt ∈ · | t < T0)‖TV

≤ 1

Pπ1(t < T0)

∑
y≥1

‖Py(Xt ∈ ·)− Py(t < T0)Px(Xt ∈ · | t < T0)‖TV π1(y)

≤ 1

Pπ1(t < T0)

∑
y≥1

Py(t < T0)‖Py(Xt ∈ · | t < T0)− Px(Xt ∈ · | t < T0)‖TV π1(y)

≤ 1

Pπ1(t < T0)

∫
y∈E

Py(t < T0)Ce−γtdπ1(y) ≤ Ce−γt.

The same computation, replacing δx by any probability measure, concludes the proof of
Lemma 2.25.

Proof of Theorem 2.22. We use the coupling technique of Section 2.7.1: we construct on
the same probability space two independent birth and death processes with generator Q,
(X1

t )t≥0 and (X∞t )t≥0, one starting from X1
0 = 1 and the other one from X∞0 =∞, and

we call τ1,∞ their coupling time. Since X∞ gets a.s. extinct in finite time and the two
processes are independent, there exist t0 > 0 such that

c0 := P(τ1,∞ < t0, X
1
t0 > 0) > 0.

As in Corollary 2.16, we deduce that there exists a probability measure ν1,∞ such that

P1(Xt0 ∈ A) ≥ c0ν
1,∞(A), P∞(Xt0 ∈ A) ≥ c0ν

1,∞(A), ∀A ⊂ N∗.

Since we can similarly couple on the same probability the three processes X1, X∞ and
Xx (a birth and death process started from X0 = x ∈ N∗) and since the coupling times
τ1,x between X1 and X∞ and τx,∞ between Xx and X∞ are clearly smaller than τ1,∞,
we also deduce that

Px(Xt0 ∈ A) ≥ c0ν
1,∞(A), ∀A ⊂ N∗, ∀x ∈ N∗.

Then, for all x ∈ N∗ and t ≥ t0,

Px(Xt0 ∈ A, t < T0) = Ex[1Xt0∈APXt0 (t− t0 < T0)] ≥ c0ν
1,∞[1AP·(t− t0 < T0)].

Dividing by Px(t < T0) and using the inequality Px(t < T0) ≤ Px(t− t0 < T0), we obtain

Px(Xt0 ∈ A | t < T0) ≥ c0
ν1,∞[1AP·(t− t0 < T0)]

supy≥1 Py(t− t0 < T0)
.
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Now Lemma 2.23 entails that the measure A 7→ ν1,∞[1AP·(t−t0<T0)]
supy≥1 Py(t−t0<T0) has a mass greater

than c0. Since it does not depend on x, we have proved that there exists a probability
measure νt on N∗ such that, for all t ≥ t0,

Px(Xt0 ∈ A | t < T0) ≥ cc0νt(A), ∀x ≥ 1, ∀A ⊂ N∗.

In other words, using the notations of Lemma 2.24, we have proved that, for all
0 ≤ s ≤ s+ t0 ≤ T ,

δxR
T
s,s+t0 ≥ cc0νT−s, ∀x ≥ 1.

Therefore, for all x 6= y in N∗,

‖δxRTs,s+t0 − δyR
T
s,s+t0‖TV ≤ 2(1− cc0).

Given two mutually singular probability measures π1, π2 on E, we have∥∥π1R
T
s,s+t0 − π2R

T
s,s+t0

∥∥
TV
≤

∑
x≥1, y≥1

∥∥δxRTs,s+t0 − δyRTs,s+t0∥∥TV π1(x)π2(y)

≤ 2(1− cc0) = (1− cc0)‖π1 − π2‖TV .

This inequality extends to probability measures which are non-singular since one can
apply the last inequality to the mutually singular probability measures π̄+ := (π1−π2)+

(π1−π2)+(N∗)

and π̄− := (π1−π2)−
(π1−π2)−(N∗) . Then∥∥π̄+R

T
s,s+t0 − π̄−R

T
s,s+t0

∥∥
TV
≤ 2(1− cc0).

Since π1(N∗) = π2(N∗) = 1, we have (π1 − π2)+(N∗) = (π1 − π2)−(N∗). So multiplying
the last inequality by (π1 − π2)+(N∗), we deduce that

‖(π1 − π2)+R
T
s,s+t0 − (π1 − π2)−R

T
s,s+t0‖TV
≤ 2(1− cc0)(π1 − π2)+(N∗) = (1− cc0)‖π1 − π2‖TV .

Since (π1 − π2)+ − (π1 − π2)− = π1 − π2, we obtain

‖π1R
T
s,s+t0 − π2R

T
s,s+t0‖TV ≤ (1− c1c2)‖π1 − π2‖TV .

We can now use the semigroup property of Lemma 2.24: for any x, y ∈ E,

‖δxRT0,T − δyRT0,T ‖TV = ‖δxRT0,T−t0R
T
T−t0,T − δyR

T
0,T−t0R

T
T−t0,T ‖TV

≤ (1− cc0) ‖δxRT0,T−t0 − δyR
T
0,T−t0‖TV ≤ . . .

≤ (1− cc0)bT/t0c ‖δxRT0,T−t0bT/t0c − δyR
T
0,T−t0bT/t0c‖TV

≤ 2 (1− cc0)bT/t0c .

Therefore, by Lemma 2.25, we have proved that there exist constants C, γ > 0 such that,
for all probability measures π1, π2 on N∗,

‖Pπ1(Xt ∈ · | t < T0)− Pπ2(Xt ∈ · | t < T0)‖TV ≤ Ce−γt, ∀t ≥ 0. (2.32)

Given two quasi-stationary distributions ν and ν ′, the last inequality applied to π1 = ν
and π2 = ν ′ implies the uniqueness of the quasi-stationary distribution. Let us now prove
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the existence of a quasi-stationary distribution. By Proposition 2.19, this is equivalent to
prove the existence of a quasi-limiting distribution for X, so we only need to prove that
Px(Xt ∈ · | t < T0) converges when t goes to infinity, for some x ≥ 1. We have, for all
s, t ≥ 0 and x ≥ 1,

Px (Xt+s ∈ · | t+ s < T0) =
δxPt+s

δxPt+s1N∗
=

δxPtPs
δxPtPs1N∗

=
δxR

s
0,sPt

δxRs0,sPt1N∗

= PδxRs0,s (Xt ∈ · | t < T0) .

Hence,

‖Px(Xt ∈ · | t < T0)− Px(Xt+s ∈ · | t+ s < T0)‖TV
= ‖Px(Xt ∈ · | t < T0)− PδxRs0,s(Xt ∈ · | t < T0)‖TV

≤ 2 (1− cc0)bt/t0c −−−−−→
s,t→+∞

0.

Therefore, the sequence (Px(Xt ∈ · | t < T0))t≥0 is a Cauchy sequence for the total
variation norm, hence converges when t goes to infinity to some probability measure ν
on E, which is a quasi-limiting distribution, hence a quasi-stationary distribution.

Finally (2.29) follows from (2.32) with π1 = π and π2 = ν.

Theorem 2.22 has the following converse.

Theorem 2.26 (van Doorn [40]). A non-explosive birth and death process with almost
sure extinction (Xt)t≥0 admits a unique quasi-stationary distribution if and only if it
comes down from infinity.

We do not give the proof of this result here. Instead, we prove a weaker converse
statement.

Theorem 2.27. A non-explosive birth and death process with almost sure extinction
(Xt)t≥0 admits a unique quasi-stationary distribution ν such that, for all probability mea-
sure π on N∗,

‖Pπ(Xt ∈ · | t < T0)− ν‖TV ≤ Ce−γt, ∀t ≥ 0 (2.33)

for some constants C, γ > 0, if and only if it comes down from infinity.

Proof. One implication is given by Theorem 2.22, so let us assume (2.33) and that (Xt)t≥0

does not come back from infinity, and try to reach a contradiction. By definition of the
property of coming down from infinity, we have that, for all t > 0 and y ≥ 1, P∞(Ty >
t) = 1. Let us choose t > 0 such that Ce−γt < 1/3 and y0 such that ν({1, . . . , y0}) ≥ 2/3.
It then follows from (2.33) that, for all y ≥ 1,

Py(Xt ≤ y0) ≥ Py(Xt ≤ y0 | t < T0) ≥ 1/3.

This is impossible since limy→+∞ Py(Xt ≤ y0) = P∞(Xt ≤ y0) = 0.
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3 Scaling Limits for Birth and Death Processes

If the population is large, so many birth and death events occur that the dynamics
becomes difficult to describe individual per individual. Living systems need resources
in order to survive and reproduce and the biomass per capita depends on the order of
magnitude of these resources. We introduce a parameter K ∈ N∗ = {1, 2, . . .} scaling
either the size of the population or the total amount of resources. We assume that the
individuals are weighted by 1

K .

In this section, we show that depending on the scaling relations between the population
size and the demographic parameters, the population size process will be approximated
either by a deterministic process or by a stochastic process. These approximations will
lead to different long time behaviors.

In the rest of this section, we consider a sequence of birth and death processes ZK

parameterized by K, where the birth and death rates for the population state n ∈ N
are given by λK(n) and µK(n). Since the individuals are weighted by 1

K , the population
dynamics is modeled by the process (XK

t , t ≥ 0) ∈ D(R+,R+) with jump amplitudes ± 1
K

and defined for t ≥ 0 by

XK
t =

ZKt
K

. (3.1)

This process is a Markov process with generator

LKφ(x) = λK(Kx)
(
φ(x+

1

K
)− φ(x)

)
+ µK(Kx)

(
φ(x− 1

K
)− φ(x)

)
. (3.2)

Therefore, adapting Proposition 2.5 and Theorem 2.6, one can easily show that if λK(n) ≤
λ̄n (uniformly in K) and if

sup
K

E((XK
0 )3) < +∞, (3.3)

then

sup
K

E(sup
t≤T

(XK
t )3) < +∞, (3.4)

and for any K ∈ N∗, the process

MK
t = XK

t −XK
0 −

1

K

∫ t

0
(λK(ZKs )− µK(ZKs ))ds (3.5)

is a square integrable martingale with quadratic variation

〈MK〉t =
1

K2

∫ t

0
(λK(ZKs ) + µK(ZKs ))ds. (3.6)

3.1 Deterministic approximation - Malthusian and logistic Equations

Let us now assume that the birth and death rates satisfy the following assumption:

λK(n) = nλ
( n
K

)
; µK(n) = nµ

( n
K

)
, where the functions

λ and µ are non negative and Lipschitz continuous on R+,

λ(x) ≤ λ̄ ; µ(x) ≤ µ̄(1 + x). (3.7)

We will focus on two particular cases:
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The linear case: λK(n) = nλ and µK(n) = nµ, with λ, µ > 0.

The logistic case: λK(n) = nλ and µK(n) = n(µ+
c

K
n) with λ, µ, c > 0.

