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Abstract

The goal of this note is to show how recent results on the theory of quasi-stationary distribu-
tions allow to deduce effortlessly general criteria for the geometric convergence of normalized
unbounded semigroups.

Keywords: R-positivity; quasi-stationary distributions; mixing properties; Foster-Lyapunov criteria

1 Introduction

Let E be a measurable space and (Pn ,n ∈Z+) be a positive semigroup on the set of bounded mea-
surable functions on E . In the case where P1 is a bounded operator, one can define the dual action
of (Pn ,n ∈Z+) on the set of probability measures on E as

µPn f =
∫

E
Pn f (x)µ(d x), (1.1)

for all f bounded measurable and all probability measures µ on E . In this case, the authors pro-
vided in [9] general sufficient conditions ensuring the convergence in total variation of the nor-
malized semigroup µPn

µPn1
, where 1 is the constant function equal to 1 on E , to a so-called quasi-

stationary probability measure, with a speed bounded by Cαn µ(ϕ1)
µ(ϕ2) for some α ∈ (0,1) and appro-

priate functions ϕ1 and ϕ2. This result can be seen as an extension to bounded non-conservative
semigroups of criteria of convergence for semigroups associated to Markov processes (in particu-
lar, Harris theorem and all its extensions based on Doeblin’s conditions and Foster-Lyapunov crite-
ria, see e.g. [25, 15]) and as a practical alternative to R-recurrent Markov chains theory [29, 27, 26].
In particular, it provides an alternative to spectral theoretic results dealing with existence of eigen-
functions and convergence to them (e.g. Krein-Rutman theorem, spectral theory of symetric oper-
ators, or the theorem of convergence of normalized semigroups of Birkhoff [7] and its extensions).

The goal of the present note is to show how the results of [9] allow to deduce effortlessly gen-
eral criteria for the geometric convergence of normalized semigroups when P1 is unbounded. This
natural extension provides practical criteria for the R-positive recurrence of unbounded semi-
groups as developed in [27, Section 6.2] and [26]. It has applications to penalized Markov pro-
cesses [13, 14], to the study of the long time behaviour of Markov branching processes (see for in-
stance [18, 19, 20, 6, 21, 10, 5, 3, 4]), of non-conservative PDEs (see e.g. [1, 2] and references therein)
and of measure-valued Pólya processes and reinforced processes [23].
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We shall consider cases where there exists a measurable (possibly unbounded) function ψ1 :
E → (0,+∞) such that P1ψ1 ≤ cψ1 for some constant c, so that the right and left action of Pn in (1.1)
are defined naturally for all measurable f : E →R such that f /ψ1 is bounded and all positive mea-
sure µ such that µ(ψ1) <+∞ (this corresponds to the setting described in [27, Section 6.2]). In this
setting, the recent article [2] makes use of the methods developed in [8, 9] to give a necessary and
sufficient condition for the existence of a positive eigenfunction η of P1 with eigenvalue θ0 and the
geometric convergence of θ−n

0 µPn f for all f and µ such that f /ψ1 is bounded and µ(ψ1) < +∞.
We show below that this result can be strengthened as an immediate corollary of the results of [9]
applied to the sub-Markov semigroup Pn (·ψ1)

cnψ1
for the sufficient condition, and standard results on

ergodicity of Markov processes applied to a well-chosen h-transform of Pn for the necessary con-
dition.

Section 2 is devoted to the statement and the proof of this result. We then explain in Section 3
how large classes of semigroups satisfying our hypotheses can be deduced from those studied
in [9]. We focus on two applications: penalized semigroups associated to perturbed (discrete-time)
dynamical systems (Subsection 3.1) and diffusion processes (Subsection 3.2).

2 Main result

We first introduce the assumptions on which our results are based. We state them following the
same structure as Assumption (E) in [9] to emphasize their similarity.

