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Abstract

Body size or mass is generally seen as one of the main factors which structure food
webs. A large number of evolutionary models have shown that indeed, the evolution of
body size (or mass) can give rise to hierarchically organized trophic levels with complex
between and within trophic interactions. However, because these models have often
very different assumptions, sometimes arbitrary, it is difficult to evaluate what are
the real key factors that determine food webs evolution, and whether these models’
results are robust or not. In this paper, we first review the different adaptive dynamics
models, especially highlighting when their assumptions strongly differ. Second, we
propose a general model which encompasses all previous models. We show that our
model recovers all previous models’ results under identical assumptions. However,
most importantly, we also show that, when relaxing some of their hypotheses, previous
models give rise to degenerate food webs. Third, we show that the assumptions made
regarding the form of biomass conversion efficiency are key for food webs evolution,
a parameter which was neglected in previous models. We conclude by discussing the
implication of biomass conversion efficiency, and by questioning the relevance of such
models to study the evolution of food webs.

Keywords: food webs models, trophic interactions, networks, community ecology,
ecosystem, adaptive dynamics

1 Introduction

One of the goals of theoretical ecology is to decipher the mechanisms underlying the
emergence, topology and stability of trophic food webs. In a context of global change, it
is especially important to develop models predicting the evolution of ecological systems
in response to temperature change, harvesting increase or populations fragmentations
through for instance the evolution of individuals’ traits such as size and feeding rates
(Brown et al., 2004; Woodward et al., 2005). A large variety of models have been developed
to address this question (reviewed by Brännström et al., 2011).
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One class of models is composed of variations of the seminal work by Loeuille and
Loreau (2005) (see Section 2 and Table 1 for a compilation). These models study the
evolution of a food web, where species are structured by a finite number of continuous
traits, including body size or body mass and predation preferences. Population dynamics
follows Lotka-Volterra models where three types of interactions are generally considered,
within and/or between species: competition for resources, competition independent of the
resources, and predation. These models are inspired by the adaptive dynamics framework
(Metz et al., 1996; Geritz et al., 1998), i.e. mutations affecting one or several traits (es-
pecially body size or mass) are recurrently introduced into the community. The evolution
of traits induced by recurrent mutations and ecological interactions can lead to evolu-
tionary branching. Typically, those models show that a food web can emerge with an
increase in species number and a given topology for trophic interactions: a given species
can preferentially consume a subset of the extant species and/or the resources.

These models have been succesful in showing that 1) the evolution of body size or body
mass could be a major mechanism explaining the structure of food webs, and especially the
emergence of trophic levels where large species tend to eat small species (e.g. Loeuille and
Loreau, 2005; Brännström et al., 2011); 2) diversification in trophic networks are promoted
by the number of evolving traits such that predation preference and specialization (Allhoff
and Drossel, 2013; Allhoff et al., 2015; Allhoff and Drossel, 2016; Bolchoun et al., 2017)
or abstract traits (Ritterskamp et al., 2016) ; 3) there can exist a turnover of species in
trophic networks, with species going extinct and replaced either by new species appeared
by mutations, or because of the evolution of the niche of an extant species (Allhoff et al.,
2015).

Despite these models are derived from the same original model (Loeuille and Loreau,
2005) and all inspired by the Adaptive Dynamics framework, they can consistently vary
regarding some of their assumptions, for instance regarding how the main evolving trait
(body size or mass) is modeled: on a linear or a logarithmic scale (see Table 1 and below for
an extended review). Given that these models can indeed typically result in the emergence
of a trophic network, one can argue, on the one hand, that they capture the fundamental
mechanisms responsible for food webs evolution and diversification. On the other hand,
because of important variations between models, one can also argue that it is not clear
which mechanisms are key or not, casting doubts on the generality of the models. For
instance, results are very sensitive to the size of mutations considered: Allhoff et al. (2015)
showed that the evolution of trophic network largely depends on the size of mutations,
questionning the plausibiltiy of evolutionary branching as an important process underlying
the evolution of trophic networks. It has also been shown that evolutionary branching
critically depends on the choice of trade-off functions (de Mazancourt and Dieckmann,
2004). On the contrary, some parameters such as the amplitude of competition kernel or
the density dependence on resources appear to have a negligible effect on diversification
and the number of trophic levels (Brännström et al., 2011). In addition, it is still possible
that the evolution of food webs observed in these models is due to strong and arbitrary
assumptions shared among models (e.g. only one trait evolves or body size is arbitrarily
lower bounded, see Table 1).

In this paper, we aim at better identifying the key mechanisms and assumptions that
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promote the emergence of trophic network in the class of eco-evolutionary models derived
from Loeuille and Loreau (2005). We first review and thoroughly compare the different
hypotheses made by these models. We especially show that some hypotheses are arbitrary
and not justified from an ecological point of view. Second, we propose an unifying frame-
work which includes all of the published models. Third, we show how relaxing strong
assumptions made by previous models can give rise to degenerate trophic networks. We
especially show that relaxing artificial bounds on evolving traits is critical and can dra-
matically change models’ predictions. Finally, we illustrate the sensitivity of the models
by focusing on the assumptions made about how biomass is converted into new individu-
als. We argue that, given the lack of robustness of these models, their predictions should
be taken with caution, especially if one aims at using these models for management of
conversation purposes.

2 A review of food-web evolution models following Loeuille
and Loreau (2005)

Eco-evolutionary models of food-web evolution derived from Loeuille and Loreau (2005)
are inspired from the adaptive dynamics framework. They all share the same basic as-
sumptions but show more or less important variations (see Table 1). These models are
based on the modelling of the evolution of clonal species by introducing mutations into a
population at ecological equilibrium. Ecological dynamics are given by a set of determin-
istic Lotka-Volterra equations, including resource consumption, predation, competition,
birth and death. A resource is also considered, with its own dynamics (chemostat or
logistic growth), which does not feed on any other species or resources. The main idea
behind these models is that food webs structure is driven by traits of the species, especially
individuals’ size or mass. Other traits are also considered, such as the prefered relative
size of preys and specialization of predators. In general, higher dimensional trait spaces
are known to promote branching (Ispolatov et al., 2015; Doebeli and Ispolatov, 2017). Al-
lometries are also considered in all models, i.e. parameters, for instance individual death
rate, are scaled with the size of individuals, following well-known empirical relationships
between many traits (population density, longevity, reproduction rate, etc.) and size or
biomass (Peters, 1983).

In all models, at least size (or biomass) is affected by mutations and evolves, assuming
separation of timescales between ecological and evolutionary processes: mutations are
introduced one after another when populations are at ecological equilibrium. The evolution
of food webs is thus considered on long timescales. The effect of a mutation is drawn from
a random distribution (Uniform or Gaussian, centered on the value of the parents or
not). A mutation can be favored or not depending on the species already present in the
environment. If it is favored, the mutant population invades and either replaces resident
species or coexist with at least one other species. The analysis of the model is generally
conducted thanks to numerical computations following a Piecewise-Deterministic Markov
Process: population dynamics are deterministic and random mutations are introduced at
random or fixed times.

All models assume that a single species is initially present in the environment, with
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the resources. Two phenomena can produce species diversification and the emergence of
a food web. When only small mutations are considered, the food web gets enriched by
a new species through evolutionary branching (sensu Adaptive Dynamics). When large
mutations are possible, a new species may by chance appear in trait regions allowing
invasion and coexistence with extant species. In all cases, models show that for a given
set of parameters, the number of species can increase. Trophic interactions between species
evolve since species i) can feed on other species, ii) have a prefered relative size of preys,
iii) are more or less specialized on a prey size, iv) at least individuals’ size evolves. The
results are hence generally presented as an interaction network, with the species as nodes,
and trophic interaction between species as edges, with weights representing in- and out-
flow of biomass. Finally, all models claim that for a set of reasonable parameter values,
food-webs can emerge and evolve, and their structure can be close to trophic networks
encountered in nature.

Despite all models are derived from the same seminal work by Loeuille and Loreau
(2005), some of their assumptions can substantially vary. We now present in details how
those models vary and why it matters. The differences are summarized in Table 1.