By (3.3), the population size is of the order of magnitude of K and the biomass per capita
is of order 1

K . This explains that the competition pressure from one individual to another
one in the logistic case is proportional to 1

K .

We are interested in the limiting behavior of the process (XK
t , t ≥ 0) when K →∞. We

are actually going to prove two versions of the next result.

Theorem 3.1 (Ethier and Kurtz [17]). Let us assume (3.7), that λ(x) ≤ µ(x) for all x
large enough and that the sequence (XK

0 )K converges a.s. to a real number x0. Then for
any T > 0, the sequence of processes (XK

t , t ∈ [0, T ]) constructed as in Proposition 2.7
from two given Poisson processes (P1(t))t≥0 and (P2(t))t≥0, converges in probability for
the L∞([0, T ]) norm to the continuous deterministic function (x(t), t ∈ [0, T ]) solution of
the ordinary differential equation

x′(t) = x(t)(λ(x(t))− µ(x(t))) ;x(0) = x0. (3.8)

In the linear case, the limiting equation is the Malthusian equation

x′(t) = x(t)(λ− µ).

In the logistic case, one obtains the logistic equation

x′(t) = x(t)(λ− µ− c x(t)). (3.9)

These two equations have different long time behaviors. In the Malthusian case, depend-
ing on the sign of λ − µ, the solution of the equation tends to +∞ or to 0 as time goes
to infinity, modeling the explosion or extinction of the population. In the logistic case
and if the growth rate λ − µ is positive, the solution converges to the carrying capacity
λ− µ
c

> 0. The competition between individuals yields a regulation of the population

size.

Proof. We first make the proof assuming that x 7→ xλ(x) and x 7→ xµ(x) are bounded
and globally Lipschitz functions on R+. The extension to the general case will be done
afterwards. Using the construction of Proposition 2.7, for all K ≥ 1,

XK
t = XK

0 +
1

K
P1

(
K

∫ t

0
XK
s λ(XK

s )ds

)
− 1

K
P2

(
K

∫ t

0
XK
s µ(XK

s )ds

)
, ∀t ≥ 0.

Introducing P̃1(t) = P1(t) − t and P̃2(t) = P2(t) − t the compensated Poisson processes,
we obtain

XK
t = XK

0 +

∫ t

0
F (XK

s )ds+
1

K
P̃1

(
K

∫ t

0
XK
s λ(XK

s )ds

)
− 1

K
P̃2

(
K

∫ t

0
XK
s µ(XK

s )ds

)
,

26



where F (x) = x(λ(x) − µ(x)). Therefore, introducing M such that x 7→ xλ(x) and
x 7→ xµ(x) are bounded by M and M -Lipschitz, for all t ≤ T ,

|XK
t − x(t)| ≤ |XK

0 − x(0)|+
∫ t

0
|F (XK

s )− F (x(s))|ds+
1

K
sup

0≤s≤KMT

{
|P̃1(s)|+ |P̃2(s)|

}
≤ |XK

0 − x(0)|+M

∫ t

0
|XK

s − x(s)|ds+
1

K
sup

0≤s≤KMT

{
|P̃1(s)|+ |P̃2(s)|

}
.

Therefore, the result follows from Gronwall’s lemma and the next lemma.

Lemma 3.2. For any Poisson process (P (t))t≥0 and for all α > 1/2,

1

nα
sup
t∈[0,n]

|P (t)− t| −−−−−→
n→+∞

0 a.s.

This result will be proved after the current proof.
We now consider the general case, where the functions x 7→ xλ(x) and x 7→ xµ(x)

are only locally bounded and locally Lipschitz on R+. Since we assume that λ(x) ≤ µ(x)
for all x ≥ x1, the solution x(t) to (3.10) remains smaller that max{x(0), x1}. So let us
define x̄ = 1 + max{x(0), x1} and

λ̄(x) =

{
λ(x) if x ≤ x̄,
x̄
xλ(x̄) otherwise,

, µ̄(x) =

{
µ(x) if x ≤ x̄,
x̄
xµ(x̄) otherwise.

The first part of the proof applies to the processes (X̄K
t )t≥0 constructed from the functions

λ̄ and µ̄ and the Poisson processes (P1(t))t≥0 and (P2(t))t≥0. Hence, for any T > 0,
supt∈[0,T ] |X̄K

t − x̄(t)| → 0 when K → +∞ and

x̄′(t) = x̄(t)(λ̄(x̄(t))− µ̄(x̄(t))), x̄(0) = x(0).

Since λ(x) ≤ µ(x) for x ≥ x1, we have x̄(t) = x(t) ≤ x̄ − 1 for all t ≥ 0. In addition,
for K large enough so that supt∈[0,T ] |X̄K

t − x̄(t)| ≤ 1, we have supt∈[0,T ] X̄
K
t ≤ x̄. Since

λ̄(x) = λ(x) and µ̄(x) = µ(x) for all x ≤ x̄, we deduce that X̄K
t = XK

t for all t ∈ [0, T ].
Combining these two facts, we deduce that

sup
t∈[0,T ]

|XK
t − x(t)| −−−−−→

K→+∞
0 a.s.,

which ends the proof of Theorem 3.1.

Proof of Lemma 3.2. Using the Laplace transform of P (t)− t and Chebychev’s exponen-
tial inequality, we obtain that, for all γ > 0 and ε > 0,

P(P (t)− t > ε) ≤ e−γεE[exp(γ(P (t)− t))] = exp[t(eγ − 1− γ)− γε].

Taking the infimum of the right-hand side with respect to γ > 0, we obtain

P(P (t)− t > ε) ≤ eε

(1 + ε/t)t+ε
.

Similarly,

P(P (t)− t > −ε) ≤ e−ε

(1− ε/t)t−ε
.
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Now, we fix 1/2 < α < 1 and take ε = tα. We deduce that

P(|P (t)− t| > tα) ≤ et
α

(1 + 1/t1−α)t+tα
+

e−t
α

(1− 1/t1−α)t−tα

and one then checks that, when t→ +∞,

P(|P (t)− t| > tα) ≤ 2 exp

(
− t

2α−1

2
+O(t3α−2)

)
.

Since the right-hand side is sommable w.r.t. t ∈ N∗, Borel-Cantelli Lemma implies that

sup
n∈N∗

|P (n)− n|
nα

<∞ a.s.

Since P (t) is non-decreasing, P (btc)− btc − 1 ≤ P (t)− t ≤ P (dte)− dte+ 1 for all t ≥ 1.
Hence

sup
t∈R+

|P (t)− t|
(t ∨ 1)α

<∞ a.s.

Therefore, for all η > 0,

1

nα+η
sup
t∈[0,n]

|P (t)− t| ≤ 1

nη
sup
t∈[0,n]

|P (t)− t|
(t ∨ 1)α

−−−−−→
n→+∞

0 a.s.

Theorem 3.1 gives strong convergence (almost sure convergence for the L∞ norm) of
the birth and death process to a deterministic limit. We also state and prove another
version giving convergence in law because it will allow us to explain in detail a general
method applying to much more general situations to which the method of Theorem 3.1
does not apply (see for example Section 5).

Theorem 3.3. Let us assume (3.7), (3.3) and that the sequence (XK
0 )K converges in

law (and in probability) to a real number x0. Then for any T > 0, the sequence of
processes (XK

t , t ∈ [0, T ]) converges in law (and hence in probability), in D([0, T ],R+), to
the continuous deterministic function (x(t), t ∈ [0, T ]) solution of the ordinary differential
equation

x′(t) = x(t)(λ(x(t))− µ(x(t))) ;x(0) = x0. (3.10)

Proof. The proof is based on a compactness-uniqueness argument. More precisely, the
scheme of the proof is the following:

1) Uniqueness of the limit.
2) Uniform estimates on the moments (which are given by Proposition 2.5).
3) Tightness of the sequence of laws of (XK

t , t ∈ [0, T ]) in the Skorohod space. We
will use the Aldous and Rebolledo criterion.

4) Identification of the limit.

Thanks to Assumption (3.7), the uniqueness of the solution of equation (3.10) is obvious.
We also have (3.4). Therefore it remains to prove the tightness of the sequence of laws
and to identify the limit. Recall (see for example [17] or [25]) that since the processes
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(XK
t = XK

0 + MK
t + AKt )t are semimartingales, tightness will be proved as soon as we

have
(i) The sequence of laws of (supt≤T |XK

t |) is tight,
(ii) The finite variation processes 〈MK〉 and AK satisfy the Aldous conditions.

Let us recall the Aldous condition (see [1]): let (Y K)K be a sequence of Ft-adapted
processes and τ the set of stopping times for the filtration (Ft)t. The Aldous condition
can be written: ∀ε > 0, ∀η > 0, ∃δ > 0, K0 such that

sup
K≥K0

sup
S,S′∈τ ;S≤S′≤(S+δ)∧T

P(|Y K
S′ − Y K

S | > ε) ≤ η.

Let us show this property for the sequence (AK)K . We have

E(|AKS′ −AKS |) ≤ E

(∫ S′

S
XK
s |λ(XK

s )− µ(XK
s )|ds

)

≤ CE

(∫ S′

S
(1 + (XK

s )2)ds

)
by (3.7)

≤ C δ E

(
sup
s≤T

(1 + (XK
s )2)

)
which tends to 0 uniformly in K as δ tends to 0. We use a similar argument for (〈MK〉)K
to conclude for the tightness of the laws of (XK)K . Prokhorov’s Theorem implies the rel-
ative compactness of this family of laws in the set of probability measures on D([0, T ],R),
leading to the existence of a limiting value Q.

Let us now identify the limit. The jumps of XK have the amplitude 1
K . Since the mapping

x→ supt≤T |∆x(t)| is continuous from D([0, T ],R) into R+, then the probability measure
Q only charges the subset of continuous functions. For any t > 0, we define on D([0, T ],R)
the function

ψt(x) = xt − x0 −
∫ t

0
(λ(xs)− µ(xs)) xsds.

The assumptions yield
|ψt(x)| ≤ C sup

t≤T
(1 + (xt)

2)

and we deduce the uniform integrability of the sequence (ψt(X
K))K from (3.4). The pro-

jection mapping x→ xt isn’t continuous on D([0, T ],R) but since Q only charges the con-
tinuous paths, we deduce thatX → ψt(X) isQ-a.s. continuous, ifX denotes the canonical
process. Therefore, since Q is the weak limit of a subsequence of (L(XK))K (that for
simplicity we still denote L(XK)) and using the uniform integrability of (ψt(X

K))K , we
get

EQ(|ψt(X)|) = lim
K

E(|ψt(XK)|) = lim
K

E(|MK
t |).

But
E(|MK

t |) ≤
(
E(|MK

t |2)
)1/2

tends to 0 by (3.6), (3.7) and (3.4). Hence the limiting process X is the deterministic
solution of the equation

x(t) = x0 +

∫ t

0
xs(λ(xs)− µ(xs))ds.