Condition (G). There exist positive real constants θ1,θ2,c1,c2,c3, an integer n1 ≥ 1, two functions
ψ1 : E → (0,+∞),ψ2 : E →R+ and a probability measure ν on a measurable subset K of E such that

(G1) (Local Dobrushin coefficient). ∀x ∈ K and all measurable A ⊂ K ,

Pn1 (ψ11A)(x) ≥ c1ν(A)ψ1(x).

(G2) (Global Lyapunov criterion). We have θ1 < θ2 and

inf
x∈K

ψ2(x)/ψ1(x) > 0, sup
x∈E

ψ2(x)/ψ1(x) ≤ 1,

P1ψ1(x) ≤ θ1ψ1(x)+ c21K (x)ψ1(x), ∀x ∈ E

P1ψ2(x) ≥ θ2ψ2(x), ∀x ∈ E .

(G3) (Local Harnack inequality). We have

sup
n∈Z+

supy∈K Pnψ1(y)/ψ1(y)

infy∈K Pnψ1(y)/ψ1(y)
≤ c3

(G4) (Aperiodicity). For all x ∈ K , there exists n4(x) such that for all n ≥ n4(x),

Pn(1Kψ1) > 0.

In the following theorem, we consider the Banach space

L∞(ψ1) = {
f : E →Rmeasurable, s.t. f /ψ1 is bounded

}
,

endowed with the norm ‖ f ‖L∞(ψ1) := ‖ f /ψ1‖∞.
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Theorem 2.1. Assume that Condition (G) holds true. Then there exists a positive measure νP on
E such that νP (ψ1) = 1 and νP (ψ2) > 0, and two constants C < +∞ and α ∈ (0,1) such that, for
all measurable functions f : E → R satisfying | f | ≤ ψ1 and all positive measure µ on E such that
µ(ψ1) <+∞ and µ(ψ2) > 0, ∣∣∣∣ µPn f

µPnψ1
−νP ( f )

∣∣∣∣≤Cαn µ(ψ1)

µ(ψ2)
, ∀n ∈Z+. (2.1)

In addition, there exists θ0 > 0 such that νP Pn = θn
0 νP and a function η : E →R+ such that θ−n

0 Pnψ1

converges uniformly and geometrically toward η in L∞(ψ1) and such that P1η = θ0η and νP (η) =
νP (ψ1) = 1. Moreover, there exist two constants C ′ > 0 and β ∈ (0,1) such that, for all measurable
functions f : E →R satisfying | f | ≤ψ1 and all positive measures µ on E such that µ(ψ1) <+∞,∣∣θ−n

0 µPn f −µ(η)νP ( f )
∣∣≤C ′βnµ(ψ1). (2.2)

Remark 1. Note that (G2) implies that Pnψ1 ≤ cPnψ2 on K for all n ≥ 0 and some constant c > 0
(see [9, Lemma 9.6]). Hence we have, for all x ∈ K ,

Pnψ1(x)/ψ1(x) ≤ c Pnψ2(x)/ψ1(x) ≤ c Pnψ2(x)/ψ2(x)

and
Pnψ2(x)/ψ2(x) ≤ Pnψ1(x)/ψ2(x) ≤ sup

K

ψ1

ψ2
Pnψ1(x)/ψ1(x).

Therefore, replacing ψ1 by ψ2 in (G1) and/or (G3) give equivalent versions of Condition (G). In [2],
a similar result is obtained, but with the additional assumptions that ψ2 > 0 on E and n1 = 1. In
this restricted case, one can easily check that their assumptions on the discrete-time semigroup
are equivalent to ours. The fact that ψ2 can vanish allows to deal with reducible processes (see [9,
Section 6]).

Proof. Assumption (G2) implies that P1ψ1 ≤ (θ1 + c2)ψ1, so that Q1 f := P1( f ψ1)
(θ1+c2)ψ1

defines a sub-
markovian kernel generating the semigroup (Qn)n∈N defined by

Qn( f ) = Pn( f ψ1)

(θ1 + c2)nψ1
, ∀n ≥ 0, ‖ f ‖∞ ≤ 1.