Which traits evolve? The number of evolving traits can differ, giving rise to a large
variability of results. When only size evolves (Loeuille and Loreau, 2005; Brännström
et al., 2011), resulting food webs are structured mostly linearly, and trophic levels are
clearly defined. If size evolves with other traits as relative prey size preference or special-
isation (Ingram et al., 2009; Allhoff and Drossel, 2013; Allhoff et al., 2015; Allhoff and
Drossel, 2016; Bolchoun et al., 2017), food webs can show unsatisfying structures such as
many species in a single trophic level, all feeding on the resource. Satisfying structures
are then obtained under the assumption that mutations can be large. In the work of Rit-
terskamp et al. (2016), in addition to size, an abstract trait also evolves, which facilitate
the emergence of food webs with different trophic levels and many different species. This
shows that food web evolution largely depends on a priori assumptions about the evolving
traits.

Cannibalism, or not? Cannibalism is excluded by some models, either because
species are assumed to feed only on strictly smaller species (Loeuille and Loreau, 2005;
Allhoff and Drossel, 2013), or because an abstract trait is supposed as structuring the food
web and species with identical body masses / sizes can feed on species which do not share
the same abstract trait (Ritterskamp et al., 2016). All other models allow cannibalism.
A priori excluding cannibalism has several caveats. First, cannibalism is widespread in
nature (Fox, 1975), and one can expect that models of food webs evolution reflect all fea-
tures of observed trophic networks, including cannibalism. Second, excluding cannibalism
artificially constraints the fate of mutants. For example, in the works of Loeuille and
Loreau (2005) and Allhoff and Drossel (2013), individuals with a very small size difference
can feed on and/or be eaten by each other while individuals with exactly the same trait
can not. Why biomass flows are possible between very similar (but different) species and
not for identical species is not clear. Furthermore, this introduces an additional selec-
tive pressure on neighbouring mutants: mutations close to their parent, which should be
beneficial in cases without cannibalism (for instance by reducing direct competition), will
usually be deleterious with cannibalism. Third, giving a justification of models excluding
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cannibalism based on individual-based models in the way of Costa et al. (2016) (see also
Metz et al., 1996; Champagnat and Méléard, 2011; Champagnat et al., 2014; ?) would
require singular predation kernels which introduce artifical singularities in fitness land-
scapes. For instance, in the model by Ritterskamp et al. (2016), where an artificial trait
is considered and cannibalism is excluded, considering only mutation along the abstract
trait, the fitness landscape is always negative in the neighbourhood of the parent species,
which implies that only mutants far away from the parents abstract trait can invade. This
assumption artificially prevents the evolution of a continuum of species, with a continuous
variation of abstract trait in the food webs, and thus artificially generates discrete species
and discrete trophic interactions.

Ordered predation. Some models (Loeuille and Loreau, 2005; Allhoff and Drossel,
2013) a priori assume an order for predation: species can only feed on smaller species. It
necessarily excludes cannibalism and introduces artificial constraints (see before). Ordered
predation also arbitrarily implies that in the case of species with very similar size, only the
larger can feed on the smaller. Consequently, in the case of small mutations, it prevents
trophic interaction changes: a prey can not become a predator. On the contrary, in the
case of large mutations, a prey mutant can instantly become a predator if its size is larger
than the size of the predator. This also introduces an asymetry in the fate of mutants:
larger mutants are predators of their parent species whereas smaller mutants are preys
of their parent species, even though both species are very similar for small mutations.
Overall, assuming an ordered predation kernel imposes a structure to the food web and
strongly constrains the evolution of trophic interactions.

Mass/size or log mass/ log size? Models either assume that food webs are struc-
tured with individuals size/mass or log size/log mass. The choice is important since, on
the one hand, if the food web is structured linearly with absolute size or mass, it im-
plies that trophic interactions and predation rates depend on the absolute size difference
between predators and preys (Loeuille and Loreau, 2005; Allhoff and Drossel, 2013). If
this predation distance is not subject to mutation and is then the same for all species,
relatively to their masses, small species feed on much smaller species whereas large species
feed on very similar species. Furthermore, for a given and fixed prey size preference, a
small species can not feed on any other species because no species would be smaller, hence
giving artifical constraints to the minimal possible size of species. In addition, models
considering a structure with the absolute size/mass also assume that the resource has a
size/mass equal to 0, which prevents species to be smaller than the resource, a constraint
that can be considered artificial. On the other hand, assuming log size / log mass (as in
Brännström et al., 2011; Allhoff et al., 2015; Ritterskamp et al., 2016; Allhoff and Drossel,
2016) allows to describe trophic interactions and predation rates depending on the relative
size between preys and predators through a predation proportion rather than a predation
distance. Models on the log-scale seem to be more realistic for food webs with fixed pre-
dation distance/proportion containing a large extent of (log)-masses / (log-) sizes. The
same remark applies to models with evolving predation distance/proportion, in particular
when the evolutionary speeds of both traits are different. Moreover, models on the log-
scale assume that the resource has a log size/ log mass equals to 0 which allows species to
become smaller than the resource if log-masses / log sizes are allowed to reach negative
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values. Overall, it appears that food webs models would rather be structured following
log size/ log mass in order to introduce the least artificial constraints.

Boundaries. Models make different implicit assumptions regarding the boundaries
of possible values of evolving traits. In models assuming a food web structure following
an absolute size/mass, size/mass is implicitly assumed larger than the resource as the
resource size is 0, while in models assuming a structure in log size/log mass, the values
could take any positive or negative values (although the extant models consider mutation
distributions preventing species to evolve to negative values). Models considering other
evolving traits, i.e. size preference for predation or predation specialization, also assume
boundaries. The reason why such boundaries are assumed is not clear. It appears in some
cases that if no boundaries constraints are assumed, the models generally give aberrant
or trivial resulting trophic networks (see Allhoff and Drossel, 2013 where final food webs
contain only one hyper-specialized species or a single trophic level; this is also mentioned
by Allhoff and Drossel, 2016). If giving constrained boundaries to evolving traits is nec-
essary to avoid unsatisfying results, the validity of such a theoretical framework can be
questioned. On the contrary, one can expect that if such models capture the fundamental
mechanisms underlying the evolution of food webs, then traits should evolve to realistic
values on their own, without being artificially constrained.

Mutation kernels. Mutation kernels are assumed either Uniform or Gaussian, gen-
erally centered around the parents value, but not necessarily: mutations can have effect
proportional to the parental value (Loeuille and Loreau, 2005; Allhoff and Drossel, 2013)
or independent of parental value for some traits (e.g. predation preference and predation
specialization) but not for others (parents centered for size) (Allhoff et al., 2015; Allhoff
and Drossel, 2016). Since models can make very different assumptions regarding their
mutation kernels, it is difficult to compare them. For instance, assuming mutations not
centred on the parental value (Allhoff et al., 2015) mimics migration from a regional pool
of species and not mutations.

Mutation size. All models, except the one of Brännström et al. (2011), assume
that mutation effects are large. Some authors even show that if mutations are too small
then diversification cannot occur (Allhoff et al., 2015). If mutation should have large
effects otherwise food webs do not evolve accordingly to expectations, then evolutionary
branching is certainly not an important phenomenon in the evolution of trophic networks.
Indeed, evolutionary branching under the Adaptive Dynamics framework should occur for
small mutations. If large mutations are necessary, other processes are involved. However,
the model by Brännström et al. (2011) showed that small mutations can be sufficient to
make emerge a satisfying trophic network. Hence, it is not clear why small mutations are
sufficient under some conditions and not under others.

Variations of other features. Models can also differ for other features: the dynamics
of the resources, allometries or functional responses for predation rate. The resources can
follow chemostat or logistic growth dynamics, with a feedback due to the decomposition
of the dead individuals into resources or not; allometries can be introduced on one or
several phenomena: birth, death, predation or competition rates; functional responses can
follow Holling type I or II, or Beddington-DeAngelis. These varying assumptions may have
strong influence on the evolution of food webs. Loeuille and Loreau (2006) have studied
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in particular the emerging allometries between species densities and bodymasses in the
model by Loeuille and Loreau (2005). They concluded that the exponent of allometry is
strongly influenced by predation parameters.

