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Abstract

For Markov processes with absorption, we provide general criteria en-
suring the existence and the exponential non-uniform convergence in to-
tal variation norm to a quasi-stationary distribution. We also characterize
a subset of its domain of attraction by an integrability condition, prove the
existence of a right eigenvector for the semigroup of the process and the
existence and exponential ergodicity of the Q-process. These results are
applied to one-dimensional and multi-dimensional diffusion processes,
to pure jump continuous time processes, to reducible processes with sev-
eral communication classes, to perturbed dynamical systems and discrete
time processes evolving in discrete state spaces.
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1 Introduction

Let (X;, t € I) be a Markov process in E U {0} where E is a measurable space and
0 ¢ E, with set of time indices I which might be R, or %Z+ for some k € N :=
{1,2,...}, where Z, :={0,1,...}. For all x € E U {d}, we denote as usual by P, the
law of X given Xy = x and for any probability measure p on E U {0}, we define
Pu = [pu9 Px 1(dx). We also denote by E, and E,, the associated expectations.
We assume that 0 is absorbing, which means that X; =8 for all ¢ = 74, Py-almost
surely, where
T =inf{r € I, X; = 0}.

Our goal is to study the existence of quasi-limiting distributions v on E for the
process X, i.e. a probability measure v such that

lim P, (X;€eAlt<715)=v(A)

tel, t—+o0



for some probability measure p on E and for all A< E measurable. Such a mea-
sure v is a quasi-stationary distribution for X, i.e. a probability measure such
that P, (X; € - | t <713) = v(-) for all ¢t € I. We refer the reader to 25} 68, [82] for
general introductions on quasi-stationary distributions. In particular, it is well-
known that there exists a constant Ay = 0 such that Pyosp (E < T5) = e~Mo! for all
tel

More precisely, our first goal is to give general criteria involving Lyapunov-
type functions ¢; and ¢, ensuring the existence of a quasi-stationary distribu-
tion vgsp such that

¢ 1(p1)
P2)

for some constants C € (0,+o00) and a € (0,1) and for all probability measure u
on E such that u(¢p;) < +oco and p(¢@2) > 0, where u(p) := fE(p(x) u(dx). Here, the
total variation distance is defined as

|Pu(Xi€-1t<79)—vospl| 7y < Ca , Vrel, (1.1)

1 = p2llrv = sup I (F) = p2 (N1
f:E—[-1,1] measurable

This measure vgsp is the only quasi-stationary distribution v such that v(¢1) <
+0o0 and v(@2) > 0. Our second goal is to show how our criteria can be ap-
plied to a wide range of Markov processes, including several classes of processes
for which even the existence of a quasi-stationary distribution was not known,
such as diffusions in irregular domains or perturbed dynamical systems in un-
bounded domains.

General criteria ensuring that the convergence in holds uniformly with
respect to the initial distribution p have been studied in [6}15]. In this case, vgsp
is the quasi-limiting distribution of any initial distributions. However, these re-
sults do not apply to processes admitting several quasi-stationary distributions,
which is known to happen in a variety of specific cases, even for processes ir-
reducible in E (including branching processes [77} [2, |60} [63], one-dimensional
birth and death processes [80, 37, 36} 85] and one-dimensional diffusion pro-
cesses [62] [66]). In addition, as for non-absorbed processes, uniform conver-
gence with respect to the initial distribution only happens for processes that
come back quickly in compact sets [69}[15] or are killed fast [83]. The present pa-
per provides general criteria generalizing those of [15] to cases of non-uniform
convergence and, contrary to the above cited references, does not assume that
P.(t<tg)>0forallxe Eandall t€ I.

Given a quasi-stationary distribution v, its domain of attraction is defined
as the set of probability measures p on E such that P, (X; € - | £ < T5) converges
in total variation norm to v. In the case where the domain of attraction of v



contains all Dirac masses, v is called the Yaglom limit, or the minimal quasi-
stationary distribution. In all the models admitting several quasi-stationary dis-
tributions cited above, it has been proved that the minimal quasi-stationary dis-
tribution exists. The convergence implies in addition that the domain of
attraction of the Yaglom limit vgsp actually contains all measures u such that
(1) <ooand u(gz) > 0.

Our first step is to provide criteria ensuring for all t € Z,. We also
obtain several consequences, including a larger set of initial distributions be-
longing to the domain of attraction of vosp and a geometric convergence for
a stronger norm than the total variation. We also prove the geometric conver-
gence in L®(¢p) of x — eM"P,(n < 15) as n — +oo to a function 7 satisfying
Ex(n(Xn)Lly<s,) = e’lO”n(x) for all n € Z, and x € E, and deduce a spectral gap
property for the semigroup of the absorbed process (X,,n € Z,). Finally, we
also obtain the existence of the process (X, n € Z;) conditioned to never be
absorbed (the so-called Q-process) and its geometric ergodicity (we refer the
reader to [I] and references therein for general considerations on the link be-
tween Q-processes and quasi-stationary distributions through the a-theory of
general Markov chains). All these results are stated in Section [2] and proved in
Sections[@and[10l

The last criterion assumes that (X}, n € Z) is aperiodic but of course applies
to 1-periodic processes (X;, t € I). Under additional aperiodicity assumptions,
we show in Section[3]how the previous results extend to general time indices ¢ € I
and provide practical versions of our criteria for continuous-time processes. We
also provide simple criteria allowing to check our conditions and show that the
known criteria for uniform convergence in obtained in [15] can be recov-
ered using our approach. The results of this section are proved in Section

These results allow us to put in a unified framework a large body of works
on quasi-stationary distributions as illustrated by the rest of the paper, which
is devoted to the application of our abstract criteria. We start in Section [4] with
diffusion processes in R, d = 1, absorbed at the boundary of a domain D. Our
analysis provides for example the following general result.

Theorem 1.1. Assume that E = D is a bounded connected open subset of R% and
that (X;, t € R,) is solution to

dX;=b(X,)dt+0(X;)dB,

until its first exit time 14 from D, where B is a r -dimensional Brownian motion
and b : RY = R? and o : R — R%*" are Hélder functions, such that o is uni-
formly elliptic. Then, the process X has a unique quasi-stationary distribution



vosp which satisfies

[Pu(Xi€-1t<T19)=vosp| py < al, Ve [0,+00)

1
w(2)

for some positive function ¢, on D and a constant « € (0,1). In addition, there
exists a positive, bounded 6° (D) functionn such that

d 0 1 d r 02
bi(x)a—Z(x)"'— Y Y 0500 1k (X) ———(x) = ~Agn(x), VxeD
-1 i

ij=1k=1 0x;0x;

1

and
nx) = lim eM'P.(t<15), VxeD,
t—+oo

where the convergence is uniform in D.

We emphasize that one of the main contributions of this result with respect
to the existing literature (see for example (73} [42} [10} 57} 33} 12} [18]) is that it
applies to any bounded domain D without any regularity assumption. Theo-
rem |1.1] is in fact obtained in Section [4| as a particular case of a criterion for
unbounded domains and coefficients b and o only locally Hélder and locally
uniformly elliptic in D. We also consider the case of diffusions with killing in
Section[4.4] All these results are proved in Section

Absorbed one-dimensional diffusions with or without killing have received
a lot of attention (see for instance [64, 24,62 66,789, 61}, 58, 48,71} 19,[17]). We
consider these models in Section[4.5] Our main contributions with respect to the
literature are the characterization of a larger subset of the domain of attraction
of the minimal quasi-stationary distribution, weaker regularity of the drift and
diffusion coefficients and explicit general bounds on ¢; and 1y allowing to check
our criteria.

The case of continuous-time Markov processes in discrete state spaces is
considered in Section[5 with application to multitype birth and death processes
absorbed at the exit of any connected E c Z4 (in the sense of the nearest neigh-
bors structure of Zf). Note that the quasi-stationary behavior of finite state
space processes [29] and of one-dimensional birth and death processes [54} [43}
11}, 55} 80, [81] has been extensively studied using spectral methods that do not
generalize easily to the multi-dimensional countable state-space setting. The
quasi-stationary behavior of multi-dimensional birth and death processes was
studied in the case of uniform convergence in in [16}[18, 122} 23].

All the previous examples assumed irreducibility of X in E. In Section[6} we
show that our criteria also apply to reducible cases, as those considered in [72]



(for Galton-Watson processes), [44] (for discrete processes), [14] (for Feller dif-
fusions) and [13}82] (in the finite case). We first give a general criterion in Sub-
section[6.1)and we study in details an example with a countable infinity of com-
munication classes in Subsection[6.2l

In Section |7}, we consider general models in discrete time and continuous
space, first extending the criteria of [6} [12] in order to cover the case of Euler
schemes for stochastic differential equations absorbed at the boundary of a do-
main (as defined in [65} 40]) and penalized semigroups (as in [31}32]; note that
all our results naturally extend to penalized homogeneous semigroups, provided
the penalization rate is bounded from above, see [20]). We then study in de-
tails the case of perturbed dynamical systems, as those considered for example
in [5, 4} [49], where the quasi-stationary behavior was studied using the criterion
of [6]. As an illustration of our method, let us mention the following original
result.

Theorem 1.2. Let D be a measurable set of R® with positive Lebesgue measure
and let 0 ¢ D. Assume that

f(Xn) +¢n len #0 andf(Xn) +¢n €D,
Xns1 = .
0 otherwise,

where f :R% — R? is a locally bounded measurable function such that

[x] =1 f(x)]

+00

|x|—+00
and (&p)nen is an i.i.d. non-degenerate Gaussian sequence in R%. Then (I.1) is
satisfied for 1 (x) = e and a positive measurable function ¢, on D.

Finally, we study in Section [8|the case of processes in discrete time and dis-
crete space. This is the most studied situation in the literature since it cov-
ers both the Galton-Watson processes [88] [46, 51} 2] and the general discrete
case [28, [77, 137, 38, 136, [35] 44, [67]. We first show in Subsection that our
results allow to recover the general criterion of [35], based on the theory of R-
positive matrices. We then consider general population processes dominated by
population-dependent multi-type Galton-Watson processes in Subsection 8.2}
The case of population-dependent Galton-Watson processes with a single type
was studied in [44] using quasi-compactness methods. We also obtain as a corol-
lary results on subcritical multi-type Galton-Watson processes. We do not re-
cover the optimal LlogL assumption on the offspring distribution [51}, [47] for
the existence of a minimal quasi-stationary distribution vosp having finite first
moment, but we obtain a stronger form of convergence in (I.1I), a larger subset
of its domain of attraction and stronger moments properties on vosp.



2 Main Results

Let (X, t € I) be a Markov process in E U {0} where E is a measurable space and
0 ¢ E, with set of time indices I which might be Z, ={0,1,...}, Ry or %Z+ for
some ke N={1,2,...}. We define the absorption time 75 as

19 =inf{r € I, X; = 0}.

In this section, we study the sub-Markovian transition semigroup of X consid-
ered at integer times, (Pj) ez, , defined as

Puf(0) = Ex (f(X) 1 per,), VR EZS,

for all bounded or nonnegative measurable function f on E and all x € E. We
also define as usual the left-action of P,, on measures as

uPyf = [E,u (f(Xn)ﬂn<T@) = Lpnf(x) u(dx),
for all probability measure p on E and all bounded measurable f. We make the
following assumption.

Assumption (E). There exist positive integers n; and ny, positive real constants
61,60, c1, c2, c3, two functions @1, ¢, : E — R, and a probability measure v on a
measurable subset K c E such that

(E1) (Local Dobrushin coefficient). Vx € K,

Py(Xp, €)= cv(-nK).

(E2) (Global Lyapunov criterion). We have 6; < 8, and
inf 1 (x) = 1, sup¢;(x) <oo
xeE xeK

inf @, (x) >0, sup@2(x) <1,
xeK xeE

P](pl (x) < 91(,01()6) + Cz]l]((x), VxeE
P12 (x) = 02¢2(x), Vx € E.
(E3) (Local Harnack inequality). We have

supexPy(n <75)

sup - <c3
nez, infyegPy(n<7ty)



(E4) (Aperiodicity). For all x € K, there exists n4(x) such that, for all n = n4(x),

Py( X, €K)>0.

Note that it follows from (E2) that 6, < 1 and thus 6; < 1.

In Section3} criteria implying (E) and adapted to the continuous time setting
are provided. Several examples of Markov processes satisfying this assumption
are provided in Sections[4|to

In the rest of this section, we state our main results. We start with the expo-
nential contraction in total variation of the conditional marginal distributions
of the process given non-absorption. Its proof is given in Section[9}

Theorem 2.1. Assume that Condition (E) holds true. Then there exist a constant
C>0, aconstant a € (0,1), and a probability measurevgsp on E such that

< Can I'l'((pl)

, 2.1)
TV (@2)

for all probability measure p on E such that p(g1) < co and u(@2) > 0. Moreover,
vQsp IS the unique quasi-stationary distribution of X that satisfies vosp(¢1) < oo
andvqsp(@2) > 0. In addition vgsp(K) > 0.

Note that p(¢2) > 0 and (E2) imply that pP, ¢, >0 and hence uP,1g > 0 for
all n € N. Hence the left-hand side of is well-defined.

Remark 1. The last result characterizes a subset of the domain of attraction of
v@sp, defined here as the set of probability measures u on E such that P, (X, €
- | n < 73) converges to vqsp in total variation when n — +oo. Note that, for a
given semigroup (Pj,), different choices of ¢; (and ¢,) satisfying Assumption (E)
can lead to bigger subsets of the domain of attraction. In particular, observing
that, for all p = 1, Holder’s inequality entails

P, ((pi/p) = (01([)1 + Co ]lK)I/p = Hi/l)(p}/l) + Cg(p)]l](

with ¢(p) := (1 + c2/62)''P — 1, we see that ((p}/p,qog) satisfies Assumption (E)
for all p < log0,/log0,. Therefore, the domain of attraction of vgsp actually
contains any probability measure u such that u(¢2) > 0 and ,u(<p}/p ) < oo for
some p <log8,/1log0-.

In Theorem[2.1} we obtain an exponential rate of convergence in total varia-
tion, uniform with respect to initial distributions p such that p(¢@;)/u(g2) < Afor
any constant A. As will appear in applications, the function ¢, may have com-
pact support, and hence p(¢@.) could vanish for a large set of initial measures



u. However, the convergence toward the quasi-stationary distribution vgsp can
happen for such measures. The next result shows that it is the case as soon as
(1) < oo and the process can reach K under Py, that is if u(E’) > 0 where

E':={x€E:3k=0s.t Pilg(x)>0}.
In fact,
E'={x€ E:3k=0s.t. Prpy(x) > 0}. 2.2)

To prove this, we first observe that E' ¢ {x € E: 3k = 0 s.t. Px2(x) > 0} since ¢
is positive on K. For the converse inclusion, we notice that Tx :=infine Z,, X, €
K} is infinite Py-almost surely for all x € E\ E’. Hence it follows from (E2) that
Py(n < 79) < Ex [Ln<r,91(Xpn)] < 07¢1(x) for all n =1 for such x. Since in addi-
tion (E2) entails that Py (n < 75) = E []lnqa(Pz (Xn)] = 0 ¢2(x) and since 0, < 05,
we deduce that ¢, (x) =0, and hence is proved.

The next result follows immediately from Theorem [2.1]considering as initial
distribution the probability measure pPy/uPy 1.

Corollary 2.2. Assume that Condition (E) holds true. Consider any probability
measure p on E such that u(E') > 0 and p(¢,) < oo. Then there exists k = 0 such
that Py, > 0 and

pP
Scan—ku k‘pl) Vn
TV HPrp2
where the constants C and a and the measure vgsp are the same as in Theo-

rem[21

Remark 2. Conversely, if u(E') = 0, then Py(X, € K | n < 75) =0 forall n = 0.
Since vosp(K) > 0, we cannot have convergence in total variation of P, (X, €
| n < 74) to vosp. Hence the domain of attraction of vosp does not contain
measures u such that u(E’) = 0. Examples where E # E’ will be given in Section@

k, (2.3)

IV

In particular, combining Remark[I|and Corollary[2.2} we obtain the following
subset of the domain of attraction of vgsp.