It is straightforward to check that this semigroup satisfies conditions (E1-E4) in [9] with ϕ1 = 1 and
ϕ2 =ψ2/ψ1, using θ1/(θ1 + c2) in place of θ1, θ2/(θ1 + c2) in place of θ2 and c1/(θ1 + c2)n1 in place
of c1. Using Theorem 2.1 in this reference applied to Qn , we deduce that there exist constants C >
0,α ∈ (0,1) and a probability measure νQSD on E such that, for all bounded measurable functions
g : E →R and all probability measures υ such that υ(ϕ2) > 0,∣∣∣∣υQn g

υQn1
−νQSD (g )

∣∣∣∣≤Cαn ‖g‖∞
υ(ϕ2)

.

Setting νP (d x) = 1
ψ1(x)νQSD (d x), µ(d x) = 1

ψ1(x)υ(d x) and f = g ψ1, one obtains (2.1). Similarly,
Theorem 2.5 of [9] for Qn states that there exist θQ > 0 such that νQSDQn = θn

QνQSD and a function
ηQ : E → R+ such that θ−n

Q Qn1 converges uniformly and geometrically toward ηQ in L∞ and such
that Q1ηQ = θQηQ . Setting η= ηQψ1 and θ0 = θQ (θ1+c2) gives the result on geometric convergence
of θ−n

0 Pnψ1 to η in L∞(Ψ1).
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It remains to prove (2.2). Note that it is sufficient to prove it for any µ = δx . If η(x) = 0, this
is implied by the above geometric convergence. If η(x) > 0, then ηQ (x) > 0 and the convergence
of [9, Theorem 2.7] applied to Qn implies that there exists C ′ < +∞ and α̃ ∈ (0,1) such that, for all
measurable g : E →R satisfying |g | ≤ 1/ηQ ,∣∣∣∣θ−n

Q

Qn(gηQ )(x)

ηQ (x)
−νQSD (gηQ )

∣∣∣∣≤C ′α̃n 1

ηQ (x)
.

Multiplying both sides by ηQ (x)ψ1(x) and setting f = gηQψ1 ends the proof of (2.2).

Remark 2. The elementary method consisting in studying the sub-Markov semi-group (Qn) instead
of (Pn) as done in the above proof is not particular to our assumptions. It can also be used to derive
immediately sufficient criteria for the convergence of unbounded semi-groups from the abundant
theory of sub-Markovian semi-groups, as developed for instance in [12, 11, 30, 16, 22, 17]. Note
that a similar approach has been used in [5] to describe the asymptotic behaviour of the growth-
fragmentation equation using Krein-Rutman theorem and other criteria for R-positivity.

Whether Assumption (G) is necessary for (2.1) is still an open problem up to our knowldge.
However, if one assumes that there exists a positive eigenfunction η such that (2.2) holds true,
then one recovers easily Assumption (G) by applying the classical counterpart of Forster-Lyapunov
criteria for conservative semigroups. Here, the conservative semigroup is the one associated to the

h-tranform of Pn defined by Rn f := θ−n
0
η Pn(η f ) (which is called Q-process in the sub-Markovian

case, cf. e.g. [24]). The only difficulty in the proof of the following theorem is that η may vanish on
some subset of E .

Theorem 2.2. Assume that there exist a positive functionψ : E → (0,+∞) and a non-negative eigen-
function η ∈ L∞(ψ) of P1 for the eigenvalue θ0 > 0, such that∣∣θ−n

0 Pn f (x)−η(x)νP ( f )
∣∣≤ ζnψ(x) (2.3)

is satisfied for all x ∈ E and all measurable functions f : E → R such that | f | ≤ ψ, where (ζn)n≥0 is
some positive sequence converging to 0. Then Assumption (G) is satisfied withψ2 = η and with some
function ψ1 ∈ L∞(ψ) such that ψ ∈ L∞(ψ1).

Remark 3. A similar partial counterpart to Theorem 2.2 was proven in [2], where the authors as-
sume that ζn is geometrically decreasing, that η is positive and use the approach of [8] to conclude.