Biomass conversion efficiency. Surprisingly, a single feature is common among all
models: the biomass conversion efficiency (or conversion factor), that is the fraction of
ingested biomass devoted to the production of biomass of newborns is supposed constant,
independant of the mass / size of predators and ingested preys. This assumption is
undoubtedly important because it implies that the mass converted by individuals when
consuming preys is increasingly large when feeding on large preys, with no limit. In other
words, there is no cost for predation: feeding on larger preys is not more costly than on
smaller preys. This is in contradiction with empirical data which show that there is a
trade-off for predators between eating small and large preys (Baras et al., 2014; Norin
and Clark, 2017): there is an optimal prey size for which the conversion efficiency is the
highest. This can be due to a trade-off between the low biomass given by small preys but
lower costs to forage, handle and digest than for larger preys. It can also be due to the fact
that predators can feed only on a part of a larger prey: the biomass converted from a large
prey attains a maximum. This is also in contradiction with another common assumption
of these models: if there exists a prefered size for preys, and if this preference can evolve,
it should correspond to the best compromise between eating small or large preys. How
the efficiency of biomass conversion affects the evolution of food webs has been ignored
by extant models. We will show below that it is certainly a major mechanism underlying
the evolution of trophic networks.

Overall, synthesizing the common and different assumptions of the models of food webs
evolution derived from Loeuille and Loreau (2005) shows that the important mechanisms
underlying the diversification and evolution of trophic networks are not clear. It is not
clear whether there is a single major mechanisms that could give rise to satisfying struc-
tured networks, or whether combinations of different assumptions can give rise to similar
results. This statement can cast doubt on the significance of such models for the study of
food web evolution because models construction, analysis and exploration can be biased
by a priori expectations of network structure and general features. This is not necessarily
because some combination of assumptions give rise to satisfying networks structure that
the underlying mechanisms are correct. At best, such models can give directions to what
should be empirically verified: for instance, is it true that biomass conversion efficiency
is constant? At worst, relaxing some of the assumptions made by the extant models,
especially artificial constraints such as excluding cannibalism or imposing boundaries to
evolving traits, could totally change the models’ results and give aberrant, trivial or unre-
alistic networks structure. This is what we will explore in the following. We first propose a
general model, unifying the different extant models. Second, we use our model to explore
the results given by extant models when relaxing some of their assumptions. Finally, we
use our model to explore the importance of the conversion efficiency.
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3 A unifying model

All the models reviewed in the previous section consist in specifying dynamics for species
densities between mutation events. Between two mutations, assuming that the food web is
composed of n species characterized by their average body mass ri at maturity, we denote
by Ni the population density of species i for all i = 1 . . . n. The resource density and
biomass are indexed by i = 0. The basic dynamics for Ni takes the form

Ṅi

Ni
=

n∑
j=0

λij γij Nj −
n∑
j=1

αij Nj −
n∑
j=1

γjiNj −mi , i = 1, . . . , n (1)

where γij is the consumption rate of prey j by predator i; mi is the mortality rate of
species i; αij is the exogeneous direct competition rate between species i and j, which
does not depend on resource and species consumption (sometimes called interference com-
petition, Brännström et al., 2011); finally, λij is the reproduction efficiency per capita of
the consumer i and per capita of ingested biomass of species j (this quantity summarizes
the biomass conversion and the reproduction; it can be interpreted as the fraction of an
individual i produced by the consumption of an individual j); the reproduction efficiency
λij is related to the biomass conversion efficiency, denoted ξij (see Section 2 and Section
5.1 for further definitions), by λij = ξij

rj
ri

.
The dynamics of the populations are coupled with the dynamics for a common resource

density or biomass N0 which can be interpreted as organic or inorganic nutrient, with
(bio-)mass r0. The dynamics of N0 varies among the references but it does not seem
to significantly affect the behaviour of the model. In this work, in line with models by
Brännström et al. (2011), we will consider the following logistic dynamics for the resource
density:

Ṅ0

N0
= rg − k0N0 −

n∑
i=1

γi0Ni (2)

where rg and k0 are the reproductive rate and the intraspecific competition rate of the
resource population, respectively. In models by Loeuille and Loreau (2005); Allhoff and
Drossel (2013); Ritterskamp et al. (2016), a chemostat equation is assumed for the dy-
namics of resources, with possible recycling of a fraction ν of biomass of dead individuals
into resources:

Ṅ0 = I − eN0 −
n∑
i=1

γi0NiN0 + ν

n∑
i=0

riNi

mi +

n∑
j=1

αij Nj +

i−1∑
j=1

(1− λij) γij Nj

 ,

(2’)

where I and e0N0 are the in- and out-flow, respectively.
In models (1)-(2) and (1)-(2’), each species is, a priori, allowed to predate any other

species. The intensity of predation is governed by the function γij . For the ordered models,
where predation of preys with larger body mass is forbidden (see Section 2), the predation
rate γij is 0 for species i larger than species j.
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In order to make the link with the models of Loeuille and Loreau (2005) and Allhoff
and Drossel (2013), which are expressed in term of biomass and with r0 = 0, we introduce
the biomass of species i as Bi = Ni ri and set B0 = N0. These quantities solve

Ḃi
Bi

=
n∑
j=0

λBij γ
B
ij Bj −

n∑
j=1

αBij Bj −
n∑
j=1

γBji Bj −mi ,

where

λBij =

{
ri
rj
λij if j ≥ 1

ri λij if j = 0
, γBij =

γij
ri
, and αBij =

αij
rj

. (3)

The ecological parameters γij , λij , αij and mi are expressed in terms of individual
parameters in the food web species including the body mass ri or its normalized logarithm
zi = ln(ri/r0) (assuming r0 > 0), prefered distance (in terms of body mass) of predation
di or its logarithm representation µi = ln(ri/(ri − di)) and a predation range parameter
si on body mass scale or σi on logarithmic scale. Table 1 gives the different ecological
parameters proposed in the cited references.

In all these references, mutations occur randomly in various ways, typically either
with small probability at each time step or at regular time units. In all cases, they are
assumed to occur on a long time scale, so that the system (1) and (2) or (2’) can reach
a stationary state before next mutation. The species producing mutant is usually chosen
with probability proportional to their density or biomass. The mutant trait is drawn
according to the distributions given in Table 1 and introduced in the population at a
given small density or biomass.

4 Revisiting extant models with relaxed constraints

4.1 A model with relaxed constraints

In order to investigate how relaxing the constraints reviewed in Section 2 might affect food
web evolution, we will mainly focus on the model by Brännström et al. (2011) (see Table 1),
which is structured on log scale, allows cannibalism and for which predation is unordered
(species can feed on larger species). We consider that populations are characterized by
their log-masses zi and their predation preference µi (corresponding here to the predation
log-distance) and assume without loss of generality that r0 = 1, so that zi = log ri. The
predation rate is given by

γij = γ(zi − zj − µi) :=
γ0√

2π σγ
exp

(
−(zi − zj − µi)2

2σ2γ

)
. (4)

The favourite prey of species i has a log-mass zj = zi − µi or mass rj when expressed as
a fraction of its own body mass: rj = ezi−µi = e−µi ri. The shape of the predation rate is
represented on the logarithm and linear scales on Figure 1.

The competition parameter αij has the following Gaussian shape

αij = α(zi − zj) :=
α0√

2π σα
exp

(
−(zi − zj)2

2σ2α

)
,
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Figure 1: Predation rate (4) represented on the logarithm (left) and linear (right) scales.

where σα is the competition range on the logarithmic scale.
The mortality rate takes into account allometry such as

mi = m(zi) := m0 e
−0.25 zi = m0 r

−0.25
i .

For reasons that we will explain in Section 5, we allow dependency on log-body mass
of the conversion efficiency parameter (denoted by λ0 for extant models in Table 1) such
that

λij = λ(zi, zj) := ξ(zi − zj) ezj−zi = ξ(zi − zj)
rj
ri
.

On the contrary to Brännström et al. (2011), both traits z and µ can evolve. We will
see below that it yields unrealistic food web structures. In Section 5, we propose a solution
to this problem, which does not require to let the predation range σγ evolve, contrary to
what was claimed by Allhoff and Drossel (2013).

Methods1

The details of the computational methods slightly vary among references. Here we applied
the following scheme.