Corollary 2.3. Assume that Condition (E) holds true. Then the domain of attrac-
tion of vosp contains all the probability measures p on E such that u(E') > 0 and

u(cpi/p) < oo for some p <logf,/10g05.

Note that, if ¢; is bounded and E’ = E, there exists a unique quasi-stationary
distribution which attracts all the initial distributions.

The above results deal with convergence in total variation. We actually ob-
tain a stronger notion of convergence, proved in Section Note that the
proof makes use of our next result Theorem|[2.5 proved in Section[10.1

10



Theorem 2.4. Assuming that Condition (E) holds true, forany p € [1,log6:/1og8-),
there exist ap < 1 and a finite constant C, such that, for all probability measure

u on E such that ,u((p}/p)/p((pg) < oo and for all real function h on E such that

Ihl <o),
1/p
Koy ™)
E,[h(X,) | n<ts]—vosph)|=C a’. (2.4)
| Y n 0 QSD | p H((PZ) 12

This result easily extends as in Corollary[2.2

We also obtain under Condition (E) the asymptotic behavior of the absorp-
tion probabilities and an eigenfunction of P; for the eigenvalue 8y, where 6y €
(0,1] is such that

Pyosp (1 <79) =0y, VneN.

We recall that the existence of 6y is a classical general result for quasi-stationary
distributions [68]. Note that, if 75 < co with positive P-probability for all x € K,
0o <1 and in this case, absorption occurs in finite time Py, -almost surely. The
case 6y = 1 corresponds to the case where 75 = oo Py, -almost surely. Because
of the next Theorem 2.5, under Condition (E), this will occurs if and only if there
exists x € E such that 74 = +0co P,-almost surely.

To state this result, we define for all positive function ¥ on E the space L™ (y)
as the set of real functions f on E such that || flzeo(y) := supeg f(x)/w(x) < oo.
Note that (L*°(y), || - [z (y)) is a Banach space.

Theorem 2.5. Assume that Condition (E) holds true. Then, there exists a function
n: E — Ry such that
Pyx(n<1p)

xX)= lim ———— = lim 0;"P,(n<71y), Vx€E, 2.5
n(x) ”_’+°°|PVQSD(n<Ta) n—too 0 x( o) (2.5)

where the convergence is geometric in L°°(<p}/p) for all p € [1,1og0,/logby). In
addition, inf,cxkn(y) >0, E' = {x € E:n(x) >0}, vosp(m) =1,

P117 = 9017 and 0y=0,>0,.

Note that the last result implies that, when 7 is bounded, one can actually
take @2 =n/1llo in Condition (E2).

Theorem implies that 6 is an eigenvalue for P, in L*(¢;) and that the
associated eigenfunction n belongs to L"O((p}/’j ) for all p < logf;/logfy. The
next result, proved in Section[10.3} shows a spectral gap between 6, and the next

eigenvalue and that, actually, n € L>® ((plloge(’”oggl).

11



Corollary 2.6. Assume that Condition (E) holds true and let P, f(x) = E,f(X1)
forallx e Eu{d} and f : EU{0} — R in L>(1 + ¢1). Then each eigenfunction
he L®(1+¢1) (possibly with complex values) of Py for an eigenvalue® (possibly
belonging to C) satisfies the following properties:

1. ifh(0) # 0 and if Py (19 <o0o) =1 for all x € E, then h is constant;

2. ifh() =0, if there exists x € E' such that h(x) # 0 and if vosp(h) # 0, then
h=vgsp(h)n and B = 6y (with the conventionn(0) =0);

3. if h(0) = 0, if there exists x € E' such that h(x) # 0 and ifvosp(h) =0, then
6] < Opa1, where a; < 1 is the constant of Theorem|2.4;

4. ifh(0) =0 and h(x) =0 forall x € E', then vosp(h) =0 and |0] < 0,.

In addition, if10| > 6, (which can only happen in cases 2. and 3. above), then there
exists a constant C such that

|h(x)] < Cepy (x)'08101710801 7 1 () WxeE. 2.6)

We end this section with the study of the Q-process and its ergodicity prop-
erties under Condition (E). In the next result, proved in Section Q=E%is
the canonical state space of Markov chains on E and (%) ¢z, is the associated
canonical filtration.

Theorem 2.7. Condition (E) implies the following properties.

(i) Existence of the Q-process. There exists a family (Q) xcp of probability mea-
sures on () defined by

lim P.(A|n<7s) =0Q4~A)
n—+oo

for all x € E', for all &,,-measurable set A and for all m = 0. The pro-
cess (Q, (Fm) m=0, Xn)n=0, (Qx)xeg) is an E'-valued homogeneous Markov
chain.

(ii) Semigroup. The semigroup of the Markov process X under (Qy)xep is given
for all bounded measurable function ¢ on E' and n =0 by

-n
0

n(x)

Ppp(x) = —— P, () (x). 2.7)

12



(iii) Exponential ergodicity. The probability measure 3 on E' defined by
B(dx) =n(x)vosp(dx).

is the unique invariant distribution of the Markov process X under (Qy) xep-
Moreover, forany p € [1,log0:/1og0-), there exist constants C, >0 and @ €

(0,1) such that, for all initial distributions y on E' such that,u((p}/p/n) < oo
and for all measurable real function h on E' such that |h| < (p}/p/n,

[Eq, [h(X) - B)| < C@y(y" 1m), ¥n=0, 2.8)

where Q,, = fE, Qx uldx). In addition, for all initial distributions p on E',

”uﬁﬂ_ﬁ”TV

0. (2.9)

n—oo

3 Other formulations and particular cases of Assumption (E)

In this section, we provide general comments on Assumption (E). Basic facts are
gathered in Subsection[3.1} Subsection[3.2|focuses on criteria adapted to contin-
uous time processes and we consider the case of uniform convergence in Theo-

rem[2.1]in Subsection[3.3]

3.1 General comments on the assumptions

When Conditions (E2) and (E4) are satisfied, one can use comparison techniques
on transition probabilities in order to check that Conditions (E1) and (E3) hold
true, as stated in the following proposition, proved in Subsection|11.1

Proposition 3.1. Assume that Conditions (E2) and (E4) are satisfied and that
there exist two constants C >0 and ng < mg € N such that

Py(Xp, € - NK) < CPy(Xp, €-), VxeEandy € K. 3.1)

Then Condition (E) is satisfied. Moreover, there exists a constant C' > 0 such that,
forallxe Eandalln =0,

Py(n<14) < C'¢1(x) inf P, (n < 15).
YEK
In order to prove the existence of functions ¢; and ¢, in Condition (E2),
one may use probabilistic properties of the Markov process X, as stated by the

following lemmas, proved in Sections and The first lemma shows how
to construct ¢,.
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Lemma 3.2. Let K be a measurable subset of E. If there exists 0 > 0 such that

inf 0, "P(X,, € K +00,
ox 2 x(Xn ) oo

n—+oo

0,1-1
05¢-1
where ¢ is such that@z“”infxeKlP’x(Xg € K) = 1, verifies infx o2 > 0 and Py, (x) =
02 2 (x). Moreover, it implies that (E4) is satisfied.

then the function ¢, : E — [0,1] defined by @, (x) = Zi;é Bz_klPx(Xk € K),

The second lemma shows how to construct ¢,. We define Tx = inf{n =
0, X, € K}.

Lemma 3.3. Let K be a measurable subset of E. If there exists a constant 0 > 0
such that

E, (HI—TK/\Tﬁ) <+oo Vxe EandC:= ?/lellg E, ([EX1 (HI_TK/\TL?) ]11<13) < +00,

then the function @1 : E — [1, +00) defined by ¢, (x) = Ex (GI_T" Mm) satisfies

supp; <+oo and Pip; <01+ Clg.
K

Conversely, if there exist two constants C > 0, 0, > 0 and a function ¢; : E —
[1,+00) such that supg @1 < +oo and Py, < 019 + Clk, then, for all 0 > 0,
there exists a constant Cy such that

Ex (077%"") < Coep1(x) Yx € E and sup Ey (Ex, (0~ ¥"™) 11<4,) < +oo0.
yeK

As many results of Section [2| make use of the function (p}/p with a parame-
ter p € [1,log0;/1og0,), it is important to characterize the best possible value of
0,. The following lemma shows that the domain of attraction provided by Corol-
lary can be taken as the set of probability measures p on E such that u(E') > 0
and p(gp''?) < oo for some p < logf;/1log6y. This result is proved in Section

Lemma 3.4. If Condition (E) is satisfied for some functions ¢, and ¢, with con-
stants 0, and 0, then, for all 9& € (01,00) it is also satisfied for ¢1 and some func-
tion ¢}, with constants 6, and 0.

In many general studies of quasi-stationary distributions [68} [15], one usu-
ally assumes that P, (75 < oo) = 1 for all x € E (so that the conditioning becomes
singular in the limit of large time) and Px(n < 75) >0forall n>0and all x € E so
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that the conditioning is well-defined for all finite time ¢. The results of Section2]
are true without assuming these two conditions.

For the first one, if we assume that 75 = co P,-almost surely for all x € E,
then Condition (E3) becomes void and one can take ¢, =1 in (E2), so that 8, =
0o = 1. We recognize in (E1) the standard “small set” assumption of [70], in the
condition (E2) for ¢; a standard Foster-Lyapunov criterion and condition (E4) is
an aperiodicity condition.

For the second one, under Condition (E), their may exist points x € E\ E’
such that P,(n < 73) = 0 for some n > 0. However, for all x € E’, there exists
k € N such that Pr1x(x) > 0. Hence, for all n = k, P, 15(x) = Pr(Py_r@2)(x) =
Bg‘kian @2 Pr1g(x) > 0. In particular, for all u such that u(E’) >0, uP,1g >0
for all n = 0 and thus, the conditional distribution in the left-hand side of is
well-defined.

3.2 On continuous time

In Section |2, we only considered the conditional behavior of the process X at
integer times. In general, the results of Section[2|do not give information about
the process at intermediate times. In this section, we derive a sufficient condi-
tion which is well suited for continuous time Markov processes or for aperiodic
Markov processes. We consider an absorbed Markov process (X;)e; with time
parameterin I = Z, or [0, 4+00).

Assumption (F). There exist positive real constants y1,y2,c1,c2 and c3, 1, % €
I, a measurable function vy : E — [1,+00), and a probability measure v on a
measurable subset L c E such that

(FO) (A strong Markov property). Defining
T :=inf{te I: X, € L}, 3.2)

assume that for all x € E, X;, € L, Py-almost surely on the event {71 < oo}
and for all # > 0 and all measurable f: Eu {0} — R,

Ex [f(Xt)]]-TLSt<Tg] =Eyx

]]-TLSI'AT@[EXTL [f(Xt—u)]lt—u<T@] ‘u:TL] .

(F1) (Local Dobrushin coefficient). Vx € L,

Px(Xy, €)=z c1v(-nL).
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(F2) (Global Lyapunov criterion). We have y; <y, and
Ex(1(Xe,) Liy<rnny) S VPW1(0), VX EE

ﬂE)C(ull()(l’)]]~l’<1'3) = Cy, Vxe L) Vie [0’ t?_] n I’
Y, 'Pe(X € L)

+o0o, Vx€ L.

—

(F3) (Local Harnack inequality). We have

Sup, e, Py (t < 75)
; =C3
=0 lnnyL Py(t <Tp)

The following result is proved in Section|11.5

Theorem 3.5. Under Assumption (F), (X;) e admits a quasi-stationary distribu-
tionvqsp, which is the unique one satisfying vqsp (Y1) < oo andPy,g,(X; € L) >0
for some t € I. Moreover, there exist constants a € (0,1) and C > 0 such that, for all
probability measures (L on E satisfying u(y1) < oo and u(y»,) >0,

¢ Ly)
(

|Pu(Xi€-1t<T8)=vosp| = Ca )

,Veel, (3.3)
where Y, (x) = ZO:O Y, k tZIP’x(thZ € L) for ny = 1 large enough. In addition, there
exists a constant Ay = 0 such that Ay < log(1/y2) <log(1/y;) and Pyosp (£ <Tg) =
e M forall t =0, and there exists a functionn such that

n(x) = [EIPooe%t[P)x(t< 75), Vx€E, (3.4)

where the convergence is exponential in L°°(1//}/p) for all p € [1,log(1/y1)/ o),
and Pim(x) = e My (x) forall x € E and t = 0.

In particular, if I = R, and 7 is bounded,setting 1(d) = 0, the function n de-
fined on EU {9} belongs to the domain of the infinitesimal generator £ of X and
Zn=—-Aon.

Remark 3. We shall actually prove that Assumption (F) implies that Assump-
tion (E) is satisfied for the sub-Markovian semigroup (P,),=0 of the absorbed
g
Markov process (Xps,)nez,, with the functions ¢; = y; and @3 = %Wz»
Yz -
any 6, € (y?,y?), 0, = yéz and the set
K={yeE P,(tr=)/y1(3) = 01 -7/ 2} o L.

In particular, all the consequences of (E) stated in Section [2] hold true. More-
over, on can also obtain a continuous-time version of Theorem about the
Q-process.
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Remark 4. For continuous-time Markov processes, a classical Foster-Lyapunov
inequality (cf. [70]) involving the infinitesimal generator £ of the process X is
given by

Ly1(x) < -y (x) + Clg(x), VxeE. (3.5)

Equation implies (formally, assuming one can apply Dynkin’s formula) that
Ex[L1<r,nr, %1 (X1)] < e My (x) and Ex [y (Xo) Li<r,] < €“yq (), so that the first
two lines of (F2) can be deduced. However, it is not possible to directly check (E2)
for ¢, = v, from (3.5). This explains the specific form we choose for the first
and second lines of (F2), and the Foster-Lyapunov criteria that will be used for
diffusions in Section [4| and for pure jump processes in discrete state space in
Section[5] Note that a function v/ satisfying usually does not belong to the
domain of the infinitesimal generator £, so one needs to extend the notion of
infinitesimal generator as in [70}[I8].

As in the discrete time setting, one can use controls on the exponential mo-
ments for the return times in L instead of using Lyapunov type functions ;. The
following result is proved in Section|11.6

Lemma 3.6. Assume that there exist positive constantsy > 0 and t, € I such that

—TrN\Tj

Ex(y,"*""") <oo, Vx€E and supk, ([EXI2 (v; )) < +00,

xeL

theny (x) = Ex (y; ") satisfies

Ex(1(Xp,) Liy<ronry) S VEW1(X), VXEE
IEx(llfl(Xt)]]-Kra) = C2, Vxe Lr Vte [0, tZ] N I;

for some constant c, > 0.

3.3 The case of uniform exponential convergence

Let us now come back to the general case of Section Note first that, in the case
where (E) is satisfied with a bounded function ¢, because of Corollary[2.3] the
domain of attraction of vosp contains all the probability measures ¢ on E such
that u(E’) > 0. The next result hence follows from Remark

Proposition 3.7. If Condition (E) is satisfied with a bounded function ¢, then
vQsp is the unique quasi-stationary distribution of (Xy) giving positive mass to
E' and its domain of attraction for the total variation distance is the set of prob-
ability measures i on E such that u(E') > 0. In addition, the functionn in The-
orem|2.5] is bounded and (E) is satisfied with the bounded function ¢, and with

@2 =1/ 1Mloo-
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In particular, if E' = E, vsp attracts all the initial distributions.

We now want to characterize the case of exponential convergence in total
variation of the conditional distributions of (X;,) to vosp, uniformly with respect
to the initial distribution p. This question was already studied in [15]. The next
result, proved in Section gives a necessary and sufficient condition based
on Condition (E).