Proof. We define E ′ = {x ∈ E , η(x) > 0} and introduce the conservative semigroup R on functions
g : E ′ →R such that |g (x)| ≤ψ(x)/η(x) defined by

Rn g (x) = θ−n
0

η(x)
Pn(ηg )(x), ∀x ∈ E ′ and n ≥ 0.

Applying (2.3) to f = gη and setting νR (d x) = η(x)νP (d x), we deduce that, for all x ∈ E ′ and all
measurable function g : E ′ →R such that |g | ≤ψ/η

∣∣Rn g (x)−νR (g )
∣∣≤ ζn

ψ(x)

η(x)
.

This is the classical V -uniform ergodicity condition (with V =ψ/η), for which necessary and suf-
ficient conditions are well-known. First, it implies V -uniform geometric ergodicity, i.e. one can
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replace ζn by C βn for some C > 0,β ∈ (0,1) in the above equation (see for instance Proposition
15.2.3 in [15]). Second, we deduce using for example Theorem 15.2.4(b) in [15] that, for any integer
m such that C 1/mβ< 1 and any λ,ρ such that C 1/mβ≤λ< ρ < 1, there exist d ,CR <+∞ such that

R1V0(x) ≤ ρV0(x)+CR1K (x), ∀x ∈ E ′, (2.4)

with

V0 =
m−1∑
k=0

λ−k Rk

(
ψ

η

)
and K := {ψ/η≤ d}∩E ′ is an accessible small set for R. This last property means that there exists a
probability measure νR on E ′ and a constant cR > 0 such that, for all A ⊂ K measurable,

Rn′
1
1A(x) ≥ cRνR (A), ∀x ∈ K .

for some constant integer n′
1 ≥ 1. Since K is accessible, there exists n′′

1 ≥ 0 such that a := νR Rn′′
1
1K >

0. Setting n1 = n′
1 +n′′

1 , it then follows that

Pn1 (ψ1A)(x) ≥ cRθ
n1
0 η(x)νR Rn′′

1

(
1K1A

ψ

η

)
, ∀x ∈ K .

Due to the definition of K , we deduce that (G1) holds true with c1 = acRθ
n1
0 /d and the probability

measure ν(d x) = ψ(x)
aη(x)1K (x)(νR Rn′′

1
)(d x).

Defining ψ1 = ηV0, we also deduce from (2.4) that,

P1ψ1(x) ≤ θ0ρψ1(x)+CR1K (x)η(x) ≤ θ0ρψ1(x)+ CR

‖η‖L∞(ψ)
1K (x)ψ1(x), ∀x ∈ E ′.

In view of the definition of V0(x) for all x ∈ E ′, we have

ψ1(x) =
m−1∑
k=0

(λθ0)−k Pkψ(x),

which also makes sense for x ∈ E \E ′. For such an x, we deduce from (2.3) that Pnψ(x) ≤ ζnθ
n
0ψ(x).

Without loss of generality, increasing m, λ and ρ if necessary, we can assume that ζ1/m
m ≤λ< ρ < 1.

Then,
P1ψ1(x) =λθ0ψ1(x)−λθ0ψ(x)+ (λθ0)1−mPmψ≤λθ0ψ1(x), ∀x ∈ E \ E ′.

Hence, we have checked that P1ψ1 ≤ θ0ρψ1 + c21Kψ1 on E for some constants ρ < 1 and c2 <+∞.
Since P1η = θ0η, the proof of (G2) is completed. Note also that ψ ≤ ψ1 and the fact that ψ1 ∈
L∞(ψ) follows from the inequality Pnψ1 ≤ Anψ1 for some constant An , which is an immediate
consequence of (2.3) and the fact that η ∈ L∞(ψ1).

Thanks to Remark 1, it is sufficient to check (G3) with ψ2 = η instead of ψ1. Since η is an eigen-
function of P1, (G3) is trivial.