Between mutation events, we compute the solution of Eq. (1)-(2) using the odeint

python solver. Mutations are assumed to occur each tm time units. This gives similar,
yet faster, results to alternative schemes where mutations occur with a small probability
at each time steps. The species (z, µ) producing a mutant is drawn proportionally to its
density. The mutant (z′, µ′) is drawn such that z′ and µ′ are independant and Gaussian
with means z and µ and variances σ2z and σ2µ respectively. The mutant initial density
is a small value ε and species are assumed to go extinct if their densities go below the

1Simulations are run on the babycluster of the Institut Élie Cartan de Lorraine : http://babycluster.
iecl.univ-lorraine.fr/
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Figure 2: Evolution of the log-mass in the model by Brännström et al. (2011) with a single
initial species with log-bodymass z = 1.2, variance of the mutation distribution σz = 0.01,
predation preference µ = 3 and parameters of Table 2.

same threshold ε. All the simulations in this paper are performed with ε = 0.0001. The
density of the initial species and the initial resource concentration are the equilibrium of
the system (1)-(2) with n = 1 given by

N∗1 =
λ10 γ10 rg − k0m1

λ10γ210 + k0 ((1− λ11) γ11 + α11)
, N∗0 =

rg − γ10N∗1
k0

(5)

assuming that the fitness of the species 1 satisfies λ10 γ10 rg − k0m1 > 0, where m1, λ10,
λ11, γ10 and γ11 are the death rate, production efficiencies and predation rates (for resource
consumption and cannibalism) associated to the initial species.

The resulting food webs are represented such as an edge or a loop is drawn between
predator i and prey j if predation of j by i is responsible for more than 10% (5% for
dashed edges) of the reproduction of species i, i.e.

λij γij Nj∑n
k=0 λik γikNk

> 0.1 .

On Figures 3 and 5 to 9, a green edge means that the bigger species feeds on the smaller
one and conversely for magenta edges. A loop is drawn if i = j and if more than 10% (5%
for dashed loops) of the species reproduction is due to cannibalism.

4.2 Effect of relaxed constraints: unrealistic behaviours

In line with Brännström et al. (2011), with log-mass as the unique evolving trait, we obtain
diversification by branching (see Figure 2) for identical parameters (given in Table 2),
except for the range of competition σα which is a bit smaller in order to favour branching
events (see Figure 9).

Figure 3 shows three simulations where z and µ can both evolve (thus relaxing the
hypothesis by Brännström et al., 2011, that µ is fixed), with much smaller mutations on µ
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Parameters Values

σγ 1.5
γ0 10
σα 0.5
α0 1
λ0 0.3
m0 0.1
rg 10
k0 0.01

Table 2: Simulation parameters.

than z. In Figure 3a, the food web initially evolves as expected: several branchings occur
and the food web gets structured. However, the smallest species progressively evolves to
smaller bodysize and predation preference until they both become negative. This means
that this species feeds on a larger prey: the resource. After this, the richness of the positive
part of the food web (i.e. the network composed of species with positive bodymasses and
positive predation preferences) stops increasing and the negative part of the food web
progressively diversifies, producing a linear food web with more and more negative traits.
The stationary state of the food web is not reached at the end of the simulation, as the
food web seems to evolve similarly endlessly. This behaviour is inconsistent with typical
food webs that one may expect from such models.

As mentionned in Section 2, most of the previous models assume, explicitly or not,
artificial constraints on the trait values. One may wonder if these constraints avoid such
unexpected patterns. We ran simulations imposing positivity constraints on z and µ (by
truncating mutation distributions below 0) and obtain Figure 3b. The behaviour of the
food web is similar to the one of Figure 3a until the species with the smallest bodymass
reaches zero. After this time, this body mass remains close to zero and the predation
preference goes to zero. This produces a progressive loss of species ending finally with
a single ‘resource-like species’, with body mass and predation preference close to zero.
Again the behaviour is unrealistic and occurs for a wide range of parameters values. An
interpreation for this behaviour is that the smallest species progressively adapts to the
optimal consumption of resource. Since, in addition, the ‘resource-like species’ is subject
to strong cannibalism, its density and the density of resource become too low for other
species to survive. In Figure 3a, a small part of the positive food web remains because
the bodymass of the smallest species becomes negative before being optimally adapted to
the consumption of resources (z ≈ µ), hence a few amount of resources remain to sustain
the survival of the positive part of the food web.

Replacing the artificial constraints on z and µ at 0 by a constraint at 1, we obtain
Figure 3c. Contrarily to what Figure 3b shows, the food web has a non-trivial structure
where several species progressively evolve to the constraint: three species have trait µ = 1
and one of them has also a log-mass z = 1. Due to the large values of production efficiency
λ when predating large preys, we can observe in Table 3 that, although the proportion
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of predation due to cannibalism is small for most species in Figure 3c, the proportion of
reproduction due to cannibalism is much higher (for example, for the species with traits
µ ≈ 1.6 and z ≈ 5.7, the cannibalism represents only 0.9% of the global predation rate but
13% of the total species reproduction). Therefore, it is important to plot links between
species based on criteria on reproduction rates rather than predation rates.

We emphasize that the artificial constraints that we put in the model in Figures 3b-
3c play a key role in the food web evolution since some species reach the boundary of
this constraint. Moreover, the sign of the invasion fitness (bottom of Figure 3) in the
neighbourhood of these species shows that crossing these boundaries should be the natural
evolution of the model.

Predators \ Preys Resource (2.6, 4.1) (1.6, 5.7) (1, 4.8) (2, 3.5) (1, 2.2) (1, 1)

(2.6, 4.1) 34.4% 0.2% 0.0% 0.7% 0.6% 2.5% 62.1%
(1.6, 5.7) 9.1% 9.2% 0.9% 6.1% 10.6% 9.3% 54.8%
(1, 4.8) 11.7% 6.4% 0.5% 3.8% 8.2% 8.7% 60.7%
(2, 3.5) 34.4% 0.2% 0.0% 0.07% 0.6% 2.5% 62.1%
(1, 2.2) 37.4% 0.2% 0.0% 0.04% 0.4% 2.1% 59.9%
(1, 1) 51.0% 0.03% 0.0% 0.0% 0.09% 0.9% 48.0%

(a) Percentage of the total predation of predator species (µi, zi) by predation on the resource or the

preys species (µj , zj) defined as
γij Nj∑n
k=0 γik Nk

.

Predators \ Preys Resource (2.6, 4.1) (1.6, 5.7) (1, 4.8) (2, 3.5) (1, 2.2) (1, 1)

(2.6, 4.1) 12.7% 5.5% 0.4% 3.1% 7.3% 8.3% 62.6%
(1.6, 5.7) 0.4% 25.2% 13.0% 35.1% 15.6% 3.8% 6.8%
(1, 4.8) 0.7% 25.1% 10.2% 31.3% 17.0% 5.0% 10.6%
(2, 3.5) 12.7% 5.5% 0.4% 3.1% 7.3% 8.3% 62.6%
(1, 2.2) 15.0% 4.0% 0.2% 2.1% 5.7% 7.6% 65.5%
(1, 1) 26.2% 0.8% 0.02% 0.3% 1.6% 4.1% 67.1%

(b) Percentage of the total reproduction of predator species (µi, zi) by predation on the resource or

the preys species (µj , zj) defined as
λij γij Nj∑n
k=0 λik γik Nk

.

Table 3: Percentage of the total predation (top) and the total reproduction (bottom)
of species by predation of other species in the food web at final time of the simulation
T = 5. 1010 (see the top of Figure 3c) letting z and µ evolve in the model of Brännström
et al. (2011) (see Table 1 and Section 4.1) with constraints larger than 1 on evolving traits
z and µ with parameters of Table 2, σz = 0.01 and σµ = 0.001.

Our results thus suggest that Loeuille and Loreau (2005) and Allhoff and Drossel
(2013) obtained non-trivial food webs only because of artificial and hidden constraints
due to the fact that r0 = 0 and ri is positive for all i ≥ 1. In Allhoff et al. (2015) and
Allhoff and Drossel (2016) the constraints on µ (and σγ) are due to the mutation kernels
which restrict them to an interval far from zero (see Table 1). They actually justify this
choice because otherwise µ (and σγ) can evolve to arbitrarily small values (see also Allhoff
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Figure 3: Food web evolution relaxing the constraint of fixed predation distance µ.
From top to bottom: food web at final time of the simulation (T = 2.6 109, overlay at
intermediate time t = 4. 108 (a); T = 1. 1010 (b); T = 1. 1011 (c)); evolution of the log-
mass z (overlay: zoom on the begining of the simulation); evolution of the predation
preference µ (overlay: zoom on the begining of the simulation); fitness lanscape at time
T = 2.6 109 (a); T = 1.0 1010 (b) and T = 1.0 1011 (c) letting z and µ evolving in the
model of Brännström et al. (2011) (see Table 1 and Section 4.1) without (a), with (b)
positivity constraints and with constraints larger than 1 (c) on evolving traits z and µ
with parameters of Table 2, σz = 0.01 and σµ = 0.001.
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and Drossel, 2013).
Note that other unrealistic patterns were also observed in Allhoff and Drossel (2013)

in the case where only z and µ evolve: the food web becomes composed mainly of a very
large number of species on the first trophic level (with z ≈ µ) with a very wide range of
bodysizes, and a few species on the second trophic level. We do not observe this kind of
phenomenon, neither in the extension of the model of Brännström et al. (2011) proposed
in this section nor in the one studied in the next section.