Proposition 3.8. There exists constants C and a < 1 such that, for all probability
measure it on E and all integer n,

|Pu(Xn€-1n<15)-vosp| ;= Ca”, (3.6)

ifand only if Condition (E) is satisfied with a bounded function ¢, and there exists
an integer ny > 0 such that

c:=infP.(X,; € K| ny<15)>0. (3.7)
-  x€E 4

4 Application to diffusion processes

In this section, we apply the criteria (E) and (F) to diffusion processes absorbed
at the boundary of a domain. We give a general criterion in Subsection [4.1]and
apply it to uniformly elliptic diffusions in Subsection[4.2|and to an example with
vanishing diffusion coefficient at the boundary of the domain in Subsection[4.3]
Our criteria are extended to diffusions with killing in Subsection[4.4and the par-
ticular case of one-dimensional diffusions is studied in Subsection[4.5

4.1 A general criterion in any dimension

We consider a diffusion process X on a connected, open domain D c R for
some d =1, solution to the SDE

dX,=b(X,)dt+0o(X,)dB;, 4.1)

where B is a standard, r-dimensional Brownian motion and b: D — R and o :
D — R¥*" are locally Holder functions, such that o is locally uniformly elliptic in

D,i.e.
e e STo()oT(X)s
VK cDcompact, inf inf —————>0,
x€K seR4\ {0} ||
where |- | is the standard Euclidean norm on R%. We assume that the process is
immediately absorbed at some cemetery point 0 ¢ D at its first exit time of D,

denoted 75. The existence and basic properties of this process need some care.
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Details are given in Subsection For the moment, let us only observe that,
for all k = 1, defining the compact set

Kiy={xeD:|x| < kandd(x,D =1/k},

a weak solution to (4.1I) can be constructed up to the first exit time 7 K¢ of Kj. as
defined in (3.2). The proper definition of the absorption time 74 is

Tg=SUpTke. (4.2)
k=1 k
We introduce the differential operator associated to the SDE (4.1}, related to
the infinitesimal generator of the process X: for all f € %2(D), we define for all
xeD

Zfx) '—ib-(x)ﬁ(le i icr (00 jr(x) °f (x) (4.3)
o o 221k Sl 0x;0x;j '
We define the constant
Ao:= inf{/l >0, s.t. liminfe' P, (X € B) > o} (4.4)

for some x € D and some open ball B such that B c D. It is standard to prove
using Harnack inequalities (proved in our case in Section[12.2) that, under the
previous assumptions, 1y < +oo and its value is independent of the choice of
x € D and of the non-empty, open ball B such that B c D.

The following result is proved in Section

Theorem 4.1. Assume that there exist some constants C > 0, A; > Ao, a €*(D)
function@: D — [1,+00) and a subset Dy < D closed in D such thatsup ¢ p, ¢(x) <
+o00 and

Lpx) < -A19(x)+ Clyep,, VXx€D. (4.5)

Assume also that there exists a time s; > 0 such that

sup Py(s1 <7k, ATp)
xeDy k—o0

0. (4.6)

Then X admits a quasi-stationary distribution vgsp which satisfies VQSD(q)” Py <
+oo for all p > 1. Moreover, for all p € (1, A1/ Ag), there exist a constant ap, € (0,1),
a constant Cyp and a positive function ¢z p : D — (0,+00) uniformly bounded
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away from 0 on compact subsets of D such that, for all probability measures
on E satisfying u(¢''P) < oo,

; 1P
P H(p2,p)

[Pu(Xs€-1t<15)—Vvosp| = Cpa , Yt €10, +00).
In particular, vosp is the only quasi-stationary distribution of X which satisfies
VQSD((p”’”) < +oo for at least one value of p € (1, 11/ Ap).

Remark 5. We shall actually prove that, under the conditions of the previous
theorem, Assumption (F) is satisfied with L = K for some k= 1, and ¥; = (p” P
for any p € (1, 11/ ).

Remark 6. In general, the assumptions of Theorem 4.1 do not ensure the non-
explosion of the Markov process X. In the case of an explosive Markov process,
the definition of 75 in implies that, in the event of an explosion, the absorp-
tion time 74 is defined as equal to the explosion time.

The last result has other consequences of interest, gathered in the next corol-
lary, proved in Section

Corollary 4.2. Under the assumptions of Theorem[4.1} the infimum defining the
constant Ay in is actually a minimum and it satisfies Pyosp (£ < Tg) = e Mot
forallt = 0. In addition, the function n of Theorem satisfies Py = e oy for
all t = 0. In particular, n belongs to the domain of the infinitesimal generator of
the semigroup of the process X defined as acting on the Banach space L™ (),
and it is an eigenfunction for the eigenvalue —MAy. In addition, n € 6?(D) and
£n(x) =-Anx) forallxe D.

4.2 Application to uniformly elliptic diffusion processes

We consider the case where o can be extended as a locally uniformly elliptic ma-
trix to R%. In the following corollary, we consider a general situation where
holds true. We emphasize that, contrary to previous results on existence of quasi-
stationary distributions for diffusions in a domain (see [73} 42} 57, 33, 12]), no
regularity on the boundary of D is required.

Corollary 4.3. Let D be an open connected subset of R, d = 1. Let X be solution
to the SDE

dX,=b(X,)dt+0(X,)dB;, t<T;,

where b : R% — R and o : R — R**" are locally Holder continuous in R? and
o is locally uniformly elliptic on R%. Recall the definition @&4) of Ay and assume
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that there exist constants C >0, A1 > Ao, a €*(D) function ¢ : D — [1,400) and a
bounded subset Dy < D closed in D such that

ZLpx) = -M1px)+Clyep,, YX€D. 4.7)

Then the process X absorbed at the boundary of D satisfies the assumptions of
Theorem|4.1)

Note that we do not assume that ¢ is a norm-like function, hence the process
X may be explosive (see Remark@).

Proof. Letus consider the diffusion process Y solution to onR%. Due to our
regularity assumptions on b and o, this process is well-defined up to a possibly
finite explosion time Ty, The Harnack inequality applied to Y on the
compact set Dy ensures the existence of constants § > 0 and N such that, for all
f:R%—10,1], for all x € Dy and all y € B(x, ),

Ex[Lsto2<rof (Yo452)1 < NEy[Lsi052<7,, f (Ys4262)].

By compactness of Dy, there exist a positive integer 7 and yy,..., y, € Dy such
that Dy < U?:l B(y;,0). Setting s =0 + 52, we deduce that, for all k = 1 and all
X € Dy,

Px(Y, € D\K) < N max Py, (V; 52 € D\ Kp) ——0.
<Ii<n

k—+o00

Hence is satisfied. This and Theorem[4.1]end the proof of Corollary[4.3l O

We give three examples of application.

Example 1. Assume that D is bounded. Then, one can choose Dy = D and ¢; =1
in Corollary[4.3] This implies Theorem[1.1]of the introduction.

Example?2. Assume that D c RY is open connected and that
dXt = b(Xt)dt'f‘O'(Xt)dBt

in D, where b: R4 — R? and ¢ : R — R4*" are locally Hélder continuous in R4,
o is locally uniformly elliptic on R% and

(b(x),1)

(JC, 1) | x]—+00

where (-, ) is the standard Euclidean product in R4 and |-]is the associated norm.
Then (4.7) is satisfied for ¢ (x) = 1+x;+...+x,; and hence the process X absorbed
at the boundary of D satisfies the assumptions of Theorem[4.1]
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Example 3. Assume that D c R is open connected and that
dX;=b(Xy)dt+dB;

in D, where b:R% — R? is locally Holder continuous in R and

limsup L20% 3 A 4.8)
xl—400 X 2

where (-, -) is the standard Euclidean product in R? and Aq is defined in (@.4).
Then the process X absorbed at the boundary of D satisfies the assumptions of
Theorem[4.11

Indeed, let us check that is satisfied for ¢(x) = exp(\//l_g |x]). One has,
forall x #0,

d oVhlxl (/70 \/Aox?  Aox] Vs VAobi () x;
|x| 1 1
L= ; (|x| P |x|2) Le ]
d-1 /Ay  (bx),x)
<\/_(p(x)(2||+ 2 + B )

= -(Ao+8)ex)

for some € > 0 and for all x such that |x]| is large enough. This implies (4.7).

To apply this criterion, it is necessary to obtain a priori bounds on 1y. We
will give some ideas about how to do so for one-dimensional diffusions in Sec-
tion[4.5] In general, one can also use of course that is implied by

(b(x),x) _

im
lx|—=+00 x|

4.3 Non-uniformly elliptic diffusions: the Feller diffusion with com-
petition

We provide an example where the diffusion matrix o cannot be extended out of
D as alocally uniformly elliptic matrix. This example deals with Feller diffusions
with competition and is motivated by models of population dynamics with d
species in interaction, where absorption corresponds to the extinction of one of
the populations [10}[18].

Assume that D = (0,00)? and

dX!=\/yiX'dB!+ X!b;(Xpdt,

where y; >0foralll<i=<d, Bl,...,B% are independent standard Brownian
motions and b; are locally Holder in (0,00)¢ and locally bounded in R?.
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Proposition 4.4. Assume that there exist constants cy, ¢, > 0 such that

Xib;(x)
Yi

d
Z <cp—cylxl, Vxe(O,oo)d.

i=1

Then the process X absorbed at the boundary of D satisfies the assumptions of
Theoreml[4.1l

Compared to the existing literature on multi-dimensional Feller diffusions
(10, 18], the main novelty of this result is that it covers cases where the pro-
cess does not come down from infinity, e.g. b;(x) = r; — Z;l:l Ci j%, for some
positive constants r; and c¢;; such that r; < ¢;; forall 1 < i < d. Also, the case
considered in [10] is restricted to (transformations of) Kolmogorov diffusions
where the drift derives from a potential (b = VV), which allow the authors to
use a spectral theoretic approach as in the one-dimensional case [9]. In the case
of logistic Feller diffusions, where b;(x) = r; — 27:1 cijxj, this requires that the
matrix (¢;jy j)1<i,j<a is symmetric (which is quite restrictive for demographical
models) and positive definite. Our result shows that one can actually replace the
assumption of symmetry and positive definiteness of (¢;;y)1<i,j<a by the sole
positive definiteness of the matrix (c;jy; + ¢jiYi)1<i,j<a» Which is always sym-
metric. While our results on existence and convergence to quasi-stationary dis-
tributions are more general than those of [10], we do not recover finer results
on the spectrum of the process, such as its discreteness. Compared to the re-
sults of [18] on Feller diffusions, our criterion covers weakly cooperative cases as
in [10], i.e. cases where c;; might be negative for some i # j.

Proof. Our aim is to prove that the assumptions of Theorem 4.1 hold true with
@(x) = exp(c(X1/y1 +...+ X,/y,)), where ¢ = ¢; min; y;/Vd.
We have, for all xe€ D,

d

Lopx) =
i:zi 2y Yi

x;c? . cxib;(x) ciclxl

)(p(x)s (coc— )(p(x).

Choosing 1; = Ap+1 and Dy = {x € D, s.t. |x| < (2cy +211/¢)/ c1}, one deduces
that @.5) holds true with C = cyc maxp, ¢.
Let us now prove that

P.(1<1y)

(4.9)
x—0D,xeDy

which implies that holds true with s; = 1. Fix € > 0 and define the set
F = {x eR?, s.t. p(x) = e SUpP e p, (p(y)/e}. Using Ité’s formula (see the proof
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of (12.8) in Section for details), we deduce from that, For all x € Dy,

Px(zr=1) e sup p(y)/e <Ey ((P(Xu/\l)]lr,;/\kra) = ec(P(x),
yEDO

so that P,(tr < 1) < e forall x € Dy. Since F¢ is bounded, we have

B:= sup |b; (x)| < +o0.
xeF¢ie{l,...,d}

Let (Z1) re(0,+00) := (Ztl, . Zf) 1€[0,+00) D€ the solution of the system of SDEs

dzl=\/yiZ dBl+ Z!Bdrt, 7} = X} € (0,+00),

with absorption at the boundary of D. Note that the components of Z are inde-
pendent one dimensional diffusion processes such that 0 is reachable and hence
that

0.

[P’x(‘v’te 0,11, Viel,...,d}, Z; >0)
x—0D

Standard comparison arguments show that X! < Z! forall t <75 A7 A1 and all
i€{l,...,d}, so that

0.

P (¥ee(0,1],Viell,....d}, X{>0and 1<)
x—0D

ButP,(1<tfp)=1-¢,sothat

limsup Py (Vt(—: 0,11, Yie{l,...,d}, X > 0) <e.
x—0D

Since this is true for all € > 0 and since {V¢ € [0,1], Vi € {1,...,d}, X! > 0} =
{1 < 15}, we deduce that holds true, which concludes the proof or Propo-
sition[4.4] O

4.4 Diffusion processes with killing

This section is devoted to the study of diffusion processes with killing. More pre-
cisely, we consider as above a diffusion process X on a connected, open domain
D <R for some d = 1, solution to the SDE

dXt:b(X[)dt+U(Xt)dBt (410)

absorbed in 0 at its first exit time Texjt Of D, as defined in (4.2)), with the same
assumptions as in Section We also assume that the process is subject to
an additional measurable killing rate x : D — R, which is locally bounded: there
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exists an independent exponential random variable { with parameter 1 such that
the process is instantaneously sent to the cemetery point 0 ¢ D at time

t
TaZTeXit/\inf{tzO,f x(X5)ds >€}.
0

Since « is assumed to be locally bounded, one easily checks that A in
is finite, and that it does not depend on x € D or on the open ball B such that
BcD.

The following result is an extension to the multi-dimensional setting of [58,
Theorem 4.3].

Theorem 4.5. Assume that there exist a subset Dy C D closed in D such that

inf x(x)> Ao, 4.1
XED\D()

and a time s; > 0 such that

sup Py(s1<TyATk,) 0. 4.12)

x€Dy k—+00

Then the process X absorbed at time Ty admits a unique quasi-stationary dis-
tribution vgsp and there exist a positive function ¢, on D (uniformly bounded
away from 0 on compact subsets of D) and a positive constant C such that

C
[Pu(X;i€-1t<T8)—vosp| py = @at, Yt € [0,+00)

for all probability measures i1 on E.
Remark 7. Let us make some comments on the assumptions of the above result.

1. If the process without killing rate satisfies (4.12), then the process with
killing rate also satisfies this property. Hence the analysis provided in Sec-
tion}4.2|can also be used to check the assumptions of the above theorem.

2. If infyep\g, K (x) — +oo when k — +oo, then the assumptions of Theo-
rem 4.7 are trivially satisfied.

3. In order to reach the conclusion of Theorem in the setting of killed
diffusion, it is also possible to use a Lyapunov type criterion: the assump-
tion can be simply replaced by the assumption that there exist A > Ag
and C > 0 such that

ZLp(x) -k (X)p(x) < —A@p(x) + Clyep,.
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Note that (4.11) of course implies the last inequality for ¢ = 1. This exten-
sion follows from a simple adaptation of the arguments of Theorem
observing that

t
Ex [f(X)11<r,] = Ex f(Xf))JlmemexP(— fo K(X?)ds)],

where the process XP is the process solution to (4.10) without killing, ab-
sorbed at its first exit time of D, at time 7 eyit.

4. If in addition the killing rate « is locally Holder in D, we can apply [39}
Cor. 3.1] as in Section(12.4|to prove that  is 62 (D) and £n(x) —x (x)n(x) =
—Aon(x) forall xe D.

Proof. The proof follows the same lines as the proof of Theorem in Sec-
tion We emphasize that the construction of the process in Section [12.1| is
still valid. The same is true for the Harnack inequalities of Section [12.2] since
they are based on Krylov’s and Safonov’s general result [59] which is obtained
for diffusion processes with a bounded and measurable killing rate. The rest of
the proof is exactly the same, replacing ¢; = ¢ by ¢; = 1. g

4.5 The case of one-dimensional diffusions

In this section, we consider the case of one-dimensional diffusion processes.
Here, the Holder regularity of the coefficients is not needed. Let X be the solu-
tion in D = (a, ), where —co < @ < f < +00, to the SDE

dXt o(Xy) dBt‘l‘b(Xt)dt Xp€D,

where ¢ : D — (0,+00) and b : D — R are measurable functions such that (1 +
|b|)/0? is locally integrable on D. We assume that the process is sent to a ceme-
tery point 6 when it reaches the boundary of D and that it is subject to an ad-
ditional killing rate x : D — R, which is measurable and locally integrable w.r.t.
Lebesgue’s measure. This assumption implies that the killed process is regular
in the sense that, for all x, y € D, P (7{;; <00) > 0.