Since K ⊂ E ′, it follows from (2.3) that, for all x ∈ K , θ−n
0 Pn(1Kψ1)(x) converges as n →+∞ to

η(x)νP (1Kψ1) > 0. Hence (G4) is clear.

For continuous time semigroups (Pt )t∈[0,+∞), the conclusions of Theorem 2.1 can be easily
deduced from properties on the discrete skeleton (Pnt0 )n∈N (similar properties where already ob-
served in Theorem 5 of [29] and in [9]). In the following result, the function η and the positive
measure νP are the one of Theorem 2.1 applied to the discrete skeleton (Pnt0 )n∈N.
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Corollary 2.3. Let (Pt )t∈[0,+∞) be a continuous time semigroup. Assume that there exists t0 > 0

such that (Pnt0 )n∈N satisfies Assumption (G),
(

Ptψ1

ψ1

)
t∈[0,t0]

is upper bounded by a constant c̄ > 0 and(
Ptψ2

ψ2

)
t∈[0,t0]

is lower bounded by a constant c > 0. Then there exist some constants C ′′ > 0 and γ> 0

such that, for all measurable functions f : E →R satisfying | f | ≤ψ1 and all positive measure µ on E
such that µ(ψ1) <+∞ and µ(ψ2) > 0,∣∣∣∣ µPt f

µPtψ1
−νP ( f )

∣∣∣∣≤C ′′e−γt µ(ψ1)

µ(ψ2)
, ∀t ∈ [0,+∞), (2.5)

In addition, there exists λ0 ∈ R such that νP Pt = eλ0tνP for all t ≥ 0, and e−λ0t Ptψ1 converges uni-
formly and exponentially toward η in L∞(ψ1) when t →+∞. Moreover, there exist some constants
C ′′′ > 0 andγ′ > 0 such that, for all measurable functions f : E →R satisfying | f | ≤ψ1 and all positive
measures µ on E such that µ(ψ1) <+∞,∣∣∣e−λ0tµPt f −µ(η)νP ( f )

∣∣∣≤C ′′′e−γ
′tµ(ψ1), ∀t ∈ [0,+∞). (2.6)

Proof. Assuming without loss of generality that t0 = 1 and applying (2.1) to µPt , where t ∈ [0,1],
and f such that µ(ψ1) <+∞ and | f | ≤ψ1, one deduces that∣∣∣∣ µPt+n f

µPt+nψ1
−νP ( f )

∣∣∣∣≤Cαn µPtψ1

µPtψ2
≤ C c̄

αc
αn+t µ(ψ1)

µ(ψ2)
,

which implies (2.5). Then, applying this inequality to µ= νP and letting n go to infinity shows that
νP Pt f /νP Ptψ1 = νP f for all t ≥ 0. Choosing f = Psψ1 entails νP Pt+sψ1 = νP Ptψ1νP Psψ1 for all
s, t ≥ 0, and hence νP Ptψ1 = eλ0tνPψ1 for all t ≥ 0 for some constant λ0 ∈R (note that θ0 = eλ0 ).

Similarly, inequality (2.2) applied to µ = δx Pt and f = ψ1 on the one hand and to µ = δx and
f = Ptψ1 on the other hand implies that Ptη(x) = η(x)νP (Ptψ1) = eλ0tη(x) for all t ≥ 0. Applying
again (2.2) to µ= δx Pt entails that

∣∣θ−n
0 Pt+n f (x)−Ptη(x)νP ( f )

∣∣≤C ′βnPtψ1(x) ≤ C ′c̄
β
βn+tψ1(x).

In particular, for all t ≥ 0, ∣∣∣e−λ0t Pt f (x)−η(x)νP ( f )
∣∣∣≤ C ′c̄

β
βtψ1(x)

and e−λ0t Ptψ1 converges geometrically to η in L∞(ψ1). This concludes the proof of Corollary 2.3

3 Some applications

Given a positive semigroup P acting on measurable functions on E , one can try to directly check
Assumption (G) by finding appropriate functionsψ1 andψ2. Another natural and equivalent strat-

egy is to find a function ψ such that the semigroup defined by Qn f = Pn (ψ f )
cnψ is sub-Markovian and

check that it satisfies Assumption (E) of [8]. The main advantage of this last approach is that Q has
a probabilistic interpretation as the semigroup of a sub-Markov process. As such, one can apply
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all the criteria developed in the above mentioned reference and, more generally, use the intuitions
and toolboxes of the theory of stochastic processes. Since both approaches are equivalent, this is
rather a question of taste.