That ends the proof.
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3.2 Lotka Volterra models

In the previous section, we have considered the large approximation of an homogeneous
population, where demographic rates are similar for all individuals. We could generalize
our approach to a set of different subpopulations interacting together by considering a
multitype birth and death process ad its large population size approximation.

Let us focus here on the case of two sub-populations characterized by two different types
1 and 2. For i = 1, 2, the growth rates of these populations are r1 and r2. Individuals
compete for resources either inside the same species (intra-specific competition) or with
individuals of the other species (inter-specific competition). As before, let K be the
scaling parameter describing the capacity of the environment. The competition pressure

exerted by an individual of type 1 on an individual of type 1 (resp. type 2) is given by
c11

K
(resp.

c21

K
). The competition pressure exerted by an individual of type 2 is respectively

given by
c12

K
and

c22

K
. The parameters cij are assumed to be positive.

By similar arguments as in Subsection 3.1, one can prove that the large K-approximation
of the population dynamics is described by the well known competitive Lotka-Volterra
dynamical system. Let x1(t) (resp. x2(t)) be the limiting renormalized 1-population size
(resp. 2-population size). We get{

x′1(t) = x1(t) (r1 − c11 x1(t)− c12 x2(t));

x′2(t) = x2(t) (r2 − c21 x1(t)− c22 x2(t)).
(3.11)

This system has been extensively studied and its long time behavior is well known. Let
us assume that c11c22 − c12c21 6= 0. Then there are 4 possible equilibria: the unstable
equilibrium (0, 0), two trivial equilibria (x̄1, 0) = ( r1c11 , 0), (0, x̄2) = (0, r2c22 ) and a non-
trivial equilibrium (x∗1, x

∗
2) given by

x∗1 =
r1c22 − r2c12

c11c22 − c12c21
; x∗2 =

r2c11 − r1c21

c11c22 − c12c21
.

Of course, the latter is possible if the two coordinates are positive. The asymptotic
behavior of (3.11) is given by the next result.

Proposition 3.4. (i) Any solution to (3.11) with initial condition in R2
+ converges to a

finite equilibirum of (3.11) in R2
+ when t→ +∞.

(ii) The equilibrium (x̄1, 0) is locally asymptotically stable if

r2c11 − r1c21 < 0,

It is globally asymptotically stable and attracts all the initial conditions in R+×R∗+
if

r2c11 − r1c21 < 0 and r1c22 − r2c12 > 0. (3.12)

(iii) The system (3.11) admits a unique non-trivial equilibrium in (R∗+)2 if and only if

(r2c11 − r1c21)(r1c22 − r2c12) > 0. (3.13)
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It is unstable if
r2c11 − r1c21 < 0 and r1c22 − r2c12 < 0. (3.14)

It is globally asymptotically stable and attracts all the initial conditions in (R∗+)2 if

r2c11 − r1c21 > 0 and r1c22 − r2c12 > 0. (3.15)

Proof. To prove (i), we divide R2
+ according to the sign of ẋ1 and ẋ2: ẋ1 is positive under

the line r1 − c11x1 − c12x2 and ẋ2 under the line r2 − c21x1 − c22x2. Each of these two
lines cut the coordinate axes at nonnegative coordinates. In particular, there exists a
non-trivial equilibrium in (R∗+)2 iff the two lines cut at a point with coordinates having
the same sign, hence if and only if (3.13) is satisfied.

We obtain four possible configurations shown in Fig. 1, where the small arrows rep-
resent the direction of the flow. Fig. 1 (a) corresponds to the case r2c11 − r1c21 < 0 and
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ẋ2>0
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ẋ1>0
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ẋ2>0
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Figure 1: Possible configurations for the signs of ẋ1 and ẋ2 for the system (3.11).

r1c22 − r2c12 > 0, Fig. (b) to the case r2c11 − r1c21 > 0 et r1c22 − r2c12 < 0, Fig. (c) to
the case r2c11− r1c21 < 0 and r1c22− r2c12 < 0, and Fig. (d) to the case r2c11− r1c21 > 0
and r1c22 − r2c12 > 0. Cases where one of these quantities is zero correspond to cases
where the two lines intersect on one of the coordinate axes, and the two lines are equal if
and only if r2c11 − r1c21 = r1c22 − r2c12 = 0.

Consider now any solution to (3.11) in each of the cases (a) to (d). If this solution
starts in the domain where ẋ1 ≤ 0 and ẋ2 ≥ 0, looking at the signs of the derivatives of
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x1 and x2 at the boundary, we see that the solution cannot exit from this domain. Hence
its two coordinates are monotonous and converge to some limit. A similar result holds if
the solution starts from the domain where ẋ1 ≥ 0 and ẋ2 ≤ 0. When the initial condition
satisfies ẋ1(0) > 0 and ẋ2(0) > 0, the solution can either stay in this domain forever (and
then converge as a monotonous function time), or leave it after a finite time and reach
one of the first two domains considered above, where the solution will remain forever and
converge to some limit. A similar situation holds if the initial condition satisfies ẋ1(0) < 0
and ẋ2(0) < 0. This ends the proof of (i).

To prove (ii), we first observe that (i) implies that any solution to (3.11) is bounded.
Since

x1(t) = x1(0) exp

(∫ t

0
(r1 − c11x1(s)− c12x2(s))ds

)
x2(t) = x2(0) exp

(∫ t

0
(r2 − c21x1(s)− c22x2(s))ds

)
,

we deduce that x1(t) and x2(t) never reach zero if x1(0) > 0 and x2(0) > 0.
Computing the Jacobian matrix of the system, it is easy to see that the linear criterion

of local stability for the equilibrium (x̄1, 0) is r2c11 − r1c21 < 0, and the equilibrium is
unstable if r2c11 − r1c21 > 0. This gives the first part of (ii).

To prove the global asymptotic stability of (x̄1, 0) under condition (3.12), we first
notice that, because of criterion (3.13), the non-trivial equilibrium does not belong to
(R∗+)2 in this case. Hence any solution to (3.11) must converge to either (x̄1, 0) or (0, x̄2)
(except when the initial condition is 0). To end the proof of (ii), It therefore suffices to
prove that no solution started from (R∗+)2 can converge to (0, x̄2). Since r1c22−r2c12 > 0,
ẋ1 > 0 at all point close enough to (0, x̄2) with x1 > 0. Since we have proved that no
solution started from (R∗+)2 can hit the axis {x1 = 0}, the proof of (ii) is completed.

We now come to the proof of (iii). We already proved that (3.13) is equivalent to the
existence of the non-trivial equilibrium (x∗1, x

∗
2), so let us assume (3.13). The Jacobian

matrix of the system at (x∗1, x
∗
2) is(

−c11x
∗
1 −c12x

∗
1

−c21x
∗
2 −c22x

∗
2

)
. (3.16)

Its determinant (c11c22 − c12c21)x∗1x
∗
2 is striclty negative if c11c22 − c12c21 < 0. So in

this case, the Jacobian matrix has a positive eigenvalue and the equilibrium is unstable.
Because of the expression of (x∗1, x

∗
2), this case is equivalent to Condition (3.14).

If (3.15) holds true, as was proved in (ii), a solution to (3.11) started from (R∗+)2

cannot converge to (0, 0), (x̄1, 0) or (0, x̄2). By (i), this solution must converge to an
equilibrium so it must be (x∗1, x

∗
2), which ends the proof of (iii).

One could extend (3.11) to negative coefficients cij , describing a cooperation effect of
species j on the growth of species i. The long time behavior can be totally different.
For example, the prey-predator models have been extensively studied in ecology (see [22],
Part 1). The simplest prey-predator system{

x′1(t) = x1(t) (r1 − c12 x2(t));

x′2(t) = x2(t) (c21 x1(t)− r2),
(3.17)
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with r1, r2, c12, c21 > 0, has periodic solutions.

Of course, we could also study multi-dimensional systems corresponding to multi-type
population models. In what follows we are more interested in modeling the case where
the types of the individuals belong to a continuum. That will allow us to add mutation
events where the offspring of an individual may randomly mutate and create a new type.

4 Population Point Measure Processes

We are now interested in the mathematical modeling of Darwinian evolution. Even if the
evolution appears as a global change in the state of a population, its basic mechanisms,
mutation and selection, operate at the level of individuals. Consequently, the evolving
population is modeled as a stochastic system of competing individuals (sharing limited
resources). Each individual is characterized by a vector of phenotypic trait values, herita-
ble except when mutation occurs. The trait space X is assumed to be a compact subset
of Rd, for some d ≥ 1. The population is described by a random point measure with
support on the trait space.

We will denote by MF (X ) the set of all finite non-negative measures on X . Let M be
the subset of MF (X ) consisting of all finite point measures:

M =

{
n∑
i=1

δxi , n ≥ 0, x1, ..., xn ∈ X

}
.

Here and below, δx denotes the Dirac mass at x. For any µ ∈MF (X ) and any measurable
function f on X , we set 〈µ, f〉 =

∫
X fdµ.

We wish to study the stochastic process (Yt, t ≥ 0), taking its values inM, and describing
the distribution of individuals and traits at time t. We define

Yt =

Nt∑
i=1

δXi
t
, (4.1)

Nt = 〈Yt, 1〉 ∈ N standing for the number of individuals alive at time t, and X1
t , ..., X

Nt
t

describing the individuals’ traits (in X ).

We assume that the birth rate of an individual with trait x is b(x) and that for a popula-
tion ν =

∑N
i=1 δxi , its death rate is given by d(x,C ∗ ν(x)) = d(x,

∑N
i=1C(x− xi)). This

death rate takes into account the intrinsic death rate of the individual, depending on its
phenotypic trait x but also on the competition pressure exerted by the other individuals
alive, modeled by the competition kernel C. Let p(x) and m(x, z)dz be respectively the
probability that an offspring produced by an individual with trait x carries a mutated
trait and the law of this mutant trait.
Thus, the population dynamics can be roughly summarized as follows. The initial pop-
ulation is characterized by a (possibly random) counting measure ν0 ∈ M at time 0,
and any individual with trait x at time t has two independent random exponentially dis-
tributed “clocks”: a birth clock with parameter b(x), and a death clock with parameter
d(x,C ∗ Yt(x)). If the death clock of an individual rings, this individual dies and disap-
pears. If the birth clock of an individual with trait x rings, this individual produces an
offspring. With probability 1−p(x) the offspring carries the same trait x; with probability
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p(x) the trait is mutated. If a mutation occurs, the mutated offspring instantly acquires
a new trait z, picked randomly according to the mutation step measure m(x, z)dz. When
one of these events occurs, all individual’s clocks are reset to 0.

We are looking for a M-valued Markov process (Yt)t≥0 with infinitesimal generator L,
defined for all real bounded functions φ and ν ∈M by

Lφ(ν) =
N∑
i=1

b(xi)(1− p(xi))(φ(ν + δxi)− φ(ν))

+
N∑
i=1

b(xi)p(xi)

∫
X

(φ(ν + δz)− φ(ν))m(xi, z)dz

+

N∑
i=1

d(xi, C ∗ ν(xi))(φ(ν − δxi)− φ(ν)). (4.2)

The first term in (4.2) captures the effect of births without mutation, the second term
the effect of births with mutation and the last term the effect of deaths. The density-
dependence makes the third term nonlinear.