We define Ay as in (4.4). The fact that Ay does not depend on x nor B is a
consequence of the regularity of the process.

Leté:D — R, and s: D — R be defined by

6(x):exp(—[ b du) and s(x) = [6(u)du

ao U( )2
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for some arbitrary ag € D. We recall that s is the scale function of X (unique up
to an affine transformation), meaning that s(X;) is a local martingale. We also
recall that the boundary a (and similarly for ) is said to be reachable (for the
process without killing) if s(a) > —oco and

dx < +oo.

f* s(x) —s(ay)
a 0(x)%5(x)

Theorem 4.6. Assume that one among the following conditions (i), (ii) or (iii)
holds true:

(i) a and B are reachable boundaries;

(i) « is reachable and there exist A1 > Ay, a €2 (D) function ¢ : D — [1,+00) and
X1 € D such that, for all x = x,,

2
w(p”()f) +b(xX) ' (x) — k() P(x) < -1 9(x); (4.13)

(iii) there exist A, > Ao, a €*(D) function ¢ : D — [1,+00) and xy < x1 € D such
that holds true for all x € (a, xo) U (x1, B).

Then the conclusions of Theorem/[4.1| hold true.

Remark 8. We shall not detail the proof of this result since it is very close to the
proof of Theorem[4.1]given in Section[12] We only explain the places that need
to be modified. First, weak existence, weak uniqueness and the strong Markov
property are well-known under the assumptions that ¢ > 0 and (1 + |b|)/c? €
Lll0 (D) (weak existence and uniqueness in law are proved up to an explosion
time in [53} Thm. 5.5.15], so we can construct a unique weak solution and prove
the strong Markov property as in Section[12.1). Second, in order to construct an
appropriate function ¢ on D, we choose Dy = (@, x1] in case (ii) and Dy = [xp, X1]
in case (iii) and we can extend ¢ on D as a bounded €2 (D) function. In case
(i), we can take ¢ =1 and Dy = D. Third, follows from the fact that the

boundaries @ and g are reachable in case (i) and «a is reachable in case (ii), since

sup  Py(s1<75) =Pgui1/k(s1 <T{ey) — 0.
xe(a,a+1/k] k—+o0

In case (iii), the limit is trivial since Dy c K. for k large enough. Finally, all the
arguments using Harnack’s inequality can be replaced by arguments using the
regularity of the process and standard coupling arguments for one-dimensional
diffusions (see [19} 17]).
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In order to apply this result in practice, one needs to find computable esti-
mates for ¢ and candidates for ¢. One may for instance use the bounds for the
first eigenvalue of the (Dirichlet) infinitesimal generator of (X, ¢ = 0) obtained
in a L2 (symmetric) setting using Rayleigh-Ritz formula in [74)} (86, [87], as ob-
served in [58]. We propose here two different upper bounds for 1y which follow
from the characterization of the eigenvalue 1y and Dynkin’s formula.

Proposition 4.7. Foralla <a<b < f3, we have

2
1
Ao < sup o) +x(x) p.
xe[a,b] fbexp( 2f) fz(z) dz) y

Ifx— b(x)/0(x)? is €' (la,b]), then

Ao < su —nza(x)z +0(x)? (L),(xﬂ—b(x)z +x(x)
0= x(—:[aI,)b] 2(b—a)? 202 20(x)? '

Proof. For the proof of the first inequality, set

s(x) — s(a))

@(x) =sin (n S0)—s@ )

Then, for all x € (a,b),

a(x)2 " _ [(7Po()*6(x)?
@" (x) +b(x)@'(x) —x(X)p(x) = — mﬂdx) @ (x)
=- o +x(0) | @)
- b y b 2 TP
2 (fa exp( f UZ(Z) dZ) y)
-Cop(x),
where

2
1 o (x)
C:= sup > 7 Y +x(x) p.
x€(a,b] /5 exp (—ny e dz) dy
Since ¢ is C? and bounded, we deduce from Itd’s formula that, for all x € (a, b),
Ex(@(X0) Licry) = e “lo(x).

Now, using the fact that 0 < ¢(x) < 1 for all x € (a, b), we deduce that

P.(X; € (a,b) = e “lop(x), VxeD.

28



As a consequence, the definition of 1 entails 1y < C.
The proof of the second inequality is the same, using instead the function

* b(w) . x—a
p(x) :=exp (—fc oY du) sin (nm)
for some c € (a,b). O

The next result provides two candidates for ¢. Its proofis a straightforward
computation.

Proposition 4.8. Let ¢ : (0, +00) be any €°(D) function such that, for some con-
stantsa_ <ag< a4+ €D,

@(x) ={ Vst l,fxz T (4.14)
V-sx) ifx<a-.
Then, forall x € (a,a_1U [ay, B)
o(x)?® , ) (U(x)zé()d2 )
5 ¢ (xX) + b(X) ' (x) =k () p(x) < 85(x)? +K(X) ] p(x).

Ifx— b(x)/o(x)? is C1(D), then

0(x) :exp(— f bz(u) du) 4.15)
ao 0°(u)
satisfies
o(x)? p’(x) o*(x)

" e _ by
——@ () + b)) (x) -k (X)p(x) = ) (x) +x(x) | p(x).

+
202(x) 2
Remark 9. The first function ¢ is always uniformly lower bounded on (&, a_] U
[as,B) by min{y/s(a,),v/—s(a-)}. To ensure that the second one is also uni-
formly lower bounded, one needs further assumptions on the behavior of b/o?
close to a and B.

The above results can be used as follows. In the case where «a is reachable
and b = 0, Condition (ii) of Theorem[4.6/holds true if
2
o°(x)

liminf ———— + > Ao,

gz TY A
choosing ay = @ and using the function ¢ of (4.14). Similarly, in the case where
a is reachable, o = 1 and b is C!, condition (i) of Theorem[4.6/holds true if

.. PP P W)
liminf +
x—p-

using the function ¢ of (4.15).
We give below more precise examples.

+x(x) > Ao,
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Example4. Assume that D = (0, +00), k is locally bounded and that X is solution
to the SDEin D

dX[ =V XtdBt - Xtdt
Then 0 is reachable for X and, since

o (x)%28(x)?
8s(x)2 X—+00

+00,

we deduce from Proposition[4.8/and Theorem[4.6]that X admits a quasi-statio-
nary distribution vosp and, for all p = 1, there exist positive constants Cp,yp
and a positive function ¢ ; on (0, +oo) such that

J0,+00) €XP(X/ ) p(dx) —
:u((PZ,p)

IPu(Xee-1t<70)=vaspl 1y = Cp )
for all probability measure ¢ on D. In particular, one deduces that the domain
of attraction vgsp contains any initial distribution ¢ admitting a finite exponen-
tial moment. Note that, in the case where x = 0, the process X is a continuous
state branching process (Feller diffusion), for which quasi-stationarity was al-
ready studied (see [60] and the references therein).

Example 5. Assume that (a,f) = R, that b = 0 and o is bounded measurable
on R. Assume also that the absorption of X is due to the killing rate x(x) =
Ko (1 - %le) for some constant kg > 0. We deduce from the first inequality of

Proposition[4.7|(taking b > 0 and a = —b) that

2 2
wlol2, ( 1) ( 1)
Z o k| 1- —— | <xo|1-

802 U T 156) " 1420

for b large enough. Moreover, choosing ¢ = 1 and xo = —3b, x; = 3b, one deduces
that, for all x ¢ [—x1, x1],

Ao <

U(x)2

2 @(x).

1
"(x) —x(X)p(x) < —x (1——)
@ (x) k() p(x) 0 1536
Hence Theorem[4.6/implies that there exists a unique quasi-stationary distribu-

tion vosp for X and that it attracts all probability measures p on D.

Example 6. We consider the case (a, ) = (0,+00), o(x) =1, b(x) = xsinx, and
x(x) = %o (1- 1) for some constant ko > #* + 3. This corresponds to a SDE
dX; = dB;+VU(X;)dt where the potential U(x) = sinx — xcos x has infinitely

many wells with arbitrarily large depths, meaning that the process X without
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killing has a tendency to be “trapped” away from zero for large initial condi-
tions. Nevertheless, thanks to the killing, we are able to prove convergence to
a unique quasi-stationary distribution. Indeed, using the second inequality of
Proposition[4.7) we have

7% sinx+ xcosx+ x?sin

A< sup —+
xe(0,1) 2 2

2

X 7% 3
+xo|(l—-—— s—+5+1<0/2.

Moreover, 0 is a reachable boundary for X and, taking ¢ = 1, one has, for all
x1 >0andall x> x,

U(x)2
2

@"(x) + b(x)¢@' (x) — k(D p(x) < ko (1 - )(p(x)

1+x;
Hence, since we assumed that x > 72 +3, one deduces that there exists a unique
quasi-stationary distribution vosp for X and that it attracts all probability mea-
sures pon D.

Remark 10. The case of general one-dimensional diffusion processes [52] can
be handled using our framework, although using the infinitesimal generator is
more tricky [50]. However, in the case of a regular diffusion process on (0, +c0)
such that 0 is a reachable boundary and such that +co is entrance, one easily
shows (see for instance [19]) that, for all 1 > 0, there exists y > 0 such that

sup [Ex (e“[‘m) < +oo0.
x€(0,+00)

Hence, using the same proof as in Theorem [4.1] and using Lemma 3.6} one de-
duces that there exists a unique quasi-stationary distribution vgsp for X and
that it satisfies

1
P,(X;€-1t<T5) —Vosp <——a', Vte[0,+00)
” © Q ” TV ,U((PZ)
for some positive function ¢, and some a < 1. Whether the convergence to vgsp
holds uniformly with respect to the initial distribution (as in Proposition
without further assumptions remains an open problem. It has been shown to be
true for a wide range of cases in [19,[17].
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5 Application to processes in discrete state space and con-
tinuous time

Let X bea non-explosiveﬂ Markov process in a countable state space E U {0} ab-
sorbed in 0, with generator £ acting on nonnegative real functions f on E U {0}
such that }. e pujg) G,y f(¥) <ocoforall x € E as

L= Y quyfO)-f), VxeE, Lf(@) =0, 5.1)
y#x€EU{0}

where ¢,y is the jump rate of X from x to y # x and ¥ yepua)\ (1) G,y < oo for all
x€E.

Theorem 5.1. Assume that there exists a finite subset Dy of E such that Px(X; =
y) >0 forall x,y € Dy, so that the constant

Ao = inf{/l >0, s.t. liminfe“IPx Xi=x)> 0}
t—+oo
is finite and independent of x € Dy. If in addition there exist constants C >0, 11 >
Ao, a function ¢ : EU{0} — Ry such that g\ =1, 9(0) =0, L yep\(x Gx,yP(y) <00
forall x € E and such that

Lx) = -A19(x)+Clyep,, VXEE, (5.2)

then Assumption (F) is satisfied with L = Dy, v, = e M, any y» € (eM, e~ Mo)
and ¥y = @|g. In addition, Py, (t < 15) = e M forall t = 0, the function n of
Theorem satisfies Py = e iy for all t = 0 and 2 yeE\ix} Gx,yN(y) < 0o and

£n(x)=-Aon(x) forallx € E.

Remark 11. If in addition to the assumptions of Theorem [5.1] we assume that
Ay > sup,. q(x,0), it is possible to adapt the proof of Theorem 3.5|given in Sec-
tion to prove that the conclusion of Theorem [3.5 holds true with v, = 1.
Therefore, we obtain the improved convergence

[Pu(Xi€-1t<18)—vosp| = Culp)a’

instead of (3.3). If moreover ¢ is bounded over E, the convergence is uniform
and there exists a unique quasi-stationary distribution.

10ne could actually consider the case of explosive Markov processes as in Section (see Re-
mark@, but then 74 has to be defined as the infimum between the first hitting time of 6 and the
explosion time.
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Before turning to the proof of Theorem 5.1} we give an example of applica-
tion.

Example 7. We consider general multitype birth and death processes in contin-
uous time, taking values in a connected (in the sense of the nearest neighbors
structure of Z%) subset E of Z¢ for some d = 1, with transition rates

bi(x) ify=x+e;,
dx,y = d;(x) ify=x—ei,
0 otherwise,

with e; = (0,...,0,1,0,...,0) where the nonzero coordinate is the i-th one and
with the convention that the process is sent instantaneously to 6 when it jumps
to a point y ¢ E according to the previous rates. To ensure irreducibility, it is
sufficient (although not optimal) to assume that b;(x) > 0 and d;(x) > 0 for all
l<si<dandx€E.

We show below that Theorem [5.1]applies under the assumption that

1 d
— 3 (di(x) - bi(x)) +00. (5.3)
x| /3 x€E, |x|—+o0
or that there exists 6 > 1 such that
d
Y (di(x) =6 bi(x) +00. (5.4)
i=1 x€E, |x|—+00

This improves the general criteria obtained in [18] since this reference assumes
(among other assumptions) that E = Z¢ and that Zle (d;i(x) = bi(x)) = | x| for
some 1) > 0 and |x| large enough. Note that this example applies to birth and
death processes in any connected domain of Zf.

Let us first show that implies that the assumptions of Theorem [5.1|are
satisfied. In order to do so, we define ¢(x) = |x| = x; +...+ x4 and ¢(0) =0 and
obtain

d Y4 (di(x) - b;(x)
L) =Y (bi(x) ~ di(x) = —p(0) == ’|x| ’
i=1

T4 (di () ~b; (%)
x|

Let us now show that implies that the assumptions of Theorem 5.1]are
satisfied. Setting ¢ (x) = exp{a, x) fora given a € (0,00)% and ¢(0) =0, we obtain

The proofis concluded by setting Dy = {x €E, st =2Ao+1;.

d
Lex) < —px) (Z (1-e “)d;(x)+ (1 —e)b; (x)) .

i=1
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Choosing a = (g, ..., €) with € small enough, we have

d
liminf ) (1-e “)d;(x)+ (1 -e%)b;(x) = +oo.

X€E, |x|—>+ool-:1
Taking Do = {x € E, s.t. Zle(l —e %)d;(x) + (1 - e%)b;(x) = Ao + 1} allows us to
conclude the proof.

Proof of Theorem([5.1] The fact that Ay is independent of x is classical for irre-
ducible processes (cf. e.g. [56]). We set L = Dy. Since X is a non-explosive pure
jump continuous time process, it satisfies the strong Markov property and the
entrance times 7; and 74 are stopping times. This entails (F0).

For all x, y € L, we have

Pi(Xz2€7) = inf Pu(X; = )Py (X €),
u,velL

where inf}, 1 P, (X7 = v) > 0 by assumption, which implies Conditions (F1) and
(F3).

We set ) = ¢. Forall 0 < s <1, using and Dynkin’s formula, one has
thatforall xe L

Ey (1//1 (Xs)]ls<ra) < e’ SUE’WI .
ye

Similarly, setting y; = e M forallxe E\L,
Ex(¥1(XD)L1<r,nr,) < € My (60) = Y191 (%)

Choosing any 3 € (71, e~1), one obtains that condition (F2) is satisfied and the
first part of Theorem|5.1]is proved.