In Subsection 3.1, we consider the case of a penalized perturbed dynamical system and check
Assumption (G) directly. In subsection 3.2, we consider the case of a penalized diffusion processes
and check Assumption (E).

3.1 Perturbed dynamical systems

Let f : Rd → Rd be a locally bounded measurable function and consider the perturbed dynamical
system Xn+1 = f (Xn)+ ξn with (ξi )i∈Z+ i.i.d. non-degenerate Gaussian random variables. We are
interested in the asymptotic behaviour of the associated Feynman-Kac semigroup

Pn f (x) = Ex

(
n∏

k=1
G(Xk )1Xk∈E f (Xn)

)
,

where E is a measurable subset of Rd with positive Lebesgue measure and G : E → (0,+∞) is a
measurable function.

Proposition 3.1. Assume that 1/G is locally bounded, G(x) ≤C exp(|x|) for all x ∈ E and some con-
stant C > 0 and there exists p > 1 such that |x|−p| f (x)| →+∞ when |x| →+∞, then the semigroup
(Pn)n∈N satisfies Assumption (G).

Proof. One easily checks that ψ1(x) = exp(a|x|), where a > 0 is such that 1/a < p −1, satisfies

P1ψ1(x) ≤CE
(
e(1+a)| f (x)+ξ1|

)
≤C ′ψ1(x) exp

(−a
(|x|−p| f (x)|)) , (3.1)

where C ′ =CEe(1+a)|ξ1|. Now, assume without loss of generality that B(0,1)∩E has positive Lebesgue
measure and set θ2 := infx∈B(0,1)∩E P11B(0,1)∩E (x)/2, which is clearly positive. It then follows from
Markov’s property that

θ−n
2 inf

x∈B(0,1)∩E
Pn1B(0,1)∩E (x) ≥ θ−n

2 inf
x∈B(0,1)∩E

Ex

[
n∏

k=1
G(Xk )1B(0,1)∩E (Xk )

]
≥ 2n →+∞,

when n →+∞. One easily deduces that, for all R ≥ 1, θ−n
2 infx∈B(0,R)∩E Pn1B(0,1)∩E (x) →+∞, and

hence that θ−n
2 infx∈B(0,R)∩E Pn1B(0,R)∩E (x) →+∞ when n →+∞.

We set θ1 = θ2/2 and fix R ≥ 1 large enough so that C ′e−a(|x|−p| f (x)|) ≤ θ1 for all |x| ≥ R. It then fol-
lows from (3.1) that P1ψ1 ≤ θ1ψ1 + c21Kψ1, where K := B(0,R)∩E . Setting ψ2(x) =∑n0

k=0θ
−k
2 Pk1K ,

we deduce that, for all x ∈ E ,

P1ψ2(x) =
n0∑

k=0
θ−k

2 Pk+11K (x) = θ2ψ2(x)+θ2

[
θ
−(n0+1)
2 Pn0+11K (x)−1K (x)

]
≥ θ2ψ2(x)

for n0 chosen large enough. Since in addition Pk1K ≤ Pkψ1 ≤ (θ1+c2)kψ1,ψ2 ∈ L∞(ψ1) and, for all
x ∈ K , ψ2(x) ≥ 1 ≥ e−aRψ1(x). Hence, dividing ψ2 by ‖ψ2‖L∞(ψ1) ends the proof of (G2).