5 Illustrating food-webs sensitivity to hypotheses: the im-
portance of biomass conversion efficiency

As shown in the previous section, the behaviour of the model is very sensitive to the
parameters and the artificial constraints, may they be explicit or not. In some cases, the
model’s behaviour is unrealistic and unexpected. The goal of this section is to investigate
the influence of the biomass conversion efficiency — the only unchanged parameter among
models in previous references — and the mutation kernel.

The shape of the biomass conversion efficiency is discussed in Section 5.1. A numer-
ical study is performed in Section 5.2: we observe several threshold effects. In order to
understand these thresholds we perform an analysis of fitness in Section 5.3, focusing on
particular food web structures.

5.1 Necessity of a trade-off on conversion efficiency

In all previous models, the parameter λ0 of Table 1 is assumed to be independent of
the body masses of the predator z and the prey y. This means that, regardless of the
body-mass of the prey and the predator, the biomass produced by reproduction is a fixed
fraction of the ingested biomass. The conversion efficiency is then increasing when the
prey mass / size increases with no limit (see right panel of Figure 4, black thick line). This
neglects numbers of tradeoffs, e.g. in term of energy used for the predation or handling
time (see Section 2). In particular if individuals feed on larger preys, the hunting cost per
unit of biomass is likely to be larger than for smaller preys. Moreover, the total biomass
of large preys may not be ingested by predators. Conversely, if preys are very small, a
predator has to feed on a large number of preys and then the handling time (per unit of
biomass) becomes critical. This suggests that λ0 should depend on z − y as a function
ξ(z−y), accordingly to empirical results (Baras et al., 2014; Norin and Clark, 2017), where
ξ(z − y) should converge to zero when z − y converges to ±∞.

We assume the modified production efficiency function as following

λij = λ(zi, zj) =
ezj ξ(zi − zj)

ezi
=

units of biomass created by predation of species j

predator biomass
.

(6)

Recall that λij represents the fraction of individuals of log-mass zi produced by repro-
duction per unit of ingested individuals of log-mass zj . Since e−(zi−zj) = rj/ri, the term
ξ(zi − zj) represents the fraction of ingested biomass of species j devoted to reproduction
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Figure 4: Possible shapes of the trade-off ξ (left) and λ (right) defined by Eq. (7) and (6)
respectively, with ξmax = 0.75 and b = 0.15 and for the model of Brännström et al. (2011),
that is a = 0 and b = 0.3 (black thick line).

of species i. We call ξ(zi − zj) the biomass conversion efficiency of the ingested biomass
into the biomass of newborns, through the predation of individuals of log-mass zj by in-
dividuals of log-mass zi. Note that ξ is necessarily smaller than 1 to avoid the biomass
creation ex nihilo, and was assumed constant in all the previous references.

5.2 Numerical study

Our numerical study shows that unsatisfying results obtained after relaxing strong as-
sumptions (see Section 4) heavily depend on the behaviour of ξ(z − y) for small z − y. In
our simulations, the range of predation preference in the food web is never large enough
to be influenced by the decrease of ξ(z − y) for large z − y. A possible explanation is the
limited amount of resources shared in the food web. For this reason, among hypotheses
ξ(z − y) −→

z−y→−∞
0 and ξ(z − y) −→

z−y→+∞
0, we will focus only on the first one. However,

for models which behave as the one of Allhoff and Drossel (2013) (see last paragraph of
Section 4.2), the second hypothesis is certainly to take into account.

Therefore, we focus on the following family of functions ξ parameterized by a, b > 0
and ξmax ∈ (0, 1):

ξ(z − y) =


0 if z − y ≤ −1/a

a b (z − y) + b if −1/a ≤ z − y ≤ ξmax−b
a b

ξmax if z − y ≥ ξmax−b
a b

(7)

ξ is a linear function with slope a b, such that ξ(0) = b and truncated below 0 and above
ξmax. We shall also assume that b < ξmax. This means that predation becomes harder
in term of conversion efficiency in an interval of prey sizes containing the predator size.
Examples of such functions are given in Figure 4.

To avoid problems of irregularity of fitness functions (see Section 5.3) we use regularized
version of the previous curves (see Appendix A).
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Figure 5: Food web at the stationary state for different values of a larger than 1 (except for
a = 5.5 and σz ≥ σµ and for a = 10 and σz > σµ which produce oscillations, see Figure 7)
and for σz = 0.001 < σµ = 0.01 (a), σz = σµ = 0.01 (b) and σz = 0.01 > σµ = 0.001 (c).
b = 0.15 and ξmax = 0.75. Other parameters are given in Table 2.
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(c) σz < σµ

Figure 6: Food web at the stationary state (except for σz > σµ, a = 0.03) for different
values of a smaller than 1 and for σz = 0.001 < σµ = 0.01 (a), σz = σµ = 0.01 (b) and
σz = 0.01 > σµ = 0.001 (c). b = 0.15 and ξmax = 0.75. Other parameters are given in
Table 2.
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Figures 5 and 6 represent typical food web structures at the stationary state (except
for four particular simulations, see legend) for several values of a and several speeds of
evolution σz and σµ of the two traits.

In Figures 5a and 6a, σz is bigger than σµ, i.e. evolution is faster in the z-direction
(although mutations are small in both directions). We observe for large values of a food
webs with satisfying structures and several trophic levels. Since mutations are small, the
community’s diversity grows due to successive evolutionary branching events. Progres-
sively decreasing a (but still larger than 1.2), we observe the emergence of a new species
with size very close to the resource and predation preference µ close to 0 (hence, subject
to cannibalism). The emergence of such species seems to be a robust property of the
model since it occurs for the three relative speeds of evolution of both traits (see others
columns of Figure 5) and we experienced this phenomenon in our tests for a wide range
of parameter values. We observe the convergence of the traits of the smallest species to
(0, 0) when a approaches 1.2. This species does not reach negative values as long as a is
larger than 1.2, although nothing in the model forces it to stay positive (contrary to the
simulation of Figures 3b-3c). When a becomes a bit smaller than 1.2, this species has a
negative log-mass and starts predating a prey (the resource) larger than itself. Meanwhile,
the richness of the food web decreases progressively until a ≈ 0.6. For even smaller values
of a, the part of the food web with positive biomass goes extinct and the richness of the
negative part of the food web increases. In the limit a → 0, the conversion efficiency ξ
converges to the constant function b. For small values of a (a = 0.09), we observe similar
unrealistic behaviours as in Figure 3a. The fact that the food web becomes partly negative
and the behaviour of the models becomes unrealistic at the threshold a ≈ 1 is explained
in Section 5.3.1.

In Figures 5b and 6b (resp. Figures 5c and 6c) the simulations were run for equal
ranges of mutations for both traits (resp. for larger mutations on trait µ than trait z).
The behaviour observed for a > 1 (Figures 5b and 5c) is similar to Figures 5a except for
intermediate values (a = 4 and a = 5.5) where the food web does not diversify: a single
species consuming only the resource evolves towards an evolutionnary stable strategy. This
is explained in Section 5.3.2.

A sensitivity on the mutation kernel is also observed when a < 1 (Figure 6). When
σz = σµ or σz < σµ, we still observe unrealistic food webs with negative bodymasses, but
of different forms than in the case σz > σµ. We may observe structured negative food
webs as for a = 0.4, food webs with a single trophic level and a wide range of bodymasses
as when a = 0.3 and σz ≤ σµ, negative food chains as for a = 0.09 and σz > σµ or single
species with very negative traits when a = 0.09 and σz ≤ σµ.

The dynamics of some simulations are shown in Figure 7. They confirm that the food
webs shown in Figures 5 and 6 are stationary, except for a = 5.5 and σz > σµ, where
periodic dynamics occur in the evolution of both traits z and µ (similar behaviour is
observed for a = 10 and σz > σµ and for a = 5.5 and σz = σµ) and for a = 0.09 and
σz > σµ, where the food web continues to evolve progressively to smaller negative body
sizes as in Figure 3a.