4.1 Pathwise construction

Let us justify the existence of a Markov process with infinitesimal generator L. The
explicit construction of (Yt)t≥0 also yields two side benefits: providing a rigorous and
efficient algorithm for numerical simulations (given hereafter) and establishing a general
method that will be used to derive some large population limits (Section 5).

We make the biologically natural assumption that the trait dependency of birth param-
eters is “bounded”, and at most linear for the death rate. Specifically, we assume

Assumption 4.1. There exist constants b̄, d̄, C̄, and α and a probability density function
m̄ on Rd such that for each ν =

∑N
i=1 δxi and for x, z ∈ X , ζ ∈ R,

b(x) ≤ b̄, d(x, ζ) ≤ d̄(1 + |ζ|),
0 < C∗ ≤ C(x) ≤ C̄,
m(x, z) ≤ α m̄(z − x).

These assumptions ensure that there exists a constant Ĉ, such that for a population
measure ν =

∑N
i=1 δxi , the total event rate, obtained as the sum of all event rates, is

bounded by ĈN(1 +N).

Let us now give a pathwise description of the population process (Yt)t≥0. We introduce
the following notation.

Notation 1. Let N∗ = N\{0}. Let H = (H1, ...,Hk, ...) : M 7→ (Rd)N∗ be defined by
H (
∑n

i=1 δxi) = (xσ(1), ..., xσ(n), 0, ..., 0, ...), where σ is a permutation such that xσ(1) 2
... 2 xσ(n), for some arbitrary order 2 on Rd (for example the lexicographic order).
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This function H allows us to overcome the following (purely notational) problem. Choos-
ing a trait uniformly among all traits in a population ν ∈ M consists in choosing i
uniformly in {1, ..., 〈ν, 1〉}, and then in choosing the individual number i (from the arbi-
trary order point of view). The trait value of such an individual is thus H i(ν).

We now introduce the probabilistic objects we will need.

Definition 4.1. Let (Ω,F , P ) be a (sufficiently large) probability space. On this space,
we consider the following four independent random elements:

(i) a M-valued random variable Y0 (the initial distribution),

(ii) independent Poisson point measures N1(ds, di, dθ), and N3(ds, di, dθ) on R+ ×N∗ ×
R+, with the same intensity measure ds

(∑
k≥1 δk(di)

)
dθ (the ”clonal” birth and

the death Poisson measures),

(iii) a Poisson point measure N2(ds, di, dz, dθ) on R+ × N∗ × X × R+, with intensity

measure ds
(∑

k≥1 δk(di)
)
dzdθ (the mutation Poisson point measure).

Let us denote by (Ft)t≥0 the canonical filtration generated by these processes.

We finally define the population process in terms of these stochastic objects.

Definition 4.2. Assume (H). An (Ft)t≥0-adapted stochastic process ν = (Yt)t≥0 is called
a population process if a.s., for all t ≥ 0,

Yt = Y0 +

∫
[0,t]×N∗×R+

δHi(Ys−)1{i≤〈Ys−,1〉} 1{θ≤b(Hi(Ys−))(1−p(Hi(Ys−)))}N1(ds, di, dθ)

+

∫
[0,t]×N∗×X×R+

δz1{i≤〈Ys−,1〉} 1{θ≤b(Hi(Ys−))p(Hi(Ys−))m(Hi(Ys−),z)}N2(ds, di, dz, dθ)

−
∫

[0,t]×N∗×R+

δHi(Ys−)1{i≤〈Ys−,1〉}1{θ≤d(Hi(Ys−),C∗Ys−(Hi(Ys−)))}N3(ds, di, dθ) (4.3)

Let us now show that if Y solves (4.3), then Y follows the Markovian dynamics we are
interested in.

Proposition 4.3. Assume Assumption 4.1 holds and consider a solution (Yt)t≥0 of
(4.3) such that E(supt≤T 〈Yt,1〉2) < +∞, ∀T > 0. Then (Yt)t≥0 is a Markov process. Its
infinitesimal generator L is defined by (4.2). In particular, the law of (Yt)t≥0 does not
depend on the chosen order 2.

Proof. The fact that (Yt)t≥0 is a Markov process is classical. Let us now consider a

measurable bounded function φ. With our notation, Y0 =
∑〈Y0,1〉

i=1 δHi(Y0). A simple
computation, using the fact that a.s., φ(Yt) = φ(Y0)+

∑
s≤t(φ(Ys−+(Ys−Ys−))−φ(Ys−)),

35



shows that

φ(Yt) = φ(Y0) +

∫
[0,t]×N∗×R+

(
φ(Ys− + δHi(Ys−))− φ(Ys−)

)
1{i≤〈Ys−,1〉}

1{θ≤b(Hi(Ys−))(1−p(Hi(Ys−)))}N1(ds, di, dθ)

+

∫
[0,t]×N∗×X×R+

(φ(Ys− + δz)− φ(Ys−)) 1{i≤〈Ys−,1〉}

1{θ≤b(Hi(Ys−))p(Hi(Ys−))m(Hi(Ys−),z)}N2(ds, di, dz, dθ)

+

∫
[0,t]×N∗×R+

(
φ(Ys− − δHi(Ys−))− φ(Ys−)

)
1{i≤〈Ys−,1〉}

1{θ≤d(Hi(Ys−),C∗Ys−(Hi(Ys−)))}N3(ds, di, dθ).

Taking expectations, we obtain

E(φ(Yt)) = E(φ(Y0))

+

∫ t

0
E
( 〈Ys,1〉∑

i=1

{(
φ(Ys + δHi(Ys))− φ(Ys)

)
b(H i(Ys))(1− p(H i(Ys)))

+

∫
X

(φ(Ys + δz)− φ(Ys)) b(H
i(Ys))p(H

i(Ys))m(H i(Ys), z)dz

+
(
φ(Ys − δHi(Ys))− φ(Ys)

)
d(H i(Ys), C ∗ Ys(H i(Ys)))

})
ds

Differentiating this expression at t = 0 leads to (4.2).

Let us show the existence and some moment properties for the population process.

Theorem 4.4. (i) Assume Assumption 4.1 holds and that E (〈Y0, 1〉) < ∞. Then the
process (Yt)t≥0 defined in Definition 4.2 is well defined on R+.

(ii) If furthermore for some p ≥ 1, E (〈Y0, 1〉p) <∞, then for any T <∞,

E( sup
t∈[0,T ]

〈Yt, 1〉p) < +∞. (4.4)

Proof. We first prove (ii). Consider the process (Yt)t≥0. We introduce for each n the stop-
ping time τn = inf {t ≥ 0, 〈Yt, 1〉 ≥ n}. Then a simple computation using Assumption
4.1 shows that, dropping the non-positive death terms,

sup
s∈[0,t∧τn]

〈Ys, 1〉p ≤ 〈Y0, 1〉p +

∫
[0,t∧τn]×N∗×R+

((〈Ys−, 1〉+ 1)p − 〈Ys−, 1〉p) 1{i≤〈Ys−,1〉}

1{θ≤b(Hi(Ys−))(1−p(Hi(Ys−)))}N1(ds, di, dθ)

+

∫
[0,t]×N∗×X×R+

((〈Ys−, 1〉+ 1)p − 〈Ys−, 1〉p) 1{i≤〈Ys−,1〉}

1{θ≤b(Hi(Ys−))p(Hi(Ys−))m(Hi(Ys−),z)}N2(ds, di, dz, dθ).
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Using the inequality (1+x)p−xp ≤ Cp(1+xp−1) and taking expectations, we thus obtain,
the value of Cp changing from one line to the other,

E( sup
s∈[0,t∧τn]

〈Ys, 1〉p) ≤ Cp
(

1 + E
(∫ t∧τn

0
b̄ (〈Ys−, 1〉+ 〈Ys−, 1〉p) ds

))
≤ Cp

(
1 + E

(∫ t

0
(1 + 〈Ys∧τn , 1〉

p) ds

))
.

The Gronwall Lemma allows us to conclude that for any T <∞, there exists a constant
Cp,T , not depending on n, such that

E( sup
t∈[0,T∧τn]

〈Yt, 1〉p) ≤ Cp,T . (4.5)

First, we deduce that τn tends a.s. to infinity. Indeed, if not, one may find a T0 < ∞
such that εT0 = P (supn τn < T0) > 0. This would imply that E

(
supt∈[0,T0∧τn] 〈Yt, 1〉

p
)
≥

εT0n
p for all n, which contradicts (4.5). We may let n go to infinity in (4.5) thanks to

the Fatou Lemma. This leads to (4.4).

Point (i) is a consequence of point (ii). Indeed, one builds the solution (Yt)t≥0 step by
step. One only has to check that the sequence of jump instants Tn goes a.s. to infinity as
n tends to infinity. But this follows from (4.4) with p = 1.

4.2 Examples and simulations

Let us remark that Assumption 4.1 is satisfied in the case where

d(x,C ∗ ν(x)) = d(x) + α(x)

∫
X
C(x− y)ν(dy), (4.6)

and b, d and α are bounded functions.

In the case where moreover, p ≡ 1, this individual-based model can also be interpreted as a
model of “spatially structured population”, where the trait is viewed as a spatial location
and the mutation at each birth event is viewed as dispersal. This kind of models have been
introduced by Bolker and Pacala ([5, 6]) and Law et al. ([34]), and mathematically studied
by Fournier and Méléard [19]. The case C ≡ 1 corresponds to a density-dependence in
the total population size.

Later, we will consider the particular set of parameters leading to the logistic interaction
model, taken from Kisdi [30] and corresponding to a model of asymmetric competition:

X = [0, 4], d(x) = 0, α(x) = 1, p(x) = p,

b(x) = 4− x, C(x− y) =
2

K

(
1− 1

1 + 1.2 exp(−4(x− y))

)
(4.7)

and m(x, z)dz is a Gaussian law with mean x and variance σ2 conditioned to stay in
[0, 4]. As we will see in Section 5, the constant K scaling the strength of competition
also scales the population size (when the initial population size is proportional to K). In
this model, the trait x can be interpreted as body size. Equation (4.7) means that body
size influences the birth rate negatively, and creates asymmetrical competition reflected
in the sigmoid shape of C (being larger is competitively advantageous).
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Let us give now an algorithmic construction of the population process (in the general
case), simulating the size Nt of the population and the trait vector Xt of all individuals
alive at time t.

At time t = 0, the initial population Y0 contains N0 individuals and the corresponding
trait vector is X0 = (Xi

0)1≤i≤N0 . We introduce the following sequences of independent
random variables, which will drive the algorithm.

• The type of birth or death events will be selected according to the values of a
sequence of random variables (Wk)k∈N∗ with uniform law on [0, 1].