The inequality ). e p\(x Gx,yN(y) < oo for all x € E follows from the fact that
n € L*°(y1) and the fact that P;n(x) = e Mot 1(x) was proved in Theorem It
then follows from Markov’s property and the last equality that (e*‘n(X,), t = 0)
is a martingale for the canonical filtration associated to X, with the convention
that n7(d) = 0. Now, it is standard to represent the Markov process X as a solution
to a stochastic differential equation driven by a Poisson point process: assume
that the elements of the finite or countable set E are labeled by distinct positive
integers, that 8 = 0 and, for all x,i € Z,, let x;(x) = gx0+ gx1 + ...+ qx,; With
the convention that g, =0 and g,,; =0 for all x or i ¢ EU {9} and set g(x) =
Yiez, qdx,i <oo. Given a Poisson point measure N(ds,d0) on IRZ+ with intensity
the Lebesgue measure on [RE_%, the process X solution

t q(Xs—) o0
X = Xo +f0 fo Y Lgeinin (X 0x,0 (i — Xs=)N(ds, db)
i=0
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is well-defined for all time # = 0 almost surely and is a Markov process with ma-
trix of jump rates (q; j)i,jez,. Introducing the compensated Poisson measure
N(ds,db) = N(ds,d) — dsde, it follows from basic stochastic calculus for jump
processes (cf. e.g. [75]) that

Aot — ! q(XS_) A()S < . NT
UXn=Xo+ ) | e Y Loetrn (X, )%, ) M@ = (X)) N(d's, dO)
i=0
t 00
+f0 el‘)s(z q(Xs,i)(n(i)—n(Xg))+Aon(Xs))ds.
i=0

Since e’’n(X;) is a P -martingale, the Doob-Meyer decomposition theorem en-
tails that
t 00
fo etos (Z q(Xs, 1) (D) —n(Xs) + Aon(Xs)) ds=0
i=0
Px-almost surely for all £ = 0 and all x € E. Hence, if there exists y € E such
that £n(x) # —Aon(x), by irreducibility, there exists an event with positive prob-
ability under P, such that the previous integral is non-constant. We obtain a
contradiction and hence £n(x) = —A¢n(x) for all x € E. O

6 Onreducible examples

The criteria and examples studied in the last two sections assume that the pro-
cess X is irreducible in E. However, the abstract results of Section [2| do not
require the state space to be irreducible. Our goal in this section is to explain
that our criteria are also well-suited to cases of reducible absorbed Markov pro-
cesses, in the sense that the state space E can be partitioned in a finite or count-
able family of communication classes. The study of quasi-stationary behavior
for such processes has been up to now restricted to particular classes of mod-
els [72] 44 [14, 13| [82]. Our criteria provide new practical tools to tackle this
problem.

In Subsection|[6.1} we consider a general setting with three successive sets. In
Subsection|6.2] we consider a birth and death process with a countable infinity
of communication classes.

6.1 Three successive sets

In this section, we consider a discrete time Markov process (X, n € Z) evolving
in a measurable set E U {8} with absorption at 0 ¢ E. We assume that the transi-
tion probabilities of X satisfy the structure displayed in Figure[I]: one can find
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:
0

Figure 1: Transition graph displaying the relation between the sets Dy, Dy, D3
and 0.

a partition {D, D,, D3} of E such that the process starting from D; can access
D, u Dy u D3 uU {0}, the process starting from D, can only access D, U D3 U {6},
and the process starting from D3 can only access D3 U {0}. More formally, we
assume that Pyx(Tp, AT5 < ITp,) = 1 for all x € D, and that Px(75 < Tp,up,) =1
for all x € D3, where we recall that, for any measurable set Ac E, T4 = inf{n €
Z., X, €Al

Our aim is to provide sufficient conditions ensuring that X satisfies Assump-
tion (E). In order to do so, we assume that Assumption (E) is satisfied by the pro-
cess X before exiting D,. This corresponds to the following assumption.

Assumption (H1). The absorbed Markov process Y evolving in D, U {3}, de-
fined by

_ Xn ifn< TDIUDgu{d}v
Y, = .
0 ifn= TDIUD3U{d}:
satisfies Assumption (E). In what follows, we denote the objects related to Y with

a superscript Y, for instance, the constants of Assumption (E) for Y are denoted
by 6Y >0,6) >0.

We also assume that the exit times from D; and D3 for the process X ad-
mit exponential moments of sufficiently high order, as stated by the following
assumption.

Assumption (H2). There exists a positive constant y < 03/ such that, for all
x€ Dy,

iy

=T, Y - NTp
E, (»Y D2y (XTDZ) ]lTI)2<TD3 /\Ta) <400, [y ()/ D3 HTD3/\76<TD2) < +o00,

36



and such that
sup Ex (y™7?) < +oo0.
x€Dj3

We are now able to state the main result of this section.

Theorem 6.1. Under Assumptions (H1) and (H2), the process X satisfies Assump-
tion (E) with K = K'Y,

—TK/\Ta)

@1(x0) =Ex (y and @2(x) = clyek, Vx€E.

In particular, it admits a unique quasi-stationary distribution vqosp such that
vosp(@1) < oo and vqsp(p2) > 0. Moreover, there exist two constants C > 0 and
a € (0,1) such that, for all probability measure 1 on E such that pu(¢@;) < oo and

w(gz2) >0,

|||]J>H(Xn€-|n<T6)_VQSD”TVS i)

Finally, 0y = 93/ , vosp(D1) = 0 and the functionn of Theorem vanishes on Ds.

In particular, one deduces from the last property that E' ¢ D; U D, (see Re-
mark, where we recall that E' = {x€ E:3dneN, P,1x(x) > 0}.
Before turning to the proof of this result, let us make some remarks.

Remark 12. 1. The fact that there are three different sets D;, D, and D3 in the
decomposition of E is not restrictive on the number of communication
classes. Indeed, the three sets can contain several communication classes.

2. A similar result can be obtained for continuous time processes, based on
Assumption (F) instead of (E), with the additional technical assumption
that the exit times of Dy and D, are stopping times.

3. We emphasize that, beside the exponential moment assumption, there is
no additional requirement on the behavior of the Markov process in D;
and Ds. In these sets, the process might be periodic or deterministic for
instance. In particular, one might have Py (n < 74) = 0 for some x € Dy U D3
and some 7 € N (this situation is discussed in Section|3.1).

4. One easily checks from the proof that the function ¢; in Assumption (E)
for X is bounded (up to a multiplicative positive constant) from above by

[Ex (Y_ TDZ(P{ (XTDZ) ]]-TD2<TD3/\‘[3) + [Ex (Y_TDaATa ]]-TD3/\T0<TD2)

on D1, by (pf on D, and by a constant on Ds.
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5. In particular, if (pf is uniformly bounded and if the first statement in As-
sumption (H2) is replaced by

sup [Ey (y~Tp2upaT0) < 400,
xeDy

then one can also choose a bounded function ¢, in Assumption (E) for X.

Remark 13. Assume in addition that Condition (E) is satisfied for the process
XP1 started from D; with the same transitions as X but absorbed at its first
exit time of D; and for the process XDs started from D5 with the same transi-
tions as X and absorbed in 4. Then the quasi-stationary distribution vgfw of
Theorem for XPs extended by 0 to E\ D3 is a quasi-stationary distribution
for the absorbed process X. This shows that uniqueness of a quasi-stationary
distribution may not hold even if ¢, is bounded (see Corollary[2.3). Moreover,
the constant 9(? ' and the function n”' of Theoremfor XP1 extended by 0 to
D, U D3 U {0} satisfies, for all x € Dy,

PP (x) =E,

1< T, e (XD | = 03P (0.

Hence n”! is an eigenfunction for P; corresponding to case 3. in Corollary
SO 9(1)) l<6pa;.

Proof of Theorem([6.1] Let us prove that Assumption (E) is satisfied by the pro-
cess X. Note that, because of Lemma|3.4} one can assume without loss of gener-
ality that y < BZY.

Step 1. Assumption (E1).
We set K = K¥, ny =nf, ¢; = ¢{ and v = v' (remember that the objects
with a superscript Y are those of Assumption (E) satisfied by the process Y).

Assumption (E1) for X is an immediate consequence of Assumption (E1) for Y.

Step 2. Assumption (E2).
We set 6, =0 and

(pg(x) if xe D,

(x) =
Ve {o if x € Dy U Ds.

Then the second and fourth lines of Assumption (E) for X are direct conse-
quences of the same lines of Assumption (E) for Y.

Without loss of generality, we assume (reducing 0%’ if necessary) that y €
67,60)). We define

@1(0) =E, (y~ k"), Vxe Eu{d}.

38



Letus first check that ¢ is finite on E. For all x € D3, using thatP,(t5 < Tp,up,) =
1 and that K < D5, one deduces that

P1(0) =Ex (Y ") < A:= sup Ex (y~7) < +oo0.

xeDs
For all x € D», using the strong Markov property and inequality for the pro-
cess Y, one deduces that

(’}/_ Tx N TD;

p1(x) =Ex ]1TK<TD§)+[Ex ('}’_TOHTD§<TK)

~TxATpe ( ~TkATpg

=[E, (y 2 ]]‘TK<TD§) +Ex|y 1TD§<TK[EXTD§ (Y_Ta)

A
<————o¢f (). (6.1)

< AE, (Y_TKATDE) o
1

For all x € D, one has, using the Markov property and the above inequalities,

[Ex (,}/—TKATz?) = [Ex (Y—TDzuDs /\Ta(p1 (XT1J2u1)3 /\Ta))

[[Ex (Y_Tnz(l’%, (XTDZ) ILTD2<TDS/\10) +Eyx (Y_TD3 AT@HTD3A13<TD2)

“1-07/ ’
1Y
which is finite by Assumption (H1).
The definition of ¢; immediately implies that infr¢; = 1 and, since (pf is
uniformly bounded over K c Dy, implies that supg¢; < +oo. Hence the
first line of Assumption (E2) is satisfied. Moreover, for all x € K,

P1p1(x) =Ex (Lx,ep,Ex, (v~ ")) + Ex (1x,en,Ex, (Y77))

<Ex|1lxen, ol (XD |+ A

A
1-6Y 1y

A
=—— P ol (W +A<s———c) +A
1—0{/}/ 1—8%’/)/

Hence, the third line of (E2) for X with 8; =y follows from Lemma|3.3
Step 3. Assumption (E3).
Forall x € K, we have, foralln>1,
Px(n<1y) =Py(n<15ATp,) +Px(Tp, = n<Tp). (6.2)

On the one hand, by Lemma there exists a constant C > 0 such that

Col(x Csupg Y
DL By < Toe) < oKL i (< 1)

Py(n<t9ATp,) < ——=
S T ST 1-60Y/0) yek
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On the other hand, using Markov’s property and Markov’s inequality,
I]:Dx(TD3 =n<t1y =k, (1T1)3SHPXTD3 (n—u< Ta)u:Tpg)
_ —Tpe
<[y (ﬂ TDSSn(Pl(XTDS)Yn TD3) < Ak, (HTDgsnyn DZ) )
since {Tp, < n} < {Tpg = Tp,}. Now, using Theorem and the fact that ¥ is

uniformly bounded from above and away from 0 on K, we deduce that there
exist constants C,C’ > 0 such that

~Tpe) _ v kv -
Ex (Lrpeny” %) = 2. Px(Tp; = 0Y" k< 2 PulTpg > k= Dy" ¢

n
<C Z (eg)k—lyn—k < C(eg)n—l

k=1 1_7//03/
Y \-1
C’(QO— inf P, (n < Tpe).
1-y/0) yek ” 2

Finally, we obtain from that there exists a constant C” > 0 such that, for
all xe K,
s c I/
Py(n<ty <C ;1€11f<IPy(n< Ip)=C )llgllg[py(n<‘[a). (6.3)

This concludes Step 3.

Step 4. Conclusion.

Assumption (E4) for the process X is an immediate consequence of Assump-
tion (E4) for the process Y, and hence we have checked that X satisfies Assump-
tion (E). The convergence result of Theorem|6.1]is exactly the convergence result
obtained in Theorem[2.11

Note that entails that, for any x € K,

limsup (65 )™"P(n < Tpg) <limsup (0y)"P(n < 75)
n—+0o n—+00

< C"limsup () "Px(n < Tpe)
n—+oo

and that Theorem2.5|applied to Y entails

limsup (83)™"P.(n < Tpg) =n" (x) < +o0.
n—+oo

Since it follows from Theoremapplied to X thatlim,_. 1o 0y "Px(n < 75) >0,
we deduce that 6y = 6] .
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Finally, for all x € K, the structure of the transition graph of X implies that
0=Px(Xp€D1ln<15) ——— vosp(D1),
n—+oo

so that vgsp (D7) = 0. Moreover, for all x € D3, Markov’s inequality and the sec-
ond line of Assumption (H2) yield the inequality Py(n < 75) < Ay", forall x e K
and all n = 1. Since ¢ = 03/ > v by assumption, we deduce that, for all x € K,
lim;,—. 100 0, "Px(n < 75) = 0, which means that n(x) = 0.

This concludes the proof of Theorem[6.1] a

6.2 Countably many communication classes

In this section, we study a particular case of a continuous time cadlag Markov
process (X;) te[0,+00) With a countable infinity of communication classes and we
show that the process admits a quasi-stationary distribution.

More precisely, we assume that X evolves in the state space N x Z,, and, de-
noting N; € Nand Y; € Z, the two components of X for all ¢ € [0, +00), that there
exist three positive functions b, d, f : N — (0, +00) such that

* N is aPoisson process with intensity 1,

* Y is aprocess such that, at time ¢,

f(N)b(Y,) ify=Y;+1landY,>1,
Y jumps from Y; to y € Z, withrate { f(N)d(Yy) ify=Y,—1landY;=1,

0 otherwise.

The set N x {0} is absorbing for X and we are interested in the quasi-stationary
behavior of X conditioned to not hit this set. Note that, in this case, each set
{n} x N is a communication class.

Remark 14. This process can be used to model the evolution of the vitality of an
individual (for example a bacterium) whose metabolic efficiency (for example its
ability to consume resources) changes with time, due to aging [78]. Here Y is the
vitality of the individual, who dies when its vitality hits 0, f (V) is the metabolic
rate of the individual, which may improve in the early life of the individual up to
age np and then accelerates progressively.

This can also model the accumulation of deleterious mutations in a pop-
ulation under the assumption that mutations do not overlap, i.e. that when a
mutant succeeds to invade the population (either because they are advantaged
or due to genetic drift for deleterious mutations), other types of mutants disap-
pear rapidly. Here Y represents the size of the population and N the number of
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mutations. It is typical to assume that the first np mutations that invade are ad-
vantageous (which corresponds to adaptation), and afterwards that deleterious
mutations start to accumulate, hence accelerating the extinction of the species
(extinction vortex [27}126]).

In both cases, it is relevant to assume that f is decreasingon {1,2,..., ng} and
increasing on {ng, np +1,...}.

We assume that (d(y)—b(y))/y — +oowhen y — +oo or that there exists § > 1
such that d(y) — 0 b(y) — +o0. Hence the birth and death process Z evolving in
N, with birth rates (b(z)).en and death rates (d(z)) zen, satisfies Assumption (F)
by Theorem (see Example . In particular, there exist an eigenvalue /IOZ >0
and eigenfunction nZ :N — (0,+00) such that, for all ze N, ZZT]Z = —AOZ z
where the operator £7 is defined as the operator £ in (G.1).

y

Theorem 6.2. Assume also that there exists a unique ng € N such that f(ng) =
miney f(n) and thatliminf,,_. ,  f (1) > f(ng) + %Z Then the process X satisfies
Assumption (F) and admits a quasi-stationary distribution vosp whose domain
of attraction contains all Dirac measures 6, with n < ng and y € N.

Of course, all the consequences of Theorem 3.5 also apply here, taking the
functions v¥; and v, as described in the proof.

In practice, one may use the fact that /lg is always smaller than d(1). Note
that we can construct the process Y as

Ye=Zpt ringas V120.

The proof of the next result mainly makes use of this special structure of the pro-
cess and might be generalized to processes Z that are not birth-death processes.

Proof. In general, we shall denote the objects related to Z with a superscript Z,
for example wlz is the functions involved in (F2) and LZ is the set involved in (F)
for Z. We can assume without loss of generality as in Theoremthat L? = Dg ,
i.e.

Lyl < Ay? +Clyz (6.4)

with ¢¥(0) =0and A# > AZ.