We also see that, for values of a much smaller than 1, the food web first evolves to a
realistic shape, similar to those observe for larger values of a, until the smallest body mass
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becomes too negative. After this, the positive part of the food web collapses and only the
negative part remains.

Note that species close to (0, 0) suffer strong cannibalism. However, as the density of
the resource is much higher than the density of the ‘resource-like species’, cannibalism does
not contribute significantly to the species’ growth, which explains that loops are missing
in some food webs of Figures 5 and 6.

We also ran simulations varying the parameter b of the conversion efficiency for a value
of a avoiding unrealistic behaviour in Figure 5 (a = 1.2). The results in Figure (8) show a
strong sensitivity of the stationary food web structure w.r.t this parameter. For all values
of b, the initial food web dynamics shows progressive diversification as in Figure 5a, but
when the smallest species become too close to 0, different behaviours are observed. For
small values of b, the food web stabilizes in a realistic pattern. When b increases, the
richness of the food web progressively decreases: species with intermediate bodymasses
go extinct, until b = 0.4 where only three species with large bodymasses remain. For
b ≥ 0.45, only the ‘resource-like species’ survives and no further diversification occurs.
This threshold effect will be explain in Section 5.3.3.

We also tested the sensitivity of the stationary food web to other parameters, in
particular the variance σα of the competition kernel (see Figure 9). As observed in previous
works (in particular by Brännström et al., 2011), this parameter has a strong influence on
the richness of the food web: smaller σα promotes branching. Brännström et al. (2011)
take σα = 0.6. For the numerical tests of Figure 5 and 6, we took a smaller value (σα = 0.5)
to obtain richer food webs.

5.3 Analysis of fitness

The invasion fitness of a mutant (y, η) in the food web (zi, µi)1≤i≤n is given by

f(y, η) =
n∑
i=0

λ(y, zi) γ(y − zi − η)N∗i

−
n∑
i=1

γ(zi − y − µi)N∗i −
n∑
i=1

α(zi − y)N∗i −m(y) (8)

where N∗0 and (N∗i )1≤i≤n are respectively the resource concentration and the population
densities at the stationary state of the food web, i.e. which nullify Eq. (1) and (2). The
sign of the invasion fitness determines whether a species (y, η) can invade the food web
(zi, µi)1≤i≤n or not. In particular we have the classical relation f(zi, µi) = 0 for any
i ∈ {1, . . . , n}.

5.3.1 Threshold a ≈ 1

A key role in our analysis will be played by the derivative of the conversion efficiency:

∂yλ(y, z) =

[
ξ′(y − z)
ξ(y − z)

− 1

]
λ(y, z) .
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Figure 7: Evolution of the log-mass z (left), evolution of the predation preference µ
(middle) and the final food web (right), for ξ defined by (7) with ξmax = 0.75, b = 0.15,
σz = 0.01 > σµ = 0.001 and a varying between 0.09 and 5.5.
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Figure 8: Evolution of the log-mass z (top) and food web at the stationary state (bottom)
for b varying from 0.25 to 0.6 with σz = 0.01 > σµ = 0.001, a = 1.2 and ξmax = 0.75.
Other parameters are given in Table 2.
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Figure 9: Food web at the stationary state for (a) σα = 0.4, (b) σα = 0.5, (c) σα = 0.6,
(d) σα = 0.7 with σz = 0.01 > σµ = 0.001, a = 1.2, b = 0.15 and ξmax = 0.75. Other
parameters are given in Table 2.
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When ξ is constant (as in all previous references), we have ∂yλ(y, z) = −λ(y, z) < 0. This
means that there is a gain in reproduction when eating bigger species, or equivalently
when the predator’s body mass decreases and the prey size remains constant. This is an
important element to explain the global trend of evolution toward negative sizes. This
also explains why the shape of the function ξ, and more precisely ξ′/ξ, may reverse this
trend.

We can follow the adaptive dynamics’ paradigms to further analyse this effect: since
we consider small mutations, the direction of evolution of a given species (z, µ) is gov-
erned by the fitness gradient ∇(y,η)f(y, η)|(y,η)=(z,µ) (Metz et al., 1996; Geritz et al., 1998;
Dieckmann and Law, 1996; Champagnat and Méléard, 2011; Champagnat et al., 2001),
where

∂yf(y, η) =
n∑
i=0

[
ξ′(y − zi)
ξ(y − zi)

− 1− y − zi − η
σ2γ

]
λ(y, zi) γ(y − zi − η)N∗i

−
n∑
i=1

zi − y − µi
σ2γ

γ(zi − y − µi)N∗i −
n∑
i=1

α′(zi − y)N∗i −m′(y) (9)

and

∂ηf(y, η) =
n∑
i=0

y − zi − η
σ2γ

λ(y, zi) γ(y − zi − η)N∗i . (10)

If ξ is constant, it follows from these expressions that a specialist species (i.e. a species
whose growth is mainly due to a single prey) has a tendency to evolve toward smaller
traits, provided that the speed of evolution of µ is fast enough compared to z and the
density of its prey is large enough. Indeed, for such a species (z, µ), assuming that its
major prey has size z̃ with density Ñ∗ (potentially being the resource),

∂ηf(z, µ) ≈ z − z̃ − µ
σ2γ

λ(z, z̃)γ(z − z̃ − µ)Ñ∗,

which makes the trait µ evolve to z − z̃ provided µ evolves fast enough, and then

∂yf(z, µ) ≈
[
ξ′(z − z̃)
ξ(z − z̃)

− 1

]
λ(z, z̃) γ(0) Ñ∗ −

n∑
i=1

zi − z − µi
σ2γ

γ(zi − z − µi)N∗i

−
n∑
i=1

α′(zi − z)N∗i −m′(z).

If we assume in addition that all species (zi, µi) predating (z, µ) (i.e. such that γ(zi−z−µi)
is not negligible) are also such that µi ≈ zi − z, and that other species than (z, µ) have
different enough sizes so that the main part of competition acting on (z, µ) is exerted by
species (z, µ) itself, we obtain (using that α′(0) = 0)

∂yf(z, µ) ≈
[
ξ′(z − z̃)
ξ(z − z̃)

− 1

]
λ(z, z̃) γ(0) Ñ∗ −m′(z).
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If Ñ∗ is large enough, the last quantity has the same sign as ξ′(z−z̃)
ξ(z−z̃) − 1, which is negative

if ξ is constant. If ξ′(z − z̃)/ξ(z − z̃) is larger than 1, this trend is reversed.
This argument applies in particular to cases with a ‘resource-like species’, i.e. a species

with trait (z, µ) ≈ (0, 0). In the simulations of Figures 5, 6 and 7, the loss of richness of the
food web and the appearance of unrealistic (negative) patterns seems closely related to the
situations where a ‘resource-like species’ evolves to negative sizes. In these simulations,
at the time where the resource-like species crosses (0, 0), the resource and resource-like
species can be considered as a single species, which is relatively far from the rest of the food
web, so that competition from other species is negligible and predation is exerted on this
species only from specialist species. Therefore, letting 1 be the index of the resource-like
species

∂yf(0, 0) ≈
[
ξ′(0)

ξ(0)
− 1

]
λ(0, 0) γ(0) (N∗0 +N∗1 )−m′(0).

With ξ as in (7) and the parameters of Table 2, we obtain ∂yf(0, 0) ≈ 2.66[a− 1]b(N∗0 +
N∗1 ) + 0.025. In all the simulations of Figures 5 and 6, the second term is negligible with
respect to 2.66b(N∗0 +N∗1 ) (for example, for a = 1.2, the latter is larger than 10). Hence
the sign of ∂yf(0, 0) is mainly given by the sign of a− 1, so that the resource-like species
crosses (0, 0) if a / 1, leading to unrealistic food webs.