• The times at which events may be realized will be described using a sequence of
random variables (τk)k∈N with exponential law with parameter Ĉ.

• The mutation steps will be driven by a sequence of random variables (Zk)k∈N with
law m̄(z)dz.

We set T0 = 0 and construct the process inductively for k ≥ 1 as follows.
At step k−1, the number of individuals is Nk−1, and the trait vector of these individuals
is XTk−1

.

Let Tk = Tk−1 +
τk

Nk−1(Nk−1 + 1)
. Notice that

τk
Nk−1(Nk−1 + 1)

represents the time be-

tween jumps for Nk−1 individuals, and Ĉ(Nk−1 + 1) gives an upper bound of the total
rate of events affecting each individual.

At time Tk, one chooses an individual ik = i uniformly at random among the Nk−1 alive in
the time interval [Tk−1, Tk); its trait is Xi

Tk−1
. (If Nk−1 = 0 then Yt = 0 for all t ≥ Tk−1.)

• If 0 ≤Wk ≤
d(Xi

Tk−1
,
∑Ik−1

j=1 C(Xi
Tk−1

−Xj
Tk−1

))

Ĉ(Nk−1 + 1)
= W i

1(XTk−1
), then the chosen in-

dividual dies, and Nk = Nk−1 − 1.

• If W i
1(XTk−1

) < Wk ≤W i
2(XTk−1

), where

W i
2(XTk−1

) = W i
1(XTk−1

) +
[1− p(Xi

Tk−1
)]b(Xi

Tk−1
)

C̄(Nk−1 + 1)
,

then the chosen individual gives birth to an offspring with trait Xi
Tk−1

, and Nk =
Nk−1 + 1.

• If W i
2(XTk−1

) < Wk ≤W i
3(XTk−1

, Zk), where

W i
3(XTk−1

, Zk) = W i
2(XTk−1

) +
p(Xi

Tk−1
)b(Xi

Tk−1
)m(Xi

Tk−1
, Xi

Tk−1
+ Zk)

Ĉm̄(Zk)(Nk−1 + 1)
,

then the chosen individual gives birth to a mutant offspring with trait Xi
Tk−1

+Zk,
and Nk = Nk−1 + 1.

• If Wk > W i
3(XTk−1

, Zk), nothing happens, and Nk = Nk−1.
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(a) p = 0.03, K = 100, σ = 0.1. (b) p = 0.03, K = 3000, σ = 0.1.

(c) p = 0.03, K = 100000, σ = 0.1. (d) p = 0.00001, K = 3000, σ = 0.1.

Figure 2: Numerical simulations of trait distributions (upper panels, darker means higher
frequency) and population size (lower panels). The initial population is monomorphic
with trait value 1.2 and contains K individuals. (a–c) Qualitative effect of increasing the
system size (measured by the parameter K). (d) Large system size with rare mutations
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Then, at any time t ≥ 0, the number of individuals and the population process are defined
by

Nt =
∑
k≥0

1{Tk≤t<Tk+1}Nk, Yt =
∑
k≥0

1{Tk≤t<Tk+1}

Nk∑
i=1

δXi
Tk

.

The simulation of Kisdi’s example (4.7) can be carried out following this algorithm. We
can show a very wide variety of qualitative behaviors depending on the value of the
parameters σ, p and K.
In Figure 2, the upper part gives the distribution of the traits in the population at any
time, using a grey scale code for the number of individuals holding a given trait. The
lower part of the simulation represents the dynamics of the total population size Nt.
These simulations will serve to illustrate the mathematical scalings described in Section 5.
In Fig. 2 (a)–( c), we see the qualitative effect of increasing scalings K, from a finite trait
support process for small K to a wide population density for large K. The simulation
(d) illustrates the case of rare mutations in a longer time scale, studied in Section 6.
Although issued from the same individual system, these simulations show very different
qualitative behaviors. The end of the notes will be devoted to the mathematical study of
these asymptotics.

4.3 Martingale Properties

The martingale properties of the process (Yt)t≥0 are the key point of our approach.

Theorem 4.5. Suppose Assumption 4.1 holds and that for some p ≥ 2, E (〈Y0, 1〉p) <∞.

(i) For all measurable functions φ from M into R such that for some constant C, for all
ν ∈M, |φ(ν)|+ |Lφ(ν)| ≤ C(1 + 〈ν, 1〉p), the process

φ(Yt)− φ(Y0)−
∫ t

0
Lφ(Ys)ds (4.8)

is a càdlàg (Ft)t≥0-martingale starting from 0.

(ii) Point (i) applies to any function φ(ν) = 〈ν, f〉q, with 0 ≤ q ≤ p − 1 and with f
bounded and measurable on X .

(iii) For such a function f , the process

Mf
t = 〈Yt, f〉 − 〈Y0, f〉 −

∫ t

0

∫
X

{(
(1− p(x))b(x)− d(x,C ∗ Ys(x))

)
f(x)

+ p(x)b(x)

∫
X
f(z)m(x, z)dz

}
Ys(dx)ds (4.9)

is a càdlàg square integrable martingale starting from 0 with quadratic variation

〈Mf 〉t =

∫ t

0

∫
X

{(
(1− p(x))b(x)− d(x,C ∗ Ys(x))

)
f2(x)

+ p(x)b(x)

∫
X
f2(z)m(x, z)dz

}
Ys(dx)ds. (4.10)
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Proof. The proof follows the proof of Theorem 2.6. First of all, note that point (i) is
immediate thanks to Proposition 4.3 and (4.4). Point (ii) follows from a straightforward

computation using (4.2). To prove (iii), we first assume that E
(
〈Y0, 1〉3

)
< ∞. We

apply (i) with φ(ν) = 〈ν, f〉. This gives us that Mf is a martingale. To compute its
bracket, we first apply (i) with φ(ν) = 〈ν, f〉2 and obtain that

〈Yt, f〉2 − 〈Y0, f〉2 −
∫ t

0

∫
X

{(
(1− p(x))b(x)(f2(x) + 2f(x) 〈Ys, f〉)

+ d(x,C ∗ Ys(x))(f2(x)− 2f(x) 〈Ys, f〉)
)

+ p(x)b(x)

∫
X

(f2(z) + 2f(z) 〈Ys, f〉)m(x, z)dz

}
Ys(dx)ds (4.11)

is a martingale. On the other hand, we apply the Itô formula to compute 〈Yt, f〉2
from (4.9). We deduce that

〈Yt, f〉2 − 〈Y0, f〉2 −
∫ t

0
2 〈Ys, f〉

∫
X

{(
(1− p(x))b(x)− d(x,C ∗ Ys(x))

)
f(x)

+ p(x)b(x)

∫
X
f(z)m(x, z)dz

}
Ys(dx)ds− 〈Mf 〉t (4.12)

is a martingale. Comparing (4.11) and (4.12) leads to (4.10). The extension to the case

where only E
(
〈Y0, 1〉2

)
<∞ is straightforward by a localization argument, since also in

this case, E(〈Mf 〉t) <∞ thanks to (4.4) with p = 2.

5 Scaling limits for the individual-based process

As in Section 3, we consider the case where the system size becomes very large. We scale
this size by the integer K and look for approximations of the conveniently renormalized
measure-valued population process, when K tends to infinity.

For any K ∈ N∗, let the set of functions CK , b, d, m, p satisfy Assumption 4.1. Let
Y K
t be the counting measure of the population at time t. We define the measure-valued

Markov process (XK
t )t≥0 by

XK
t =

1

K
Y K
t .

As the system size K goes to infinity, we need to assume the

Assumption 5.1. The parameters CK , b, d, m and p are continuous, ζ 7→ d(x, ζ) is
Lipschitz continuous for any x ∈ X and

CK(x) =
C(x)

K
.

A biological interpretation of this renormalization is that larger systems are made up of
smaller individuals, which may be a consequence of a fixed amount of available resources
to be partitioned among individuals. Indeed, the biomass of each interacting individual
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scales like 1/K, which may imply that the interaction effect of the global population on
a focal individual is of order 1. The parameter K may also be interpreted as scaling the
amount of resources available, so that the renormalization of CK reflects the decrease of
competition for resources.

The generator L̃K of (Y K
t )t≥0 is given by (4.2), with CK instead of C. The generator

LK of (XK
t )t≥0 is obtained by writing, for any measurable function φ from MF (X ) into

R and any ν ∈MF (X ),

LKφ(ν) = ∂tEν(φ(XK
t ))t=0 = ∂tEKν(φ(Y K

t /K))t=0 = L̃KφK(Kν)

where φK(µ) = φ(µ/K).

By a similar proof as that carried out in Section 4.3, we may summarize the moment and
martingale properties of XK .

Proposition 5.1. Assume that for some p ≥ 2, E(〈XK
0 , 1〉p) < +∞.

(1) For any T > 0, E
(

supt∈[0,T ]〈XK
t , 1〉p

)
< +∞.

(2) For any bounded and measurable function φ on MF such that |φ(ν)| + |LKφ(ν)| ≤
C(1 + 〈ν, 1〉p), the process

φ(XK
t )− φ(XK

0 )−
∫ t

0
LKφ(XK

s )ds (5.1)

is a càdlàg martingale.

(3) For each measurable bounded function f , the process

MK,f
t = 〈XK

t , f〉 − 〈XK
0 , f〉

−
∫ t

0

∫
X

(b(x)− d(x,C ∗XK
s (x)))f(x)XK

s (dx)ds

−
∫ t

0

∫
X
p(x)b(x)

(∫
X
f(z)mK(x, z)dz − f(x)

)
XK
s (dx)ds (5.2)

is a square integrable martingale with quadratic variation

〈MK,f 〉t =
1

K

{∫ t

0

∫
X
p(x)b(x)

(∫
X
f2(z)m(x, z)dz − f2(x)

)
XK
s (dx)ds

+

∫ t

0

∫
X

(b(x) + d(x,C ∗XK
s (x)))f2(x)XK

s (dx)ds

}
. (5.3)

Let us make K tend to infinity.

Theorem 5.2. Assume Assumptions 4.1 and 5.1 hold. Assume moreover that
supK E(〈XK

0 , 1〉3) < +∞ and that the initial conditions XK
0 converge in law and for

the weak topology on MF (X ) as K increases, to a finite deterministic measure ξ0.
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Then for any T > 0, the process (XK
t )t≥0 converges in law, in the Skorohod space

D([0, T ],MF (X )), as K goes to infinity, to the unique deterministic continuous function
ξ ∈ C([0, T ],MF (X )) satisfying for any continuous f : X → R

〈ξt, f〉 = 〈ξ0, f〉+

∫ t

0

∫
X
f(x)[(1− p(x))b(x)− d((x,C ∗ ξs(x))]ξs(dx)ds

+

∫ t

0

∫
X
p(x)b(x)

(∫
X
f(z)m(x, z)dz

)
ξs(dx)ds (5.4)

This result is illustrated by the simulations of Fig. 2 (a)–(c).