Our goal is to apply Theorem to the process X = (N, Y). We define the
finite set Dy = {ng} x L?, so that X is irreducible on L, and check that 1 <
f(ng)A¢ +1. Indeed, forall y € L%,

7 VA
TN I (NG, Y)) = (no, 1)) = e TN PL (Zp ) = y)

—— " (V§spUyh > 0.

t—+o0o
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We fix A7 such that
AT +1< A1 < |4 inf o+ 1) A (Aftimint Fom) A (Af fin0) +1)
n#ny —Too

and we choose
* n1 > ng such that, for all n = ny, 1 <AZ f(n);

e ¢ > 0 small enough so that ¥ (x) = cn”(x) for all x = 1 (such a constant
exists thanks to Theorem[2.5);

* a>0large enough so that 1; < Alzf(no) +1-e7%
* ¢£>0small enough so that A1 < (A7 — &) infyzn, f(0) + 1;

* b> alarge enough so that 1; < (Ag —¢&)infyzp, f(N)+1- e P and Ce? P <
einf¢ 7 n?(y), where the constant C is the one of (6.4).

We can now define

vy if n = ny,
i) = e =My Z () + eP=mpZ(y) %f n < ny,

ce~Un=mpZ(y) ifng<n<n,

ce”Am=mpZ(y) if n < n.

In the case where n < ny, it follows from (6.4) that

Ly, y) <= (A f(m) +1-e ) eyl (y)
- (Agf(n) +1- e‘b) ebo=mpZ )

+ mﬂmea(no—mnz(y)
< — Ay emo My Z () [(Ag —ef(m)+1- efb] ebr=mpZ (4
+ef(n)et=m (eb—u _ e(b—a)(no—n)) 7% )
<-hvi(n,y).
When 7 = ny, we have

Ly1(no,y) = —A{ f(no)y{ (1) + Clz(y) f (no) + ce “n” (y) —w{ (y)
< -My1(ng,y) + Cf(ng)lp,(nog, ).
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When ny < n < n;, we have

2,‘7[/1 (n, y) < _AIZf(n) Ce—a(ﬂ—no)nZ(y) + Ce—a(n—n0+l)nZ(y) _ Ce—a(ﬂ—ng)nZ(y)
s-hyi(n,y).

When n; < n, we have

Ly1(n,y) < AL fFn? () < -y (n, y).

Finally we have proved that Lv,(n,y) < -hvi(n,y) + C_f(n)]lDo(n,y), where
A1 > Ag. Now, note that, since Z is a birth-death process, basic comparison ar-
guments imply that nZ (k) = nZ (1) > 0 for all k = 1. Therefore, the function v is
uniformly lower bounded, so that it satisfies the assumptions of Theorem[5.1up
to a multiplicative constant.

Hence, Theorem 5.1]allows us to conclude the proof. The fact that all Dirac
masses 0 (,y) with n < ng belong to the domain of attraction follows from Corol-

lary[2.3] O

7 Application to processes in continuous state space and
discrete time

Discrete time Markov models in continuous state space and with absorption
naturally arise in many applications, typically for perturbed dynamical systems,
cf. e.g. [34) 54} 49], or piecewise deterministic Markov processes when one
looks at the process at jump times only (see e.g. [3]). We provide in Section[7.1]a
general criterion applying to such processes with arbitrarily large, state-dependent
killing probability, and we give applications to Euler schemes for diffusions ab-
sorbed at the boundary of a domain. In Section[7.2} we consider perturbed dy-
namical systems in finite dimension. We first consider the case of unbounded
domains with unbounded perturbation. Subsection|7.2.1{assumes that the per-
turbation has bounded density with respect to Lebesgue’s measure and Subsec-
tion provides examples with perturbations with unbounded density. Fi-
nally, the case of bounded perturbations is studied in Subsection[7.2.3]

The particular case of dynamical systems perturbed by a Gaussian noise is
considered in Example[9] of Subsection[7.2.1] In this setting, it is shown that the
perturbed dynamical system X, = f(X},) + ¢, with (§;)iez, i.i.d. Gaussian, ab-
sorbed when it leaves any given measurable set D of R? with positive Lebesgue
measure, admits a quasi-stationary distribution as soon as |x| — | f(x)] — +oo
when | x| — +o0.
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7.1 Two sided estimates with additional killing rate

Let (Y, n € Z;) be a Markov process evolving on a measurable state space EU{0}
with transition kernel (Q(y, -) yepug) such that 0 ¢ E is absorbing (i.e. Q(d, {0}) = 1)
satisfying a two-sided estimates (see for instance [6, 30, [12]), which means that
there exist a probability measure { on E, a positive function g : E — (0, +o0) and
a constant C > 1 such that, for all y € E and all measurable sets Ac E,

gNCA) =Q(, A =Cg(A). (7.1)

It is well known (see [6) [12]) that this implies that Y admits a unique quasi-
stationary distribution vg sp for which the convergence in is geometric and
uniform with respect to the initial distribution ¢ on E. Our aim is to generalize
this result to processes obtained from Y with additional killing (or penalization,
see Remark[15). Note that Condition is known to be satisfied for a lot of
models (see e.g. [5] or the references in [12]).

More precisely, let p: E x E — (0,1] be measurable and consider the Markov
process X evolving in E U {0} with transition kernel P(x,-)xeguig defined by

px, Qx,dy)+ (1 —p(x,y))05(dy) ifxeE
05(dy) ifx=0.

Observe that Condition may not be satisfied by the kernel P in cases where
infy yeg p(x,y) =0.

P(x,dy) ={

Theorem 7.1. Assume that there exists an increasing sequence (L) =1 of mea-
surable subsets of E such that E = UZZ‘iLk and such that infy yer, p(x,y) >0 for
all k = 1. Then X satisfies Assumption (E) with ¢, = 1 and ¢, positive on E. In
particular, X admits a unique quasi-stationary distribution whose domain of at-
traction contains all probability measures on E.

Remark 15. Note that, for any function f: E — Ry, all x€ Eand all n = 1, one
has

Ex (£ () Lncry)) = Ex (P06, YD) -+ P(Viot, V) FV) Ly ),

where Tg is the absorption time for Y. This kind of penalized Markov processes
is also of interest if p is not bounded by 1 (see [31}, 132]). We emphasize that
our result implies that, if p : E x E — R, is a bounded function (not necessar-
ily bounded by 1) such that infy yez, p(x, y) > 0 for all k = 1, then there exists a
probability measure vy, on E, a constant a € (0,1) and a positive measurable
function ¢, on E such that, for all bounded measurable f: E — R,

B (P06, Y1) p V1, V) F(G) ) ;
- —Viim(f)| = ¢

[fllooy VREZ,.
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To see this, one simply has to consider the penalization p’ =
enters the settings of this section and is such that

1 .
W p, which

B (P06 Y1) p 1, V) FOGD L) B (/05 Y2) o p! (Y, Vo) £V )

B (P06, YD) -+ P(Vot, V) Ly B (P06, Y1) ' Vo1, Yo Ly

Example 8. Typical examples of discrete-time Markov processes in continuous
state space are given by Euler schemes for stochastic differential equations. We
consider the SDE dY; = b(Y,)dt + o(Y;)dB; in R, with b and ¢ bounded mea-
surable on R% and ¢ uniformly elliptic on R¥. Its standard Euler scheme with
time-step 6 is the Markov chain (X}, n = 0) defined as

Xps1 = b(Xp)8 + V0 (X)) Gy, (7.2)

where (G, n = 0) is ani.i.d. sequence of A4 (0,1d) Gaussian variables in R4, In the
case of a SDE absorbed at its first exit time of a bounded open connected domain
D c R4, the “naive” Euler scheme, constructed as above with the additional rule
that X, is immediately sent to 0 when X;, ¢ D, is not good in terms of weak
error. Indeed, when X, is close to the boundary of D and X},;+; remains in D, the
path of the SDE Y in the time interval [nd, (n + 1)8] might have exited D. In this
case, it is more efficient to construct the Brownian path that links 0 to G, on the
time interval [nd, (n + 1)3] as a Brownian bridge (G, t € [n6, (n+1)8]) such that
Gns = 0 and G(,+1)5 = G, so that one can approximate the path of the diffusion
on this time interval as

X, = b(X,)(t - nd) +Véa(X,)G,, Vte[nd, (n+1)8],

and approximate the absorption event as {3t € [n6, (n+1)0] : X; ¢ D}. The cor-
responding Euler scheme is thus obtained as the Markov chain X as defined
in with the penalization p(X,, X;+1) =Pt € [nd, (n+ 1)4] : X, ¢ D). Fora
detailed presentation and study of this kind of modified Euler schemes, we refer
the reader to [65, 40, 141} [7].

Using Theorem we obtain the existence and convergence to a unique
quasi-stationary distribution for this Euler schemes. Indeed, is satisfied for
the naive Euler scheme with { equal to the restriction of Lebesgue’s measure to
D and a constant function g, thanks to the boundedness of the domain D, the
uniform ellipticity of o and the boundedness of b and ¢. In addition, it follows
from the connectedness of the domain D, the uniform ellipticity of o and the
boundedness of b and o that sup,, ;¢ p(x, y) > 0 for any compact subset K of D.
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Proof of Theorem|[7.1] Forall k = 1, we define the set Kj = {x € Li s.t. g(x) = 1/k}.
Let ko be large enough so that {(Kj,) > 0. Then one has, for all k = ko, all x € K,
and all measurable set A c E,

C(Kk()) infu,UELk p(u’ U)
k

Py(X; € AN Kgy) = g(x) f p(x, 1) {(dy) = V(AN Kg,),
AﬂKkO

(7.3)

where v is the probability measure on Kj, defined by v(A) = {(A)/{(Kj,). We fix

{(Ky)infy,per,  pu,v) .
k = ko large enough so that C/k < T 0 , where the constant C is the

one of (7.I), and set K = K.
Let us now check that Condition (E) is satisfied with the above cfhoices of K
C(Kio)infy, per, p(u,v)
and v (extended by 0 to Ky \ Kx,), and with 81 = C/k and 0, = fo koLkO .
Setting ¢p; = 1, one has

Pip1(x) =1, VxeK,
Pip1(x)=Cg(x) =0, =01¢1(x), Vxe E\K,

so that the first and third lines of Condition (E2) are satisfied. Using Markov’s

property, one deduces from that 65" infyex Py (X, € Ki,) — +oo when n —

+oo. Hence Lemma|3.2Jimplies that the second and fourth lines of Condition (E2)

are satisfied. It also implies that Condition (E4) is satisfied. Note also that the

function ¢, provided by Lemma|3.2]is positive on E since g is positive in ({7.I).
Moreover, for all x € E, all y € K and all measurable set A E,

Cg)kg(y)

PL(X1 € ANK) < CgO{(ANK) < =
infgxxp  Jank

p(¥,2){(dz)

_ Cliglok

= Py(X; € ANK).
infxxx p

We deduce from Proposition 3.1 with rg = my =1 that Conditions (E1) and (E3)
are satisfied, which concludes the proof of Theorem[7.1] O

7.2 Perturbed dynamical systems
We consider the following perturbed dynamical system

Xn+1 = f(Xn) + én;

where f : R4 — R? is a measurable function and (£,,) e is an i.i.d. sequence
in R?. We assume that the process evolves in a measurable set D of R? with
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positive Lebesgue measure, meaning that it is immediately sent to d ¢ R? as soon
as X, € D. We shall consider two situations below, where the random variables
¢, are unbounded or almost surely bounded. In the unbounded case, different
methods must be used depending on whether ¢, has a bounded density with
respect to Lebesgue’s measure or not.

The same arguments would also work if X,,4+1 = f(X,) + ¢, (X,), where the
sequence of random maps (x — &, (x)) =0 are i.i.d. We leave the appropriate
extensions of our assumptions and arguments to the reader.

7.2.1 The case of unbounded perturbation with bounded density

We consider here the case where the random variables ¢,, have support R¥.
Note that, if D is bounded, the following result is already a consequence of
the classical criterion based on (7.1)).

Proposition 7.2. Assume that f is locally bounded, that the law of ¢, has a boun-
ded density g(x) with respect to Lebesgue’s measure such that

inf g(x)>0, VR>0,
|x|<R

and that there exists a locally bounded function ¢ : R? — [1,+00) such that x —

E(p(x+¢1)) is locally bounded on R4 and such that
E
limsup LU o)) o (7.4)
| x|—+00, xED @(x)

Then Condition (E) is satisfied with ¢1 = ¢ and ¢, positive on D.
Before proving this result, let us illustrate this proposition with three exam-
ples.

Example 9. 1f there exists @ > 0 such that Ee®!l < +00 and if |x| - |f(x)]| —
+0o when |x| — 400, then Proposition applies. Indeed, choosing ¢(x) =
exp(a|x|), we have

Eo(f () +61D _ atrwi-ta g pakl
@(x) B | x|—+00

0.

For instance, this covers the case of Gaussian perturbations, as stated in Theo-
rem[L.2lin the introduction.

Example 10. If there exists p > 0 such that [E(E’f) < +ooandif | f(x)| = o(|x]) when
|x| — +o0, then Proposition 7.2 applies. Indeed, choosing ¢(x) = (1 +|x])”, we
have

P
Eplf+ &b _ A+ITCD G (e oy
o(x) (1+1xDP = oo
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Example 11. If Elog(1 +|&1]) < oo and | f(x)| < C|x|¢™¥ for some C > 0 and some
£(x) — 0 when |x| — +o0o, then Propositionapplies. Indeed, choosing ¢(x) =
log(e +|x|), we have

Ep(f(x)+<&1D) - log(e+ C) +&(x)log(e + |x]) N Elog(1+1¢11)
@(x) - log(1 +|x|) log(e+|x])

The inequality | f (x)| < C|x|™ is true for example if | f(x)| = Cexp /log(1 + | x])
for some constant C.

Proof of Proposition|[7.2. We first prove Conditions (E2) and (E4) and conclude
the proof with Proposition|3.1

Step 1. Conditions (E2) and (E4) are satisfied.
Let K; € D be a bounded measurable set with positive Lebesgue measure.
Then, for all x € K3, denoting by A, the Lebesgue measure on R4,

Py(X1 € K1) =P(f(x) + &1 € K1) = A14(K1) inf g(u)>0.
ueki +B(0,supy, | f1)

Fix 6, € (0,1,4(K7) infu€K1+B(0,supK1 1f) (), we deduce that, for all x € K3,

0;" inf P (X, € K1) =6;" inf Po(X, €K,..., X, € KY) +00.
xeKy xekK;

n—+oo
Fix 0 < 0; < 03, and, using (7.4), consider a bounded subset K ¢ D containing K;
and such that, for all x e D\ K, Py¢p(x) <0,¢(x). Since K is bounded, one has

infP,.(X;eKy)=1,4(K inf u) >0,
Int (X1 € K1) = Aq(Kq) u€K1+B(0,supK|f\)g( )

so that

05" inf P (X € K) =05, 14(K7) g(w) inf Py (X1 € Ky)
xeK xekKy

inf

ueKy+B(0,supg | f1)
and thus 0, " infycx P, (X, € K) converges to +oo when n — +oco. Lemma
then entail that Condition (E4) is satisfied and that there exists a function ¢ :
D — [0,1] such that P2 (x) = 0292 (x) for all x € D and such that infx ¢, > 0. In
addition, forall x € D, Py (X; € K) = A4(K)infycx— r(x) g(1) >0, so that Py 1 x (x) >
0. Hence, the function ¢, of Lemma also satisfies that ¢, (x) >0 forall x € E.

Setting ¢; = ¢, we deduce that Conditions (E2) and (E4) are satisfied for the
set K.

Step 2. Comparison of transition probabilities.
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Let us prove that Proposition [3.1]applies with ng = mg = 1. For all x € D, we
have
Px(X1€-nK)<sup g(w)Ay(-nK).

ueRd

Moreover, for all y € K,

Py(X1 €)= P(f(y) +& €-nK)

> inf g A4(-nK).
ueK+B(0,supg | f)

Hence, forall xe Eand all ye K,

SUPga §

Px(Xi€-nK) =
1an+B(0,supK|f|) 4

Py (X; €.

We deduce from Step 1 and Proposition [3.1] that Condition (E) is satisfied with
the functions ¢; and ¢,, which concludes the proof. O

7.2.2 An example with unbounded perturbation with singular density

The last result made strong use of the boundedness of g. Actually, our criteria
also apply to perturbations with singular density. We consider here the following
example: assume that f(x) = Ax + B, where A is an invertible d x d matrix and
B e R4, and that there exists a > 0 such that the density g of &, satisfies for some
constant Cg

1 d
g(X)SCg(WVI) VxeR"”. (7.5)
We have the following result.