In order to prove (G1), (G3) and (G4), we follow similar arguments as for [9, Prop. 7.2]. Since
the adaptation of these arguments is a bit tricky because the function ψ1 needs to be taken into
account appropriately, we give the details below.
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The first step consists in proving that there exists a constant c > 0 such that, for all measurable
A ⊂ K , for all x ∈ E and all y ∈ K ,

P1(ψ11A)(x)

ψ1(x)
≤ c

P1(ψ11A)(y)

ψ1(y)
. (3.2)

This implies easily (G1) for n1 = 1 and (G4) then follows directly from (G1) (since n1 = 1).
To prove (3.2), we observe that (recall that A ⊂ K = E ∩B(0,R))

P1(ψ11A)(x)

ψ1(x)
≤ P1(ψ11A)(x) ≤ sup

|z|≤R
[G(z)ψ1(z)] P( f (x)+ξ1 ∈ E ∩ A∩B(0,R)).

Because ξ1 is a non-degenerate gaussian random variable, it is not hard to check that there exists
a constant CR depending only on R (and not on x ∈ E and y ∈ K ) such that P( f (x)+ ξ1 ∈ E ∩ A ∩
B(0,R)) ≤CRP( f (y)+ξ1 ∈ E ∩ A∩B(0,R)). Therefore,

P1(ψ11A)(x)

ψ1(x)
≤CR

sup|z|≤R G(z)ψ1(z)

inf|z|≤R G(z)
Ey

[
G(X1)ψ1(X1)1X1∈E∩A

]≤ c
P1(ψ11A)(y)

ψ1(y)
,

where c =CR eaR sup|z|≤R G(z)ψ1(z)/ inf|z|≤R G(z). Hence (3.2) is proved.
Next, we observe that the Markov property combined with (G2) implies that, for all x ∈ E and

all n ≥ 1,

Ex

[
n∏

k=1
G(Xk )1Xk∈E\Kψ1(Xn)

]
≤ (θ1 + c2)θn−1

1 ψ1(x). (3.3)

We also have the property that there exists a constant c ′ > 0 such that, for all y ∈ K and all 0 ≤ k ≤ n,

Pnψ1(y)

ψ1(y)
≥ c ′θk

2
Pn−kψ1(y)

ψ1(y)
. (3.4)

As observed in Remark 1, since we already proved (G2), the last property is equivalent to the same
one withψ2 instead ofψ1. Since P1ψ2 ≥ θ2ψ2 on K [du coup, ça n’itère pas bien ici... je ne retrouve
plus l’argument] (3.4) is then clear.

The proof of (G3) can then be done combining the last inequalities. We first decompose Pnψ1

depending on the value of the first return time in K : for all x ∈ E ,

Pnψ1(x) = Ex

[
n∏

k=1
G(Xk )1Xk∈E\Kψ1(Xn)

]
+

n∑
`=1

Ex

[
`−1∏
k=1

G(Xk )1Xk∈E\K G(X`)1X`∈K Pn−`ψ1(X`)

]

≤ (θ1 + c2)θn−1
1 ψ1(x)+

n∑
`=1

Ex

[
`−1∏
k=1

G(Xk )1Xk∈E\K EX`−1

[
G(X1)1X1∈K Pn−`ψ1(X1)

]]
,

where we used (3.3) and Markov’s property in the second line. We then proceed by using (3.2) for
some fixed y ∈ K first, (3.3) next, and finally (3.4) twice:

Pnψ1(x)

ψ1(x)
≤ (θ1 + c2)θn−1

1 + c

ψ1(x)

n∑
`=1

Ex

[
`−1∏
k=1

G(Xk )1Xk∈E\Kψ1(Xk−1)

]
Ey

[
G(X1)1X1∈K Pn−`ψ1(X1)

]
ψ1(y)

≤ θ1 + c2

θ1
θn

1 + c(θ1 + c2)

θ1

n∑
`=1

θ`−1
1

Pn−`+1ψ1(y)

ψ1(y)

≤
[
θ1 + c2

c ′θ1

(
θ1

θ2

)n

+ c(θ1 + c2)

c ′θ1

n∑
`=1

(
θ1

θ2

)`−1
]

Pnψ1(y)

ψ1(y)
.