Proof. We divide the proof in five steps. Let us fix T > 0.

Step 1 Let us first show the uniqueness of a solution of the equation (5.4).
Let us consider two solutions (ξt)t≥0 and (ξ̄t)t≥0 of (5.4) satisfying supt∈[0,T ]

〈
ξt + ξ̄t, 1

〉
=

AT < +∞. Recall that the total variation norm is given for µ1 and µ2 in MF by

||µ1 − µ2|| = sup
f∈L∞(Rd), ||f ||∞≤1

| 〈µ1 − µ2, f〉 |. (5.5)

Let f be a bounded measurable function on X such that ||f ||∞ ≤ 1. We get

|
〈
ξt − ξ̄t, f

〉
| ≤

∫ t

0

∣∣∣∣ ∫
Rd

[ξs(dx)− ξ̄s(dx)] ((1− p(x)b(x)− d(x,C ∗ ξs(x))) f(x)

+ p(x)b(x)

(∫
X
f(z)m(x, z)dz

) ∣∣∣∣ds
+

∫ t

0

∣∣∣∣∫
Rd
ξ̄s(dx)(d(x,C ∗ ξs(x))− d(x,C ∗ ξ̄s(x)))f(x)

∣∣∣∣ ds. (5.6)

Since ||f ||∞ ≤ 1, for all x ∈ Rd,∣∣∣∣((1− p(x)b(x)− d(x,C ∗ ξs(x))
)
f(x) + p(x)b(x)

(∫
X
f(z)m(x, z)dz

)∣∣∣∣ ≤ b̄+d̄(1+C̄AT ).

Moreover, d is Lipschitz continuous in its second variable with Lipschitz constant Kd.
Thus we obtain from (5.6) that

|
〈
ξt − ξ̄t, f

〉
| ≤

[
b̄+ d̄(1 + C̄AT ) +KdAT C̄

] ∫ t

0
||ξs − ξ̄s||ds. (5.7)

Taking the supremum over all functions f such that ||f ||∞ ≤ 1, and using Gronwall’s
Lemma, we finally deduce that for all t ≤ T , ||ξt − ξ̄t|| = 0. Uniqueness holds.

Step 2 Next, we need some moment estimates on the time interval [0, T ], T > 0. To
this end, we consider (5.2) with f = 1. Dropping the non-positive death term, using a
localization argument, the assumption supK E(〈XK

0 , 1〉3) < +∞ and Gronwall’s Lemma
(as in the proof of (2.8)) lead to

sup
K

E
(

sup
t∈[0,T ]

〈XK
t , 1〉3

)
<∞. (5.8)
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Step 3 Recall that MF is endowed with the weak topology. To show the tightness of
the sequence of laws QK = L(XK) in P(D([0, T ],MF )), it suffices, following Roelly [39],
to show that for any continuous bounded function f on Rd, the sequence of laws of the
processes 〈XK , f〉 is tight in D([0, T ],R). To this end, we use the Aldous criterion [1] and
the Rebolledo criterion (see [25]). We have to show that

sup
K

E
(

sup
t∈[0,T ]

|〈XK
t , f〉|

)
<∞, (5.9)

and the Aldous condition respectively for the predictable quadratic variation of the mar-
tingale part and for the drift part of the semimartingales 〈XK , f〉.
Since f is bounded, (5.9) is a consequence of (5.8): let us thus consider a couple (S, S′)
of stopping times satisfying a.s. 0 ≤ S ≤ S′ ≤ S + δ ≤ T . By the assumptions on the
parameters and (5.8), there exist constants C,C ′ > 0 such that

E
(
〈MK,f 〉S′ − 〈MK,f 〉S

)
≤ CE

(∫ S+δ

S

(
〈XK

s , 1〉+ 〈XK
s , 1〉2

)
ds

)
≤ C ′δ.

In a similar way, the expectation of the finite variation part of 〈XK
S′ , f〉 − 〈XK

S , f〉 is
bounded by C ′δ.
Hence, the sequence (QK = L(XK)) is tight in P(D([0, T ],MF )).

Step 4 Let us now denote by Q the weak limit in P(D([0, T ],MF )) of a subsequence
of (QK), still denoted by (QK) for convenience. Let X = (Xt)t≥0 a process with law Q.
We remark that by construction, almost surely,

sup
t∈[0,T ]

sup
f∈L∞(Rd),||f ||∞≤1

|〈XK
t , f〉 − 〈XK

t− , f〉| ≤ 1/K.

Since, for each f in a countable measure-determining set of continuous functions on X ,
the mapping ν 7→ supt≤T |〈νt, f〉 − 〈νt−, f〉| is continuous on D([0, T ],MF ), one deduces
that Q only charges the continuous processes from [0, T ] into MF .

Step 5 Let us now check that almost surely, the process X is the unique solution
of (5.4). Thanks to (5.8), it satisfies supt∈[0,T ]〈Xt, 1〉 < +∞ a.s.. Let f be continuous on
X .
For ν ∈ C([0, T ],MF ), denote

Ψt(ν) = 〈νt, f〉 − 〈ν0, f〉 −
∫ t

0

∫
X

(
(b(x)− d(x,C ∗ νs(x)))− p(x)b(x)

(∫
X
f(z)m(x, z)dz

))
νs(dx)ds.

(5.10)

Our aim is to show that
E (|Ψt(X)|) = 0, (5.11)

implying that X is solution of (5.4).

By (5.2), we know that for each K, MK,f
t = Ψt(X

K). Moreover, (5.8) implies that for
each K,

E
(
|MK,f

t |2
)

= E
(
〈MK,f 〉t

)
≤
CfK

η

K
E
(∫ t

0

{
〈XK

s , 1〉+ 〈XK
s , 1〉2

}
ds

)
≤
Cf,TK

η

K
,

(5.12)
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which goes to 0 as K tends to infinity, since 0 < η < 1. Therefore,

lim
K

E(|Ψt(X
K)|) = 0.

Since X is a.s. strongly continuous (for the weak topology) and since f is continuous
and thanks to the continuity of the parameters, the functions Ψt is a.s. continuous at X.
Furthermore, for any ν ∈ D([0, T ],MF ),

|Ψt(ν)| ≤ Cf,T sup
s∈[0,T ]

(
1 + 〈νs, 1〉2

)
. (5.13)

Hence the sequence (Ψt(X
K))K is uniformly integrable by (5.8) and thus

lim
K

E
(
|Ψt(X

K)|
)

= E (|Ψt(X)|) = 0. (5.14)

Main Examples:

(1) A density case.

Proposition 5.3. Suppose that ξ0 is absolutely continuous with respect to Lebesgue
measure. Then for all t ≥ 0, ξt is absolutely continuous where respect to Lebesgue
measure and ξt(dx) = ξt(x)dx, where ξt(x) is the solution of the functional equation

∂tξt(x) = [(1− p(x))b(x)− d(x,C ∗ ξt(x))] ξt(x) +

∫
Rd

m(y, x)p(y)b(y)ξt(y)dy

(5.15)

for all x ∈ X and t ≥ 0.

Some people refer to ξt(.) as the population number density.

Proof. Consider a Borel set A of Rd with Lebesgue measure zero. A simple com-
putation allows us to obtain, for all t ≥ 0,

〈ξt,1A〉 ≤ 〈ξ0,1A〉) + b̄

∫ t

0

∫
X

1A(x)ξs(dx)ds+ b̄

∫ t

0

∫
X

∫
X

1A(z)m(x, z)dzξs(dx)ds.

By assumption, the first term on the RHS is zero. The third term is also zero, since
for any x ∈ X ,

∫
X 1A(z)m(x, z)dz = 0. Using Gronwall’s Lemma, we conclude that

〈ξt,1A〉 = 0 and then, the measure ξt(dx) is absolutely continuous w.r.t. Lebesgue
measure. One can easily prove from (5.4) that the density function ξt(.) is solution
of the functional equation (5.15).

(2) The mean field case. The case of structured populations with d(x,C ∗ ξ(x)) =
d + αC ∗ ξ(x) with constant rates b, d, α is meaningful, and has been developed
in a spatial context where the kernel C describes the resources available (see for
example [30]). In this context, (5.4) leads to the following equation on the total
mass nt = 〈ξt, 1〉:

∂tnt = (b− d)nt − α
∫
X×X

C(x− y)ξt(dx)ξt(dy). (5.16)
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This equation is not closed in (nt)t and presents an unresolved hierarchy of nonlin-
earities. In the very particular case of uniform competition where C ≡ 1 (usually
called ”mean-field case”), there is a ”decorrelative” effect and we recover the clas-
sical mean-field logistic equation of population growth:

∂tnt = (b− d)nt − αn2
t .

(3) Monomorphic and dimorphic cases with no mutation. We assume here that
the mutation probability is p = 0. Without mutation, the trait space is fixed at
time 0.

(a) Monomorphic case: All the individuals have the same trait x. Thus, we
can write XK

0 = nK0 (x)δx, and then XK
t = nKt (x)δx for any time t. In this case,

Theorem 5.2 recasts into nKt (x)→ nt(x) with ξt = nt(x)δx, and (5.4) reads

d

dt
nt(x) = nt(x)

(
b(x)− d(x,C(0)nt(x))

)
, (5.17)

When d(x,C ∗ ξ(x)) = d+ αC ∗ ξ(x), we recognize the logistic equation (3.9).

(b) Dimorphic case: The population consists in two subpopulations of individuals
with traits x and y, i.e. XK

0 = nK0 (x)δx + nK0 (y)δy and when K tends to infinity,
the limit of XK

t is given by ξt = nt(x)δx + nt(y)δy satisfying (5.4), which recasts
into the following system of coupled ordinary differential equations:

d

dt
nt(x)=nt(x)

(
b(x)−d(x,C(0)nt(x)+C(x−y)nt(y))

)
d

dt
nt(y)=nt(y)

(
b(y)−d(y, C(0)nt(y)+C(y−x)nt(x))

)
.

(5.18)

When d(x,C ∗ ξ(x)) = d + αC ∗ ξ(x), we obtain the competitive Lotka-Volterra
system defined in Section 3.2. In this case, we recall from Proposition 3.4 that there
are in this case 4 equilibria: (0, 0), (n̄(x), 0), (0, n̄(y)), and a non trivial equilibrium
(n̄1
xy, n̄

2
xy) ∈ (R∗+)2.

In what follows, we will describe the invasion of a mutant trait y in a resident population
with trait x. Immediately after its birth, the population’s size issued from the mutant
individual is almost zero and we can neglect it. We may define the invasion fitness of
the mutant trait y in the resident population with trait x . This function approximates
the mutant population growth rate at the beginning of its appearance in the resident
population at equilibrium. It describes the ability of the mutant trait y to invade the
resident population x and is given by

f(y;x) = b(y)− d(y)− C(y − x)n̄(x), (5.19)

where n̄(x) is the non trivial equilibrium of the logistic equation (5.17), given by

n̄(x) =
b(x)− d(x)

C(0)

.