Proposition 7.3. Let||- || be a norm onR% and assume that

I Ax]l

(7.6)
xerdrioy N1

Assume also thatEe®®! < oo for some a > 0 and that

inf g(x)>0, VR>0.
|x|<R

Then Condition (E) is satisfied with ¢, = ¢ and ¢, positive on D.

The proof of Proposition [7.2| made use of Proposition [3.1]with ng = mg = 1.
The proof of Proposition[7.3|requires to apply Proposition[3.1with 1o = 2.
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Proof. The first step of the proof of Proposition [7.2]remains valid taking ¢(x) =
e*I for @ > 0 small enough and using and the equivalence of the norms
|-]and || || (the computation is similar to the one of Example[9). So we only have
to prove that is satisfy and apply Proposition[3.1]

We define ny = [d/a] and we assume without loss of generality (reducing
slightly a if needed) that nga > d. We observe that

Xpy = A" x+ A" N B+E) +-+ B+Ep,.

Using (7.5) and the fact that sup,., Ad Cﬁ_” where the constant Cj. is such

x| —

that C |- < |- < Cj -1, the density g» of A¢) +¢» satisfies

1
= -ygAyd
&2 (x) dotA] [Rdg(x VgA ydy

Cz 1 1

< § dy+C (1+ )
|detA| Jyr1a-1y1<1)nB(x, 1) |Xx — y|4-a |A-1y|d-a y+te |detA|
CzCy 1

<8 dy+Cq |1+ )
IdetAl Jro,c2)) |x — y|d-a |y|d-a yrte |detA|

C2C||.|| 1 1 1 1

g

= du+C (1 + —),
|detA| |x|d-2a fB(o,c2 nxn | x u|d‘“ |u|d-a § |detA|

I
[x]

(7.7)

where we made the change of variable u = y/|x|.

If2a > d (i.e. if ng = 2), we can bound the integral in the right-hand side as
follows:

1 1 df 1

2 dusC+2 2 ————du

fB(oCl'") |i _ u|d‘“ |lujd-a B(o,%)\mo,m |u2d-2a
|x]

N C 1
2a-d |x2a-d’

where the constant C may change from line to line. Therefore, g» is bounded if
2a>d.

Otherwise, if 2a < d, the integral in the right-hand side of can be boun-
ded by the same integral over R? and thus it is uniformly bounded with respect
to x, so g is also bounded. In this case, we can proceed similarly to bound
the density g3 of A& + A + &3, and prove by induction that the density g, of
AMTLE 4.+ &, is bounded.
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We deduce that

Px(Xyn, €-NK) < sup gy, () 14(-NK).

ueRd

The end of the proof is the same as for Proposition using Proposition
with myg = nyp. O

7.2.3 Two examples with bounded perturbation

The case where ¢; is a bounded random variable is more involved. To avoid
complications, we will focus on the case where ¢, is a uniform random variable
on the unit ball B(0, 1) of R?. Extensions to different distributions are possible.

We start with the simpler case of bounded domain D and contracting dy-
namical system f.

Proposition 7.4. Assume that D is a bounded, connected open set of R?, that f is
continuous and satisfies | f (x)— x| < 1 forall x € D. Then Condition (E) is satisfied.

Proof. Again, the proof makes use of the criterion of Proposition[3.1}

Step 1. Construction and properties of the sets K¢, € > 0.
For all € > 0, let Ké be the connected component of {x € D : d(x,0D) = 2¢}
with larger Lebesgue measure and let

K:.:= | B(x,9),

xeK;

which is a also a connected compact subset of D with distance to D¢ larger than
€. Forall 6 > 0 and all x,y € K,, we call a sequence (xg, x1,...,X5) € KE”Jrl for
some n € N ad-path linking x to y in K; if xo = x, x, = y and | xj — x;_1| < 0 for all
1 < k < n. By construction, the set K, satisfies that, forall 6 >0 and all x, y € K,
there exists a §-path linking x to y in K. In addition, since K; is compact, there
exists an integer n, 5 depending only on € and 6 such that, for all x, y € K¢, there
exists a 0-path in K; linking x to y with length less than n, 5. For all x € K, and
all ke{l,...,n. 5} let us define

Ké’g(x)z {y(—:le:Ele,...,xk_l EKe, |xp—xp_1l<dforalll<l=<k

with xp = x and x; = y}.

Note that in general, Kélg is not included in K, but it is included in D if § < €. It

follows from above that Ké'gﬁ) (x) 2 K, for all x € K,.
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Let us also prove that U.-oK; = D. Let (x,),>1 be a dense sequence in D
and for all n = 1, let r,, = d(x,,,0D)/2. Since D = Uy,>1B(x,,1,), there exists
ny = 1 such that Ui<j<p,B(x,, ) has Lebesgue measure larger than A,4(D)/2.
Since D is connected, there exists a continuous path in D linking x; to x; for
all 1 =i,j < ng. Since the distance between this path and 0D is positive (be-
cause D is open and the path is compact), there exists € > 0 small enough such
that all the points xy,..., x,, belong to the same connected component of {x €
D:d(x,0D) = 2e}. We can assume without loss of generality that € < r,,/2 for all
1 < n < ny, so that this connected component actually contains U; <<z, B(Xpn, 1)
and hence has the largest Lebesgue measure among all the connected compo-
nents of {x € D: d(x,0D) = 2¢}. In particular, K, contains B(x1, 1) for all € small
enough. Now, given any x € D, there exists a path linking x to x; in D. Since the
distance between this path and dD is positive, x belongs to K, for all € > 0 small
enough. Hence, we have proved that U.-¢K; = D and that the family (K¢)>¢ is
non-increasing with respect to € > 0 when ¢ is small enough.

Step 2. Proof of Condition (3.1) of Proposition|3.1
For all € > 0, since f is continuous,

Oc:= (l—suplf(x)—xl) ANEe>O0.
xeK;
Hence, for all x € K,
Px(X1 €-NBx,0¢) = cgAa(-NB(x,6¢)), (7.8)

for a positive constant c¢; only depending on the dimension of the space. In
other words, for all x € K,

P, (Xi€e)=zcP(x+U€)

where U is a uniform random variable on B(0,d.). Hence, defining the Markov
chain Y, = Yy + U; +... + U, where U; are i.i.d. uniform random variable on
B(0,6,), we deduce that

Py(Xx €)= ckPy(V1,..., Vi €Kpand Y€1), VxeK., VkeN. (7.9)

In view of Step 1, the following Lemma([7.5[about the process Y implies that there
exists a constant ¢’ > 0 such that

Pr(Xn.s,5 €2 Aa(-NKe), VxeKe. (7.10)

Since the law of X; is dominated by the Lebesgue measure independently of
Xo, we have proved that, for all € > 0, is satisfied for K = K, ng = 1 and
mo = Ng 5, 3. This concludes Step 2 of the proof.
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Lemma 7.5. Foralll < k < ngs_s3, there exists a constant C;C > 0 such that, for all
x€e K,
Po(Y1,..., Yeor € Ke and Yie ) = cda (-0 K5 (), (7.11)

where A, is Lebesgue’s measure on R%,

Step 3. Proof of (E2) and (E4).
Fix 9 > 0 such that K, is non-empty and (K¢)¢e(0,¢,] is Non-increasing. One
deduces from the definition of K, that inf,¢ Ky Aa(Ke, N B(x,6¢,)) > 0. Fixing

X€

92 <4AN {Cd 1r11(f /’Ld(KgO ﬂB(X,(SgO))},
€0

one deduces from (7.8) that

lim 0;" inf P,(X, € Ke,) = +oo. (7.12)

n—-+oo xngo

Since the law of X; is dominated by the Lebesgue measure and D = Ug<e<¢, K,
there exists €] € (0, 9] small enough such that

supPx(X; € D\ K¢,) < 0,/4.
xeD

Hence, the function

1 if x € K,

:XeD—
i {4/02 if xe D\K,,

satisfies P11 (x) <2 < (02/2)¢1(x) for all x € D\ K;,. Hence the first and third
lines of Condition (E2) are satisfied with 0; =0,/2 and K = K¢, .

One also deduces from (7.10), (7.12), the fact that K, < K, and Markov’s
property that

nl—i-IPooQZ_nxiEIgl P (Xn € Ke,) = +00.

Hence, we deduce from Lemma that (E4) is satisfied with K = K¢, and that
there exists a function ¢, satisfying the conditions of (E2) with 8, defined above
and K = K, .

Therefore, the result follows from Step 2 and Proposition [3.1|with K = K¢,
ng=1and my = Mgy 5., 13- O
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Proof of Lemmal7.5. We prove this result by induction over k. Since Y, = x+ U;
is uniform in B(x,d;), the case k = 1 is clear since Kggelg = B(x,0./3) < B(x,0).

So assume that is satisfied for some 1 < k < n, 5_/3 — 1 and let us prove
it for k + 1. Let A c R? be measurable. Using for k and the fact that Yy, is

uniform in B(Y%, ) conditionally on Y}, we have

Py(Y1,..., Vi € Ke, Yis; € A)

>p, (Yl,..., Vi1 € Ke, Yee KX (0NKe, Vi € AﬂB(Yk,ég))

dyf dz
(X)NK; ANB(y,0¢)

Cl
_ k (k)
= Tamos o K A nKen 00} dz

/

k Aa{k® )N KenBz,60)} dz,

> K
Aa(B(0,6,)) AnKe(,]:S?/)s(x) £06:/3

/
k

2 -
Aa(B(0,6,)) Jx®

£,0¢/3

Cc

c

where the third equality follows from Fubini’s theorem.
Now, for all z € Kg”f;:}; (x), there exists a path xy = x, x1,..., Xx € K, such that
|xp — xp-1] < 6¢/3 for all 1 < ¢ < k and |xi — z| < §./3. By definition of K,
there exists y € K, such that x;_; € B(y,¢) < K. Let y' be the unique point
such that |y’ — xx_1| = §./6 of the half-line with initial point x;_; and contain-
ing y. Then B(y/,6./6) c K. Since |x; — z| < §¢/3 and |x;_1 — xi| < 6¢/3, we
also have B(y',6./6) c B(z,0.). In addition, for all y” € B(y,6,/6), the path
Xp = X,X1,...,Xk—1, )" lies in K, and has distance between consecutive point
smaller than §./3. Therefore, B(y',6./6) < K () (x). We conclude that, for all

. £,0:/3
(k+1)
ZE K8,65/3(x)’
(k)
2a{KE (DN KN B(2,60)} = 1a(B(0,6./6)).
Hence

PL(Vi,..n, Vi € Ky, Vierr € 4) = ¢y Ag (AN K ()

o, /
for a positive constant ¢ O

1
The general case of dynamical systems with bounded perturbations raises
several additional difficulties. We illustrate two of them with the next example

in dimension 1. We consider the Markov process in D = (0, +00) defined as

Xo€(0,4+00), Xpi1=aX,— +&,, Vn=0

1+ X,
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where a € (0,1) and &, are i.i.d. with uniform distribution on [-1, 1] and the pro-
cess is immediately sent to the cemetery point d when it leaves D. The first dif-
ficulty comes from the fact that

1
[P’x(X1>0):1—(——ax)V0

0,
1+x

x—0+

which means that the probability of immediate absorption converges to 1 when
x approaches the boundary of D. The second difficulty comes from the fact that
| f(x) — x| is unbounded on D (in contrast with Proposition[7.4). This example is
covered by the following general result.

Proposition 7.6. Assume that X1 = f(X;) + &, with D = (0,+00), ¢, i.i.d. uni-
formon [-1,1], f continuous and there exists x* € D such that

0,x)={xeD:|f(x)—xI<1} and [x",+o0)={xeD:f(x)+1<x}.
Then Condition (E) is satisfied.

Proof. Fix Ky < (0,x*) a closed interval with non-empty interior. As in the proof
of Proposition [7.4} using in particular (7.9) and (7.11), there exists ng = 1 and
¢o > 0 such that, for all x € Ky,

Py (Xy, € ) = coA1(- N Kp).

Hence there exists a constant 65 € (0, 1) such that

0;" xiéllg) P, (X, € Ko) +00. (7.13)

n—-+oo

Fix now 67 < 8, and K < (0, x*) a closed interval such that K, c K and
01
2140, x")\K} = —,
1{00,x")\ K} v;

where
2(1 + e(x*+2)/01)

01

As above, there exists 77 =1 and c¢; > 0 such that, for all x€ K,

M :=

Po(Xp, €)= 1A (-NK).

In particular, infyex P (X,, € Ko) > 0, so that, using Markov property and (7.13),
we deduce that

0" inf P, (X, € K) +00.
xeK

n—-+oo
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Using Lemma 3.2 we deduce that there exists a function ¢ satisfying the con-
ditions of (E2) and that (E4) is satisfied. For all x € D, let

1 ifxe K,
p1(x)=< M ifxe (0, x*)\K,
01 if x > x*.

For x = x*, using the fact that the density of X; on D with respect to Lebesgue
measure is bounded by %]1 p for all value of X, we have

Pip1(0) SEx(e™/9 1 x5 0) +Po(X1 € K) + MPy(X; € (0,x*)\ K)

M
<F, (X0 + M {(0,x")\ K}

S(pl(x)e(f(x)—x)/el[Exefl/el +%
< (x)e_ei1M+@ (x)<6 (x)
=¢1 201 > $1(x) =0101(x).

For x € (0,x*)\ K, since f(x) +é1 <x+2<x"+2,
Pip1(x) = Py(X1 € K) + e 20 (X 2 x*) + MP (X3 € (0,x) \ K)

* M
<1+ +2000y - M{0,x)\K}

0 0
< M(—1 + —1) <011 (x).

Since P (x) is clearly bounded for x < x*, we have proved (E2).

To conclude, it remains to observe that can be deduced for ny =1 and
my large enough exactly as in the proof of Proposition 7.4} Hence the result fol-
lows from Proposition|3.1 O

8 Irreducible processes in discrete state space and discrete
time

The theory of R-positive matrices is a powerful tool to study absorbed Markov
processes in discrete time and space [35]. The goal of Section|3.1|is to show that
our criteria allow to recover the results on convergence to quasi-stationarity of
this theory. We then study in Section [8.2] a class of discrete Markov chains in
discrete time to which criteria based on R-positive matrices do not apply easily.
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8.1 R-positive matrices

We consider a Markov chain (X, n € Z,) in a countable state space E U {0}with
0 ¢ E an absorbing point and with irreducible transition probabilities in E, i.e.
such that for all x, y € E, there exists n = n(x,y) = 1 such that P, (X, = ) >0. In
this case, the most general criterion for existence and convergence to a quasi-
stationary distribution is provided in [35]. In this paper, the authors obtain a
convergence result similar to the one of Theorem [2.1]restricted to Dirac initial
distributions, and the pointwise convergence to 7 as in Theorem 2.5} using the
theory of R-positive matrices. In this section, we show how our criterion allows
to recover these results, providing in addition the several refinements of Sec-
tion [2| (including the characterization of a non-trivial subset of the domain of
attraction, the convergence of for unbounded functions f and a stronger
convergence to 7).

We denote by P the transition matrix of the chain (X;,n € Z,) and we as-
sume that the absorption time 754 is almost surely finite. Without loss of gener-
ality, we will assume that the process is aperiodic, meaning that P, (X, =y) >0
for all x, y € E provided n is large enough; the extension to general periodic pro-
cesses is routine, as observed in [35].

Proposition 8.1. The assumptions of [35, Theorem 1] imply Assumption (E).

Proof. Since E is finite or countable and because of the irreducibility assump-
tion, it is known [84] that the limit

1 _
== im Py(X, =" (8.1)

exists with 1 < R < oo, and is independent of x, y € E. Using [35, Lemma 1], the
assumptions of [35, Theorem 1] can be stated as follows: there exist a non-empty
set K c E and xj € K such that

(a) there exist €y > 0 and a constant C; such that, for all x€ K and all n =0,
Py(n<ogA Ta) < Cl(R +£0)_n,
where ok is the first return time in K

og:=infiln>=1,X, € K}.