5.3.2 First branching and sensitivity to the mutation kernel

We shall use the standard theory of adaptive dynamics to study the first branching event
in the food web. We consider a single species (z, µ) and study the fitness of mutant traits
(y, η). In this case, (8) becomes

f(y, η) = λ(y, 0) γ(y − η)N∗0 + λ(y, z) γ(y − z − η)N∗1

− γ(z − y − µ)N∗1 − α(y − z)N∗1 −m(y),

where we deduce from (5) that

N∗1 =
λ(z, 0)γ(z − µ)

rg
k0
−m(z)

λ(z,0)γ(z−µ)2
k0

+ (1− λ(z, z))γ(−µ) + α(0)
and N∗0 =

rg − γ(z − µ)N∗1
k0

. (11)

The possibility of evolutionary branching is linked to the existence of directions of local
convexity of f(y, η) in the neighborhood of (z, µ) (Leimar, 2001). We plot in Figure 10
the signs of the fitness derivatives (see Eq. (14)-(17) in Appendix B) for a = 4 and a = 5
and for the three relative evolutionary speeds of both traits. At least in the beginning
of the simulations, the initial species has a tendency to approach the curves ∂yf = 0
and ∂ηf = 0, consistently with the classical theory of adaptive dynamics. Note that
if σz = 10σµ (resp. σz = 0.1σµ), evolution is much faster in the z direction (resp. µ
direction) and the population first reaches the line ∂yf = 0 (resp. ∂ηf = 0).

We observe that ∂2ηf < 0 whenever ∂ηf = 0, so that the criterion of evolutionary
branching is never satisfied when mutations only act on µ (see Appendix B). Therefore,
evolutionary branching can only occur in the direction z of the trait space. Note also
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Figure 10: Sign of the first derivatives (14) and (15) and the second derivatives (16) and
(17) of the invasion fitnesses for a = 4 (a) and a = 5.5 (b) and for 0.01 = σz > σµ = 0.001,
σz = σµ = 0.01 and 0.001 = σz < σµ = 0.01 (from top to bottom). b = 0.15 and
ξmax = 0.75. The red dot corresponds to the starting point of the simulation and the
black path to the initial evolution of the species, with possible branching.
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that, both for a = 4 and a = 5.5, the only evolutionary singularity in the region of traits
we consider is located at the bottom left of the pictures, and is included in the region
where both ∂2yf and ∂2ηf are negative. Hence, the evolutionary singularity is (locally)
an evolutionary stable strategy and evolutionary branching cannot occur. Conversely, for
smaller values of a, an evolutionary singularity appears in the region where ∂2yf > 0.
Hence this is a branching point, so that evolutionary branching occurs.

However, for a = 4 and σz > σµ, and a = 5.5 and σz ≥ σµ, we observe an evolutionary
branching in Figure 5 which does not take place at the evolutionary singularity. It takes
place along the line ∂yf = 0 at points away from the curve ∂ηf = 0. This is explained by
evolutionary branching along slow directional evolution, as described and analyzed by Ito
and Dieckmann (2014). They claim that such evolutionary branching can occur along one
direction of the trait space when the evolution in the orthogonal directions of the trait
space is slow. The canonical equation of adaptive dynamics (Dieckmann and Law, 1996;
Ben Arous et al., 2001) predicts that the speed of evolution in the µ direction of the trait
space is proportional to the fitness gradient ∂ηf and the mutation variance σ2µ. In cases
where σµ = 0.1σz, evolution in the µ direction is slow. When σz = σµ, it is slow enough
only for a = 5.5 because in this case the branching takes place at a point close to the line
∂ηf = 0, hence such that ∂ηf is close to zero.

5.3.3 Sensitivity of the model with respect to b = ξ(0) and ξmax

In order to understand the collapse of the food web observed in Figure 8 for large values
of b when the trait of the smallest species approaches (0, 0), we are going to consider the
simpler situation of the extinction of the last species with large body-size z. Hence we
assume that the food web is composed of the resource, a resource-like species for which
we shall assume for simplicity that z = µ = 0 (i.e. resource consumption is optimal for
this species), and a second species with traits z > 0 and µ > 0.

In this case, we shall use the competitive exclusion principle to decide whether the
species (z, µ) is excluded by the resource like-species (0, 0). This will occur if the fitness
f(z, µ) of the species (z, µ) is negative, where

f(z, µ) = λ(z, 0)γ(z − µ)(N∗0 +N∗1 )− α(−z)N∗1 − γ(−z)N∗1 −m(z), (12)

and N∗0 and N∗1 are the equilibrium densities of resource and resource-like species respec-
tively, when the species with z > 0 is extinct. Hence for ξ(0) not too small (so that
N∗1 > 0)

N∗1 =
ξ(0)γ(0)

rg
k0
−m(0)

ξ(0)γ(0)2

k0
+ (1− ξ(0))γ(0) + α(0)

and N∗1 +N∗0 =
m(0) + (γ(0) + α(0))N∗1

ξ(0)γ(0)
.

We then obtain

f(z, µ) =
e−zξ(z)γ(z − µ)

ξ(0) γ(0)
[(γ(0) + α(0))N∗1 +m0]− (α(−z) + γ(−z))N∗1 −m(z).

Then the species with z > 0 cannot survive if

ξ(0)

ξ(z)
≥ (γ(0) + α(0))N∗1 +m0

(α(−z) + γ(−z))N∗1 +m(z)

γ(z − µ)

γ(0)
e−z .
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Observing that ξ(0) = b and assuming that a and z are large enough so that ξ(z) = ξmax

(and indeed the observed values for the body-size of the last ‘non-resource-like species’ in
the food web is between 4 and 5 in simulations of Figure 8), we obtain, with the values of
the parameters of Table 2,

N∗1 =
b 2.66 10

0.01 − 0.1
b 2.662

0.01 + (1− b) 2.66 + 0.8
≈
b 2.66 10

0.01
b 2.662

0.01

≈ 3.76,

so that the species cannot survive if

b

ξmax
'

4.93 γ(z − µ)e−z

3.76 (α(−z) + γ(−z)) + 0.1 e−z/4

Therefore, we obtain a threshold effect for large values of b/ξmax, and we indeed observe
in simulations values of the body size and the predation preference of the last surviving
species with z, µ > 0 in the food web close to z = 4 and µ = 2.8, which gives, for
ξmax = 0.75 as in Figure 8, a threshold for b of approximately 0.41, above which we predict
that the food web should collapse when the smallest species gets too close to trait (0, 0).
This is consistent with the simulations of Figure 8. Biologically, when b increases, the
resource-like species is more adapted for the resources consumption and for cannibalism.
Then, for large b, the resource-like species is too competitive for other species to survive.

6 Discussion

In this paper, we first reviewed models of food webs evolution which followed the seminal
work by Loeuille and Loreau (2005). These models are all based on the adaptative dy-
namics framework but vary in many of their assumptions, including arbitrary constraints
on parameters and variables, or assumptions not compatible with the adaptative dynam-
ics framework, e.g. the mutation size (see Table 1). We then propose a unifying model
and we show 1) that under similar assumptions we recover the same results than previ-
ous models, and 2) that relaxing arbitrary constraints can lead to qualitatively different
emerging food webs than the ones described in previous models. For instance, we find net-
works completely different than Brännström et al. (2011) when relaxing the assumption
of fixed prefered predation distance, and than Allhoff et al. (2015); Allhoff and Drossel
(2016) when relaxing the constraints on parameters range values. Finally, we show that
a possible reason for the evolution of unrealistic food webs is that the biomass conversion
efficiency is supposed constant in all models. Assuming on the contrary that the biomass
conversion efficiency depends on the size difference between the prey and the predator
can give satisfying foodwebs topologies: body sizes of the species remain larger than the
basic resources size, and trophic levels emerge. We also finally show that trophic networks
evolution strongly depends on the assumed form of the biomass conversion efficiency.