Let us remark that f(x;x) = 0 and that f is actually not symmetric.

Using Proposition 3.4, we can characterize the stability of the equilibria of the system
(5.18) thanks to the sign of the fitness function.
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• (n̄(x), 0) is unstable if f(y;x) > 0 and stable si f(y;x) < 0.

• If f(y;x) > 0 and f(x; y) < 0, (0, n̄(y)) is stable (fixation of the trait y).

• If f(y;x) > 0 and f(x; y) > 0, there is a nontrivial and stable equilibrium (coexis-
tence of traits x and y).

6 Limit of rare mutations - Convergence to the trait sub-
station sequence

In this part, we consider the scales of the adaptive dynamics: large population and small
biomass, rare mutations and long mutation time scale.

We will assume that the ecological coefficients impede the coexistence of two traits and
that there is a time scale separation between the ecological fast time scale in which the
population comes back to equilibrium after competition and the mutation time scale
which is much longer. Under these assumptions, the limiting process at the mutation
time scale will be a jump process (see Fig.1 (d)), heuristically introduced in [38] and
rigorously studied in [10], as Trait Substitution Sequence.

Assumption 6.1. The initial population is composed of nK0 individuals with nK0 →
n̄(x0), the nontrivial equilibrium of (5.17) with trait x0.

Assumption 6.2. Invasion implies Fixation. Given x ∈ X , a.s. any z ∈ X satisfies one
of the two following conditions: either f(z;x) < 0, or f(z;x) > 0 and f(x; z) > 0.

Let pK be the individual mutation probability, going to 0 when K →∞). Therefore, the
global population mutation rate is of order KpK , and t

KpK
will represent the mutation

time scale.

We study the asymptotic behavior of (νKt
KpK

, t ≥ 0), illustrated by Fig. 2(d).

Theorem 6.1. Assume that Assumptions 4.1, 6.1 and 6.2 are fulfilled and assume more-
over the following time scale separation: for all C > 0,

lnK � 1

KpK
� eCK . (6.1)

(where f � g means f
g → 0). Then the process (νKt

KpK

, t ≥ 0) converges in the sense of

finite marginals to a pure jump process (Λt, t ≥ 0),with values in

M0 =

{
n̄(x)δx ; n̄(x) equilibrium of (5.17)

}
,

and transitions from n̄(x)δx to n̄(z)δz at rate

p(x)b(x) n̄(x)
[f(z;x)]+
b(z)

m(x, z)dz. (6.2)

47



The process (Λt, t ≥ 0) writes Λt = n̄XtδXt . The process (Xt, t ≥ 0) (with X0 = x0)
describes the support of (Λt, t ≥ 0). It is a pure jump Markov process with infinitesimal
generator given by

Aϕ(x) =

∫
X

(ϕ(z)− ϕ(x))p(x)b(x) n̄(x)
[f(z;x)]+
b(z)

m(x, z)dz. (6.3)

The process (Xt, t ≥ 0) is called the Trait Substitution Sequence (TSS).

Let us now give ideas of the proof of Theorem 6.1. For a detailed proof, we refer to [10].

The main idea is as follows. If mutations are rare, the selection has time to eliminate the
deleterious traits or to fix advantageous traits before a new mutant arrives. The large
population assumption allows us to approximate the birth and death dynamics between
mutations by a deterministic Lotka-Volterra system which is more tractable. That will
allow us to predict the outcome of the competition after a mutant arrival.

One describes the steps of the invasion of a mutant and the stabilization of the population
which follows, with or without fixation of the mutant trait. Let us fix η > 0. Assume that
at t = 0, the population is monomorphic with trait x and that Assumption 6.1 is satisfied.
For t and K large enough, the density process 〈νKt ,1x〉 belongs to a η-neighborhood of
n̄(x) with large probability (cf. Theorem 5.2). We need the process to stay in this
neighborhood before the first mutation occurs. We thus use a large deviations result for
exit time of neighborhoods of n̄(x), stated in Freidlin-Wentzell [20] and Feng-Kurtz [18]:
the time taken by the density process to leave the η-neighborhood of n̄(x) is larger than
exp(CK), for some C > 0, with high probability. Hence, the first mutant will appear with
large probability before the population exits the η–neighborhood of n̄(x), if one assumes
that 1

KpK
� exp(CK).

Let us now study the invasion dynamics of the mutant with trait z. We will divide this
event in three steps, as described in the figure below and developed in [10].

-

6

0

η

n̄z

n̄x

t1 t2 t3 t

〈νt,1{z}〉

〈νt,1{x}〉

First step: Between 0 and t1, the number of individuals with mutant trait z is small and
the resident population’s size is close to n̄(x). Thus the mutant dynamics is close to the
one of a linear birth and death process with rates b(z) and d(z)+C(z−x)n̄(x). Its growth
rate approximatively equals the invasion fitness f(z;x) = b(z)− d(z)− C(z − x)n̄(x). If
f(z;x) > 0, the birth and death process is supercritical, and therefore, for large K (see
Section 2.4),

P( the mutant population’s size attains η)

' P(the branching process attains ηK)

' [f(z;x)]+
b(z)

( survival probability).
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Between t1 and t2, it is the competition step. When K increases, the density process
(〈νKt ,1x〉, 〈νKt ,1z〉) tends to the solution of the Lotka-Volterra system (5.18). Thus the
population process will attain with large probability a η-neighborhood of the unique
globally asymptotically stable equilibrium n∗ of (5.18) in time t2, for small η.

The third step describes the stabilization of the population. If f(z;x) > 0 , so that
invasion of the mutant in the first step has a positive probability (as in the figure above),
then our Assumption 6.2 implies that f(x; z) < 0 , which means that n∗ = (0, n̄z) (see
Proposition 3.4). As in the first step, we can approximate the density process for trait x
is approximated by a subcritical birth and death process. Thus it will attain 0 in finite
time and only individuals with trait z will remain in the population. Their density will
stabilize around n̄(z) > 0.

If the initial population is of order K, then the time taken for these three steps is of
order lnK, which is the order of the expectation of the extinction time for a birth and
death process. Hence, if lnK � 1

KpK
, with a large probability these three phases of

competition-stabilization will happen before a next mutation occurs and we can reiterate
the reasoning after every mutation event.

Thanks to this analysis, we obtain the TSS (Λt, t ≥ 0) which describes the successive
stationary states and only keeps in its support the favorable mutations. It takes its
values in M0. Let us assume that at some time t, Λt = n̄(x)δx. If the process belongs
to a η-neighborhood of n̄(x), the mutation rate from an individual with trait x is close
to pKp(x)b(x)Kn̄(x). Hence, in the time scale t

KpK
, it is approximatively b(x)p(x)n̄(x).

When a mutation occurs, the mutant trait z is chosen following m(x, z)dz. Its invasion
probability is then approximatively the survival probability of the mutant with trait z in
the resident population, given by [f(z;x)]+

b(z) . In this case, the process will jump to n̄(z)δz.

This explains Formula (6.2).

7 Canonical equation of the adaptive dynamics

Fig. 2(d) suggests that, for small mutation jumps, the TSS of Theorem 6.1 could be
approximated by some continuous process. We will hence add an assumption of small
mutations. In this section, we assume by simplicity that the trait space X is convex and
symmetric. We introduce a mutation law m(x, h)dh, which is symmetric with bounded
three-order moments and a parameter ε > 0 which will scale the mutation’s size. Let
Hε be the function defined by Hε(h) = εh. The distribution of mutant traits from an
individual with trait x is given by mε(x, dh) = (m(x, h)dh) ◦H−1

ε .

Under the same assumptions as in the previous section and replacing m by mε in (6.3),
we obtain the TSS Xε. To observe a non trivial limit, we need to change the time scale
t in t

ε2
.

Theorem 7.1. The process (Xε
t
ε2
, t ≥ 0) converges in law as ε→ 0, to the deterministic

monomorphic process t → n̄(x(t))δx(t), where x(.) is the unique solution of the ordinary
differential equation

dx

dt
=

1

2
p(x)n̄(x)∂1f(x;x)

∫
R
h2m(x, h)dh. (7.1)
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This equation has been heuristically introduced by Dieckmann and Law [14] and is called
canonical equation of the adaptive dynamics. When the mutation law m is not symmetric,
(7.1) involves the whole measure m, instead of its variance.

Idea of the proof. It is again based on a compactness-uniqueness argument. The process
(Xε

t
ε2
, t ≥ 0) has the generator

Lεϕ(x) =
1

ε2

∫
R

(ϕ(x+ εh)− ϕ(x))p(x)b(x) n̄(x)
[f(x+ εh;x)]+
b(x+ εh)

m(x, h)dh. (7.2)

Its uniqueness is obtained by a standard theorem (boundedness of the coefficients). As
f(x;x) = 0, and by an expansion of ϕ(x+ εh) and f(x+ εh;x) at order 2 around ε = 0,
one can show that

Lεϕ(x) −−−→
ε→0

1

2
p(x)n̄(x)∂1f(x;x)ϕ′(x)

∫
R
h2m(x, h)dh. (7.3)

The process (Xε
t
ε2
, t ≥ 0) is a semimartingale. Uniform tightness (in ε) of the laws of

(Xε
.
ε2

) comes from uniform estimates for the martingale part and for the total variation

part of its decomposition. The characterization of the limiting martingale problem is
deduced from (7.3).

8 Appendix : Poisson point measures

In this appendix, we summarize the main definitions and results concerning the Poisson
point measures. The reader can consult the two main books by Ikeda-Watanabe [23] and
by Jacod-Shiryaev [24] for more details.

Definition 8.1. Let (E, E) be a measurable space and µ a σ-finite measure on this space.
A (homogeneous) Poisson point measure N with intensity µ(dh)dt on R+×E is a (R+×
E,B(R+)⊗E)-random measure defined on a probability space (Ω,F ,P) which satisfies the
following properties:

1. N is a counting measure: ∀Â ∈ B(R+)⊗ E, ∀ω ∈ Ω, N(ω, Â) ∈ N ∪ {+∞}.

2. ∀ω ∈ Ω, N(ω, {0} × E) = 0: no jump at time 0.

3. ∀Â ∈ B(R+)⊗ E, E(N(Â)) = ν(Â), where ν(dt, dh) = µ(dh)dt .

4. If Â and B̂ are disjoint in B(R+) ⊗ E and if ν(Â) < +∞, ν(B̂) < +∞, then the
random variables N(Â) and N(B̂) are independent.

The existence of such a Poisson point measure with intensity µ(dh)dt is proven in [24],
for any σ-finite measure µ on (E, E).

Let us remark that for any A ∈ E with µ(A) <∞ the process defined by

Nt(A) = N((0, t]×A)

is a Poisson process with intensity µ(A).
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Definition 8.2. The filtration (Ft)t generated by N is given by

Ft = σ(N((0, s]×A), ∀s ≤ t,∀A ∈ E).