Since the last factor is bounded in n, this ends the proof of Proposition 3.1.
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3.2 Diffusion processes

Let (X t )t∈[0,+∞) be solution to the SDE

d X t = dBt +b(X t )d t , X0 ∈ (0,+∞)d , (3.5)

where B is a standard d-dimensional Brownian motion and b : Rd → Rd is locally Hölder. Let
r : (0,+∞)d →R be locally bounded and consider the semigroup (Pt )t∈[0,+∞) defined by

Pt f (x) = Ex

(
e

∫ t
0 r (Xu )du f (X t )1Xs∈(0,+∞)d , ∀s∈[0,t ]

)
. (3.6)

The term1Xs∈(0,+∞)d , ∀s∈[0,t ] above corresponds to a killing at the boundary of the domain (0,+∞)d .
Note that the solution to (3.5) may explode in finite time if b does satisfy the linear growth condi-
tion. However, we assume by convention that X t 6∈ (0,+∞)d after the explosion time, so that (3.6)
makes sense. We refer to [9, Sections 4.1 and 12.1] for the precise construction of the process.

One motivation for the study of this semigroup comes from the Feynam-Kac formula. Indeed,
when the coefficients are smooth enough (see for instance [28, Section 1.3.3]), this semigroup is
solution to the Cauchy linear parabolic partial differential equation

r v − ∂v

∂t
+L v = 0, on [0,+∞)× (0,+∞)d

v(0, ·) = f , on (0,+∞)d ,

where L is the differential operator of second order

Lϕ(x) = 1

2
∆ϕ(x)+b(x) ·∇ϕ(x), ∀ϕ ∈C 2(Rd ),

with Dirichlet boundary conditions.

Proposition 3.2. Assume that

r (x)+
d∑

i=1
bi (x) −−−−−−−−−−−−→

|x|→∞, x∈(0,∞)d
−∞. (3.7)

Then the semigroup (Pt )t∈[0,+∞) satisfies the assumptions of Corollary 2.3.

Proof. We first observe that, settingψ(x) = exp
(∑n

i=1 xi
)

and a := d/2+supx∈(0,∞)d r (x)+∑d
i=1 bi (x),

we have

Qt f := e−at Pt ( f ψ)(x)

ψ(x)
= Ex

(
e−

d
2 t+∑d

i=1 Bt e
∫ t

0

(
r (Xu )+∑d

i=1 bi (Xu )−a+ d
2

)
du f (X t )1Xs∈(0,+∞)d , ∀s∈[0,t ]

)
.

Using Girsanov’s theorem, we deduce that

Qt f = Ex

(
e−

∫ t
0 κ(X̄u )du f (X̄ t )1X̄s∈(0,+∞)d , ∀s∈[0,t ]

)
.

where κ(y) = a − r (y)− d
2 −∑d

i=1 bi (y) ≥ 0 and X̄ is solution to the SDE d X̄ t = dBt + d t
2 +b(X̄ t )d t

with X̄0 = x.
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Assumption (3.7) thus implies that the conditions of [9, Theorem 4.5] are satified1 and hence
that Q satisfies Assumption (F) therein, which implies that Assumption (E) is satisfied by the semi-

group Qnt0 for some t0 > 0 and some Lyapunov functions ϕ1 and ϕ2, that
(

Qtϕ1

ϕ1

)
t∈[0,t0]

is uniformly

bounded, and that there exist a positive function ηQ ∈ L∞(ϕ1) and a constant λ0 > 0 such that
QtηQ = e−λ0tηQ for all t ∈ [0,+∞).

To conclude, it remains to observe that the same procedure as the one used in the proof of
Theorem 2.1 above allows to deduce from these properties that (Pnt0 )n≥0 satisfies Assumption (G)
with ψ1 =ψϕ1 and ψ2 =ψηQ . Observing also that ψ2 is the function η of Theorem 2.1, we deduce
that (Pt )t∈[0,+∞) satisfies the assumptions of Corollary 2.3.
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