There are two manners to interpret our results. On the positive side, we can conclude
that our results bring a lot in identifying the key mechanisms underlying the evolution of
food webs. Indeed, we showed that simply considering a non-constant biomass conversion
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efficiency can solve most problems encountered with previous models. In addition, em-
pirical data suggest that there is indeed an optimal size of prey size where predation is
the most efficient (Baras et al., 2014; Norin and Clark, 2017). Our model is, in a sense,
closer to data and observations and one might argue that such adaptive dynamics models
really tell us how food webs emerge from eco-evolutionary processes. We can then go
further into the analysis of our results and discuss about the importance of the biomass
conversion efficiency and its form. We numerically explored a single family of function
for the biomass conversion efficiency ξ (linear w.r.t. the size difference between prey and
predator and truncated above and below fixed thresholds), but the fitness analysis shows
that we can extend the observed results to more general functions. We exhibited the ef-
fect of two parameters on the expected trophic networks (Fig. 5, 6 and 8): a, the relative
slope of ξ at 0 (i.e. ξ′(0)/ξ(0)) and b, the value of ξ(0) (Eq. 10, Fig. 4). The relative
slope a and the parameter b both have threshold values at which networks evolve such
as either all species have a size smaller than the resource (a ' 1), or the network is not
stable and only one species remains (b ' 0.4 with our parameters values and for a = 1.2).
For a smaller than 1, the evolution of the network towards smaller and smaller species is
explained by the analysis of fitness (Section 5.3.1). When assuming that ξ is constant,
as in all previous models (Tab. 1), the reproduction efficiency λij of a species i feeding
on species j increases exponentially when the size of the predator species i decreases (see
Figure 4). This is because a given species converts more energy into reproduction as it
feeds on large preys, especially on much larger preys than itself. Mutants decreasing size
are thus necessarily favored and invade. Assuming a non-constant biomass conversion
efficiency ξ, depending on the difference between the sizes of prey and predator species,
our results show that: 1) b must be low enough to avoid the evolution to a network with
a single resource-like species, and 2) a must be large enough to avoid too large benefits
for species to feed on larger preys and to avoid the evolution to a network with species
smaller than the resource. Our results would thus suggest that mechanisms underlying
how energy is transfered from preys to predators, and how it is converted into predators
biomass, are key for the evolution and stability of food webs.

However, one can interpret our results on a more negative side: our results can also
suggest that such models are not robust enough to gain informative insights about food
webs evolution. First because we show that relaxing hypotheses can lead to the emergence
of qualitatively different, unstatisfying or unrealistic networks topologies. This shows that
such models are very sensitive to assumptions. We showed that assuming a non-constant
biomass conversion efficiency can solve problems but one can argue that such biomass effi-
ciency can also evolve at the same time than body size and predation distance, and it might
well be possible that completely different results would be obtained. Second, because one
would expect that such models would be self-sufficient regarding certain general properties
of trophic networks. In particular, if size effectively structures trophic networks with large
species feeding on smaller ones, and if cannibalism is rare, this should emerge from the
trait evolution and should not be due to arbitrary constraints. The model analyzed by
Brännström et al. (2011) does not assume arbitrary constraints on the parameters range
values, yet its results are not robust to the hypothesis of fixed prefered predation distance.

29



Other models avoid cannibalism by a priori excluding it (Loeuille and Loreau, 2005; Rit-
terskamp et al., 2016), obtain hierarchically structured trophic networks by assuming that
species can not feed on larger preys (Loeuille and Loreau, 2005), assume large mutations to
observe network emergence (Allhoff and Drossel, 2013) or arbitrarily constrain parameters
range values in order to obtain non-degenerated networks (Tab. 1). A general robustness
analysis of such models appears necessary before generalizing their results, such as the one
performed by Brännström et al. (2011). Finally we show, even after introducing appropri-
ate forms of the conversion efficiency and in agreement with other authors, that results are
very sensitive to mutation sizes, the number of evolving traits and the strength of interfer-
ence competition, i.e. competition which is not due to resources and preys consumptions.
In addition, the tradeoff we introduced on the conversion efficiency improves the behavior
of the model where the predation distance µ evolves, but letting the niche width σγ evolve
also requires to introduce delicate tradeoffs, as observed by Allhoff and Drossel (2013).
Interference competition seems unreasonably necessary for the evolution of food webs: it
is not clear whether there are good reasons why a non-trophic ecological process would be
so important in food webs evolution, especially in models mostly based on competition for
resources. Hence, our results altogether with results by previous authors can cast doubts
on the explanatory and predictive power of such models.

One of the most important problem with the interpretation of such models is that it is
difficult to avoid circular reasoning. In most previous papers, the authors claim that they
are satisfied with the model’s results because they give realistic food webs structures. Some
authors even justify arbitrary assumptions, such as a limited range for possible parame-
ters values (e.g. Allhoff and Drossel, 2013), because otherwise results are not satisfying.
We use ourselves such a circular reasoning to justify that assuming a non-monotonous
biomass conversion efficiency ξ actually solves many problems encountered by the models.
It is necessary to find ways to evaluate these models in a non-circular manner. A possi-
bility would be to identify quantitative independent predictions that could be compared
with food webs features. For instance, a limitation of the current models is that they a
priori assume allometric relationships between size and parameters, generally as a power
of 1/4 (Peters, 1983). However, one should observe that allometries measured in natural
populations are evolved values and not fixed parameters. In models, including ours, al-
lometry relationships are input parameters while they should be output parameters. We
suggest that a possible way to evaluate such models would be to compare output allometric
relationships to observed data as already done by Loeuille and Loreau (2006).
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A Regularization of ξ

To avoid problems of irregularity of fitness functions, we use in simulations a regularization
of the function ξ defined by (7). The function ξ can be obtained as an affine transformation
of the function ξ0 defined by

ξ0(x) =


0 if x ≤ −1

1 + x if −1 ≤ x ≤ 1

2 if x ≥ 1.

The regularization of ξ is obtained with the same affine transformation applied to the
following regularization of ξ0.

ξ̃0(x) =



0 if x ≤ −1− ε
(x+1+ε)3

6 ε2
if −1− ε ≤ x ≤ −1

− (x+1−ε)3
6 ε2

+ x+ 1 if −1 ≤ x ≤ −1 + ε

(x+ 1) if −1 + ε ≤ x ≤ 1− ε
− (x−1+ε)3

6 ε2
+ x+ 1 if 1− ε ≤ x ≤ 1

(x−1−ε)3
6 ε2

+ 2 if 1 ≤ x ≤ 1 + ε

2 if x ≥ 1 + ε.

(13)

B Second-order derivatives of the fitness

In the case where the food web contains a single species (z, µ) (see Section 5.3.2), the
fitness gradient at the point (z, µ) is given by

∂yf(y, η)|(y,η)=(z,µ) =

[
ξ′(z)

ξ(z)
− 1− z − µ

σ2γ

]
λ(z, 0) γ(z − µ)N∗0

+

[
ξ′(0)

ξ(0)
− 1 +

µ

σ2γ

]
λ(z, z) γ(−µ)N∗1

+
µ

σ2γ
γ(−µ)N∗1 +

m(z)

4
(14)

and

∂ηf(y, η)|(y,η)=(z,µ) =
z − µ
σ2γ

λ(z, 0) γ(z − µ)N∗0 −
µ

σ2γ
λ(z, z) γ(−µ)N∗1 , (15)

where N∗0 and N∗1 are given in (11).
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The second derivatives of the fitness are given by

∂2yf(y, η)
∣∣
(y,η)=(z,µ)

=

([
ξ′(z)

ξ(z)
− 1− z − µ

σ2γ

]2
+
ξ′′(z)

ξ(z)
− ξ′(z)2

ξ(z)2
− 1

σ2γ

)
λ(z, 0) γ(z − µ)N∗0

+

([
ξ′(0)

ξ(0)
− 1 +

µ

σ2γ

]2
+
ξ′′(0)

ξ(0)
− ξ′(0)2

ξ(0)2
− 1

σ2γ

)
λ(z, z) γ(−µ)N∗1

−

[(
µ

σ2γ

)2

− 1

σ2γ

]
γ(−µ)N∗1 +

1

σ2α
α(0)N∗1 −

m(z)

16
, (16)

∂2y,ηf(y, η)
∣∣
(y,η)=(z,µ)

=

([
ξ′(z)

ξ(z)
− 1

]
z − µ
σ2γ

− (z − µ)2

σ4γ
+

1

σ2γ

)
λ(z, 0) γ(z − µ)N∗0

+

([
−ξ
′(0)

ξ(0)
− 1

]
µ

σ2γ
− µ2

σ4γ
+

1

σ2γ

)
λ(z, z) γ(−µ)N∗1

and

∂2ηf(y, η)
∣∣
(y,η)=(z,µ)

=

([
z − µ
σ2γ

]2
− 1

σ2γ

)
λ(z, 0) γ(z − µ)N∗0

+

([
µ

σ2γ

]2
− 1

σ2γ

)
λ(z, z) γ(−µ)N∗1 . (17)

As observed in Figure 10, we deduce from these expressions that the curves ∂µf = 0,
∂2µf = 0 are close to the line z = µ and the pair of lines z = µ ± σγ , respectively. This
is due to the fact that, in the range of parameters we consider, the terms involving N∗1
are negligible with respect to those involving N∗0 . This implies that ∂2µf < 0 whenever
∂µf = 0, so that evolutionary branching cannot occur when mutations only act on µ.
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