If Â ∈ (s, t]× E and ν(Â) <∞, then N(Â) is independent of Fs.

Let us first assume that the measure µ is finite on (E, E). Then (Nt(E), t ≥ 0) is a Poisson
process with intensity µ(E). The point measure is associated with a compound Poisson
process. Indeed, let us write

µ(dh) = µ(E)
µ(dh)

µ(E)
,

the decomposition of the measure µ as the product of the jump rate µ(E) and the jump

amplitude law µ(dh)
µ(E) . Let us fix T > 0 and introduce T1, . . . , Tγ the jump times of the

process (Nt(E), t ≥ 0) between 0 and T . We know that the jump number γ is a Poisson
variable with parameter Tµ(E). Moreover, conditionally on γ, T1, . . . , Tγ , the jumps

(Un)n=1,...,γ are independent with the same law µ(dh)
µ(E) . We can write in this case

N(dt, dh) =

γ∑
n=1

δ(Tn,Un).

Therefore, one can define for any measurable function G(ω, s, h) defined on Ω× R+ × E
the random variable∫ T

0

∫
E
G(ω, s, h)N(ω, ds, dh) =

γ∑
n=1

G(ω, Tn, Un).

In the following, we will forget the ω. Let us remark that T −→
∫ T

0

∫
E G(s, h)N(ds, dh)

is a finite variation process which is increasing if G is positive. A main example is the
case where G(ω, s, h) = h. Then

XT =

∫ T

0

∫
E
hN(ds, dh) =

γ∑
n=1

Un =
∑
s≤T

∆Xs

is the sum of the jumps between 0 and T .

Our aim now is to generalize the definition of the integral of G with respect to N when
µ(E) = +∞. In this case, one can have an accumulation of jumps during the finite time
interval [0, T ] and the counting measure N is associated with a countable set of points:

N =
∑
n≥1

δ(Tn,Un).

We need additional properties on the process G.
Since µ is σ-finite, there exists an increasing sequence (Ep)p∈N of subsets of E such that

µ(Ep) < ∞ for each p and E = ∪pEp. As before we can define
∫ T

0

∫
Ep
G(s, h)N(ds, dh)

for any p.

We introduce the predictable σ-field P on Ω×R+ (generated by all left-continuous adapted
processes) and define a predictable process (G(s, h), s ∈ R+, h ∈ E) as a P⊗E measurable
process.
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Theorem 8.3. Let us consider a predictable process G(s, h) and assume that

E
(∫ T

0

∫
E
|G(s, h)|µ(dh)ds

)
< +∞. (8.1)

1) The sequence of random variables
(∫ T

0

∫
Ep
G(s, h)N(ds, dh)

)
p

is Cauchy in L1 and

converges to a L1-random variable that we denote by
∫ T

0

∫
E G(s, h)N(ds, dh). It’s an

increasing process if G is non-negative. Moreover, we get

E
(∫ T

0

∫
E
G(s, h)N(ds, dh)

)
= E

(∫ T

0

∫
E
G(s, h)µ(dh)ds

)

2) The process M = (
∫ t

0

∫
E G(s, h)N(ds, dh) −

∫ t
0

∫
E G(s, h)µ(dh)ds, t ≤ T ) is a martin-

gale.
The random measure

Ñ(ds, dh) = N(ds, dh)− µ(dh)ds

is called the compensated martingale-measure of N .

3) If we assume moreover that

E
(∫ T

0

∫
E
G2(s, h)µ(dh)ds

)
< +∞, (8.2)

then the martingale M is square-integrable with quadratic variation

〈M〉t =

∫ t

0

∫
E
G2(s, h)µ(dh)ds.

Let us remark that when (8.1) holds, the random integral
∫ t

0

∫
E G(s, h)N(ds, dh) can be

defined without the predictability assumption on H but the martingale property of the
stochastic integral

∫ t
0

∫
E G(s, h)Ñ(ds, dh) is only true under this assumption.

We can improve the condition under which the martingale (Mt) can be defined. The
proof of the next theorem is tricky and consists in studying the L2-limit of the sequence
of martingales

∫ t
0

∫
Ep
G(s, h)Ñ(ds, dh) as p tends to infinity. Once again, this sequence

is Cauchy in L2 and converges to a limit which is a square-integrable martingale. Let
us recall that the quadratic variation of a square-integrable martingale M is the unique
predictable process 〈M〉 such that M2 − 〈M〉 is a martingale.

Theorem 8.4. Let us consider a predictable process G(s, h) satisfying (8.2). Then
the process M = (

∫ t
0

∫
E G(s, h)Ñ(ds, dh), t ≤ T ) is a square-integrable martingale with

quadratic variation

〈M〉t =

∫ t

0

∫
E
G2(s, h)µ(dh)ds.

If (8.2) is satisfied but not (8.1), the definition of M comes from a L2- limiting argument,
as for the usual stochastic integrals. In this case the quantity

∫ t
0

∫
E G(s, h)N(ds, dh) isn’t

always well defined and we are obliged to compensate.
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Example: Let α ∈ (0, 2). A symmetric α-stable process S can be written

St =

∫ t

0

∫
R
h1{0<|h|<1}Ñ(ds, dh) +

∫ t

0

∫
R
h1{|h|≥1}N(ds, dh), (8.3)

where N(ds, dh) is a Poisson point measure with intensity µ(dh)ds = 1
|h|1+αdhds. There

is an accumulation of small jumps and the first term in the r.h.s. of (8.3) is defined as
a compensated martingale. The second term corresponds to the big jumps, which are in
finite number on any finite time interval.
If α ∈ (1, 2), then

∫
h∧ h2µ(dh) <∞ and the process is integrable. If α ∈ (0, 1), we only

have that
∫

1 ∧ h2µ(dh) <∞ and the integrability of the process can fail.

Let us now consider a stochastic differential equation driven both by a Brownian term
and a Poisson point measure. We consider a random variable X0, a Brownian motion
B and a Poisson point measure N(ds, dh) on R+ × R with intensity µ(dh)ds. Let us fix
some measurable functions b and σ on R and G(x, h) and K(x, h) on R× R.

We consider a process X ∈ D(R+,R) such that for any t > 0,

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs

+

∫ t

0

∫
R
G(Xs−, h)N(ds, dh) +

∫ t

0

∫
R
K(Xs−, h)Ñ(ds, dh). (8.4)

To give a sense to the equation, one expects that for any T > 0,

E
(∫ T

0

∫
R
|G(Xs, h)|µ(dh)ds

)
< +∞ ; E

(∫ T

0

∫
R
K2(Xs, h)µ(dh)ds

)
< +∞.

We refer to [23] Chapter IV-9 for general existence and uniqueness assumptions (gener-
alizing the Lipschitz continuity assumptions asked in the case without jump).

Let us assume that a solution of (8.4) exists. The process X is a left-limited and right-
continuous semimartingale. A standard question is to ask when the process f(Xt) is a
semimartingale and to know its Doob-Meyer decomposition. For a smooth function f ,
there is an Itô’s formula generalizing the usual one stated for continuous semimartingales.

Recall (cf. Dellacherie-Meyer VIII-25 [13]) that for a function a(t) with bounded variation,
the change of variable formula gives that for a C1-function f ,

f(a(t)) = f(a(0)) +

∫
(0,t]

f ′(a(s))da(s) +
∑

0<s≤t
(f(a(s)− f(a(s−)−∆a(s)f ′(a(s−)).

We wish to replace a by a semimartingale. We have to add smoothness to f and we will
get two additional terms in the formula because of the two martingale terms. As in the
continuous case, we assume that the function f is C2.
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Theorem 8.5. (see [23] Theorem 5.1 in Chapter II). Let f a C2-function. Then f(X)
is a semimartingale and for any t,

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)b(Xs)ds+

∫ t

0
f ′(Xs)σ(Xs)dBs +

1

2

∫ t

0
f ′′(Xs)σ

2(Xs)ds

+

∫ t

0

∫
R

(f(Xs− +G(Xs−, h))− f(Xs−))N(ds, dh)

+

∫ t

0

∫
R

(f(Xs− +K(Xs−, h))− f(Xs−))Ñ(ds, dh)

+

∫ t

0

∫
R

(
f(Xs +K(Xs, h))− f(Xs)−K(Xs, h)f ′(Xs)

)
µ(dh)ds. (8.5)

Corollary 8.6. Under suitable integrability and regularity conditions on b, σ, G, K and
µ, the process X is a Markov process with extended generator: for any C2-function f , for
x ∈ R,

Lf(x) = b(x)f ′(x) +
1

2
σ2(x)F ′′(x) +

∫
R

(f(x+G(x, h))− f(x))µ(dh)

+

∫
R

(
f(x+K(x, h))− f(x)−K(x, h)f ′(x)

)
µ(dh). (8.6)

Example: let us study the case where

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs + St,

where S is the stable process introduced in (8.3). Let us consider a C2-function f . Then
f(X) is a semimartingale and writes

f(Xt) = f(X0) +Mt +

∫ t

0
f ′(Xs)b(Xs)ds+

1

2

∫ t

0
f ′′(Xs)σ

2(Xs)ds

+

∫ t

0

∫
R

(f(Xs− + h1{|h|>1})− f(Xs−))
1

|h|1+α
dhds

+

∫ t

0

∫
R

(
f(Xs− + h1{|h|≤1})− f(Xs−)− h1{|h|≤1}f

′(Xs−)
) 1

|h|1+α
dhds

= f(X0) +Mt +

∫ t

0
f ′(Xs)b(Xs)ds+

1

2

∫ t

0
f ′′(Xs)σ

2(Xs)ds

+

∫ t

0

∫
R

(
f(Xs− + h)− f(Xs−)− h1{|h|≤1}f

′(Xs−)
) 1

|h|1+α
dhds,

where M is a martingale.
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Let us come back to the general case and apply Itô’s formula (8.7) to f(x) = x2:

X2
t = X2

0 +

∫ t

0
2Xsb(Xs)ds+

∫ t

0
2Xs−σ(Xs−)dBs +

∫ t

0
σ2(Xs)ds

+

∫ t

0

∫
R

(2Xs−G(Xs−, h) + (G(Xs−, h))2)N(ds, dh)

+

∫ t

0

∫
R

(2Xs−K(Xs−, h) + (K(Xs−, h))2)Ñ(ds, dh)

+

∫ t

0

∫
R

(K(Xs−, h))2µ(dh)ds. (8.7)

In the other hand, since
Xt = X0 +Mt +At,

where M is square-integrable and A has finite variation, then

X2
t = X2

0 +Nt +

∫ t

0
2Xs−dAs + 〈M〉t.

Doob-Meyer’s decomposition allows us to identify the martingale parts and the finite
variation parts in the two previous decompositions and therefore

〈M〉t =

∫ t

0
σ2(Xs)ds+

∫ t

0

∫
R

(G2(Xs−, h) +K2(Xs−, h))µ(dh)ds.
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