(b) there exists a constant C, such that, forall xe K and n =0,

Py(n<715) =GPy (n<71p);
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(c) there exist ng = 0 and a constant C3 > 0 such that, for all x € K,
[px(:r{xo} S I’l()) 2 C3,

where we recall that T}, :=inf{ne€ Z, : X, € L} forall Lc E.

Let us first prove (E1). By aperiodicity, there exists m; = 1 such that, for all
n = my, Py, (X, = xp) > 0. Combining this with (c), the Markov Property entails
that, for all x € K,

Px(Xng+m, = X0) = C3 min P, (Xk = x0)-
m15k5n0+m1

This is (E1) with v =, and ny = ng + m;.
We now prove (E2) and (E4). Condition (a) implies that

gO Tk ATH
]11<10EX1((R+5] )

For all x € E\ K, the irreducibility assumption implies that there exist y € K and
n=n(x,y) = 1such that P, (X, = x and n < og) > 0. By Markov’s property,

&o OkAN\Tjh
") < oo

=supk, [(R+?

(R+ Ez—o)sup[Ey Sup

yeK

EO)UK/\Ta

5 (r2 2y

>P, (X, = xand n < o), [(R+?

Since ok = Tx almost surely under P for x € E\ K, Lemmaprovides a func-
tion ¢, satisfying the conditions of (E2), with 6; := (R + %—0)‘1. According to [35}
(1.16)], which holds true under their assumption by [35, Theorem 1], and setting
02 =(R+%)™", one has

nEIlleEano (X, = xg) = +o0.
Using Markov’s property, Condition (c) immediately entails that

lim 6," inf Py (X, € K) = +oo.
n—+oo xeK

Using Lemma|3.2} we deduce that there exists a function ¢, : E — [0, 1] satisfying
the conditions of (E2) and that (E4) holds true. This concludes the proof of (E2)
and (E4).

To conclude, Conditions (b) and (E1) imply, for all n = 0,

. . C1
infP,(n<ty)=infP,(n+ 1 <71y = 1Py, (n<13) = —supP,(n<1y).
oK y( ) yek y( 1 a) 1P, ( a) C, y(—:[lg y( a)

This proves (E3) and concludes the proof of Proposition|(8.1 O
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Remark 16. One can actually prove that, in the particular case of a discrete state
space E and irreducible transition probability on E, Assumption (E) is equiva-
lent to the Conditions (a), (b) and (c) of [35]. Besides the additional properties
provided in Section 2} one of our main contribution in this particular setting is
to provide a more tractable criterion. Indeed, the use of Lyapunov type func-
tions has the advantage to be quite flexible. This is illustrated in the next sub-
section, with an application to population processes, extending to the multi-
dimensional case some models studied in [44]. The direct application of [35]
to this model is more difficult (they are even qualified as “impractical for such
models of biological population extinction” in [44), p. 262]) and do not extend as
easily by domination arguments (as, for example, in Theorem[8.2]below).

8.2 Application to the extinction of biological populations dominated
by Galton-Watson processes

In this section, we show how our criteria can be applied to general population
processes dominated by population-dependent Galton-Watson processes. In
particular, we refine existing results for the classical multi-type Galton-Watson
process.

More precisely, we consider an aperiodic and irreducible Markov population
process (Z;) nen ON Zd E u {0} absorbed at 0 = 0 such that, for all n =0,

[ Znl
(Zn)
1 Znsall < Zl S, (8.2)

1
where | - || is a norm on R? and |z| = Z1+...+zgforall ze Zd and, forall n =0,
the nonnegative random variables (6 (Z”) 1 <i<|Z,|) are assumed independent
(but not necessarily identically dlstrlbuted) given Z,,.

We assume that

2|
(2
[E(fo,,
i=

for some m < 1 and ny € N. This means that the population size has a tendency
to decrease (in mean) when it is too large. This also implies that 75 < co a.s.
In the following theorem, R > 0 is the limiting value defined in (8.I).

<mllzl, Vzez%suchthat|z|= ng, (8.3)

Theorem 8.2. Assume that (Z,,n € Z.) is aperiodic irreducible, that it satisfies

the assumptions (8.2) and (8.3) and that, for some qo > 1o y7,m g(l / V1L

sup  E[(€7)%] <oo,

n=0, zeZ4, 1<i<|z|
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Then Condition (E) holds true with ¢, (x) = |x|9, forall q € (lolg(szm) v1,qol.

Remark 17. This result easily applies if sup,,., zezd, 1=i=z] EI(S; (2) 2)9] < oo for all
g > 0. In other cases, one needs a upper bound for R> 0 in order to check the
validity of the assumptions of Theorem For instance, one may use the fact
that R < 1/sup,.,4P.(Z; = z). One may also use Lyapunov techniques, in the
same spirit as in Sectionfor diffusion processes.

Remark 18. A particular case of application of the above theorem is when Z is
obtained from a Galton-Watson multi-type process (see below for a more pre-
cise definition) by adding a population-dependent death rate. For example, one
can assume that additional death events may affect a fraction of the population,
modelling global death events. In this case, compared to the Galton-Watson
case, the independence between the progeny of individuals breaks down. An-
other situation covered by the above result is the case where the domain of ab-
sorption of Z is a larger set than 0, for example the process may be absorbed
when it reaches one edge of Z¢ (i.e. when one type disappears). Another typical
application of Theorem 8.2]is the case of population-dependent Galton-Watson
processes, i.e. of processes such that, given Z,;, Z,,,, is the sum of | Z,,| indepen-
dent random variables whose law may depend on Z,,. In this situation, Theo-
rem8.2)and its consequences stated in Section [2]generalize the results of [44] to
the multi-type situation and provides finer results on the domain of attraction
of the minimal quasi-stationary distribution. The reducible cases considered
in [44] can also be recovered using the criterion of Theorem in Section
Of course, the above cases may be combined.

Let us now consider the case of multi-type Galton-Watson processes. A Mar-
kov process (Z,,n € Z,) evolving in Zd E u {0} absorbed at 0 = 0 is called a
Galton-Watson process with d types if, foralln = 0and all i € {1,...,d},

Zh = Z ZC("’), 8.4)

=1/¢=1

(n,0)
k1o
dent and such that, for all k € {1,...,d}, (55:1()’ C(” ())n ¢ is an i.i.d. family. We
define the matrix M = (M ;)1<k i<q of mean offsprlng as

where the random variables ({ e kn g)) n¢k in Z, are assumed indepen-

Mk,_[E((("”, Vk,iell,...,d},

and assume that M} ; < +oo and that there exists n = 1 such that [M"] ; > 0 for
allk,ie{l,...,d}.
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Using the classical formalism of [46], we consider a positive right eigenvec-
tor v of the matrix M of mean offspring and we denote by p(M) its spectral
radius. The sub-critical case corresponds to p(M) < 1. It is well-known [51]
(see also [47, [2]) that this implies the existence of a quasi-stationary distribu-
tion whose domain of attraction contains all Dirac measures (a so-called Yaglom
limit or minimal quasi-stationary distribution). The authors also prove that
vosp(l-]) <ooifand only if E[| Z; [log(1Z1]) | Zo = (1,...,1)] < co. While the follow-
ing result makes the stronger assumption that E[|.Z;|% | Zy = (1,...,1)] < oo for
some ¢ > 1, we obtain the finer results of Section 2} including a stronger form
of convergence (in total variation norm with exponential speed), a non-trivial
subset of the domain of attraction of the minimal quasi-stationary distribution
and stronger moment properties for this quasi-stationary distribution.

Corollary 8.3. If(Z,,n =0) is ad-type irreducible, aperiodic sub-critical Galton-
Watson process, and if, for some qo > 1,

EllZ11% | Zy = (1,...,1)] < oo,

then Condition (E) holds true with ¢, (z) = |z|9 for any q € (1, qol. In particular,
the domain of attraction of vosp contains all the probability measures such that
u(l-19) < oo for some g > 1.

This corollary easily derives from Theorem Indeed, setting || z|| = (v, z)
and & EZn") = 27:1 vi¢ E:f}-[) (assuming that i is the ¢ — th individual of type k in the
population), one obtains

YA
1 Znsall =Y &7
i=1
and
[Znl (Z) d zr d o)
E| Y& Za=2|= 3 3 Y vE(cs”) =p(llzl,
i=1 k=1¢=1j=1

forall z € Zf. Since, in the case of multi-type Galton-Watson process, one has
R =1/p(M) (see for instance Theorems 2 and 3 of[51]), Theoremapplies with
m=p(M).

To prove Theorem 8.2} we use the following lemma.

Lemma 8.4. Forall g€ (1 Olg?ffm) v, qo] , there exists a constant Cq such that, for

allzer,

E < CqlzI™V 12,

|2l 9
£ e

i=1
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Proof. 1f q € (1,2], this is exactly Lemma 1 of [21]. If g = 2, Burkholder’s inequal-
ity [8] implies that there exists a constant ¢, such that

|zl ) ql2
[$ (e -senf) |

i=1

i=1

|z| q
e| (S e-re) [ e

|zl

r 1 ) ql2
-cyate [ S e -eenf) |

|zl i=1
g | 1 &0 ENK
< cqlzl?E | — ) |¢ ~E¢ )
L |z| & 17 ,
gize | 1 &9 (2)\q
Squzl E _Z in +IE(€I' n)
=0 ,
<2¢,l2|1"? sup E(E),

n=0, zeZ4, 1<i<|z|

where we used Jensen’s inequality in the third line, that the r.v. ¢ 521)1 are nonneg-
ative in the fourth line and Holder’s inequality in the last inequality. O

Proof of Theorem[8.2. We introduce an increasing sequence (K, k = 0) of finite
subsets of Zf \ {0}, where Kj is the smallest set containing {z € Zf c1<|z| <
k} such that the process Z restricted to K} is irreducible and aperiodic. The
existence of this set follows from the irreducibility assumption and the fact that
74 is countable. We shall choose K = Kj. for an appropriate value of k = 0.

Fix g € (mg;% v 1,q0], 01 € (m9,1/R), 0, € (01,1/R) and @1 (2) = ||z]|9. Us-
ing Minkowski’s inequality in the first inequality, Lemma|[8.4]in the third line and

the equivalence between norms on Rf,

q qg\1/q q
|zl @ 2| @ @ |z ©
Pipr(2) =E|| &5 < |E[| L85 —EE)| |+ L EE
i=1 i=1 ' i=1 ’
/ q
< [(Cqulzllvq/z)l "+m||z||]
= m7z]9 1+ Cy |z @ 71)
= m||z|7 + C}j| 2|77 11", 8.5)

q

for constants C;, and Cy only depending on g, A; and m. Since g—1+1/(qA2) <
q, there exists k; = 0 such that, for all z¢ K,

P1y1(2) = 01¢91(2). (8.6)

63



We also deduce that, for all z € Kj,

P1¢p1(2) < max m7| x||7 + Cj| x| 71197 < oo,
xEKkl

Setting K = K},, we deduce that the first and third lines of Condition (E2) are
satisfied.

By definition of R, one deduces that 6, " inf,ex P, (X, € K) = +oo and hence,
using Lemma that there exists a function ¢, : E — [0, 1] such that the sec-
ond and fourth lines of Condition (E2) are satisfied. It also implies that Condi-
tion (E4) holds true.

Since the process is irreducible and aperiodic, is clearly satisfied for
no = 1 and my large enough, so that Theorem [8.2|follows from Proposition

O

9 Proof of Theorem 2.1]

In all the proof, the constants C are all positive and finite and may change from
line to line. We first assume from Subsections[9.1]to [0.6]that for all 7 = 0 and all
x € E,Py(n <715) >0. The general case will be handle in Subsection[9.7}

9.1 Main steps of the proof

The proof is based on a careful study of the semigroup of the process condi-
tioned to not be absorbed before time T. In this section, we give the main ideas
and steps of the proof and leave the details for the following subsections, where
preliminary results and the following Propositions and Lemma [9.4
are proved.

For any T € Z,, we consider the law of the process X conditioned to not
be absorbed before time T. We introduce the linear operators (S’Tﬂ’n)()SmgngT
defined by

Py-m (fPTfnﬂE) (x)
Pr_mlEg(x) '

It is well-known that (S,Tn,n)()Sms n<r forms a time-inhomogeneous semigroup

(i.e. SpyuShp = Sy, forall m < n <1< T) and that the process (X,,0<n<T)

SEnf) =E(f(Xp) | Xpp=x, T<7) =

St st
under P,” is a (time-inhomogeneous) Markov process, where we denote by P,
the law of the process (X;,0 < n < T) conditionally on T < 75 and Xj = x.
Fix 6 € (0,/0,,1). For any T = 0, we set, for x € E,

T
W) =Eg@ TN | T <15) =E2 (97T,
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where
Tx:=inf{lneZ, : X, € K}

is the first hitting time of K by the process (X, n € Z,). Be careful that Tx is not
the first hitting time of K by the full process (X;, t € I), unless I = Z..

The following proposition provides a Lyapunov-type property for the inho-
mogeneous semigroup S.

Proposition 9.1. There exists a constant C > 0 such that, for all0 < m < T and
l<k=T-m,

Sh kW T=meiy ) <O%yr_p(x)+C, VxeE. 9.1)

The next proposition provides a Dobrushin coefficient-type property for the
inhomogeneous semigroup S.

Proposition 9.2. There exists a constant ag € (0,1) such that, for all R > 0, there
exists kg = 1 such that, forall T = kg and all x, y € E such thatw(x)+y1(y) <R,
we have

The following property is a consequence of the two previous ones.

T T
6280k =8yt |, =20 - 0).

Proposition 9.3. There exist constantsny =1, C >0 and a € (0,1) such that,Vn =
landallx,y € E,

Let us now deduce Theorem [2.1|from this last proposition. We have, for all
X,y €E,

|

Hence, for any probability measure y on E, integrating the above inequality over
w(dx) leads to

5:xSyr —6,5,%"

0,ngn 0,npn

. Ca™2+Yuyn(X) +Wuyn(¥)).

8xPnny—0xPnny LEG Sy

0,ngn

TV
< Ca™ (28 Ppny Lg+Ex (07N e oo Y+ W non (1) x P L) -

0,ngn

”,upnno _ﬂpnnoﬂEéySnon

TV
< Ca" (2P, L +Ey (07 KN o) + Wign (1) Py LE) -

We make use of the following lemma.
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Lemma 9.4. Forall0 € (61/0,,1), there exists a constant C such that, for all 0 <
m < T and all probability measure  over E such that p(¢p) >0,

K1)
P, (T .
L(p2) p(I<7o)

Ey (0~ 1rer,)=C
This implies that, for all u such that u(g2) >0,

HuPnno = 8ySg e nHPrng ]lE“ TV

(1)
<Ca” (ZMPMOILE + B P 1 +1//n0n(y)anno]lE) .
w(@2)
Hence
HPnp, non n( AN, )
T 5,80 <Ca(2+ + .
H /J'Pnng 1g Y=0,non v /J((PZ) Yngny

Using the same procedure w.r.t. y, we deduce that, for any probability measures
1 and yy on E,

where we used the fact that u(¢,)/u(@2) = 1 for all probability measure y on E.
Because of Lemma[9.6|below, we deduce that, for some constant D; > 0 and
forall 0 < k < ny,

U1 Pnn, _ U2 Prn,
11 Pnn, 1g M2 Prn, 1g

<Ca” (#1(4)1) N #2(901))’
TV t1(p2)  p2(2)

/lenn0+k _ IJZPnno+k
M1Pnng+kLE  H2Pung+iklE

< Ca” (,Ulpk(l)l N ,UZPk(PI)

TV W Prp2  H2Pirp2

<Ca" (—“l(q)l) Vv D+ K1) le).
wi(p2) a2 (p2)

Therefore, up to a change in the constant C and replacing a by a!/*, we de-
duce that, for all probability measures p; and u, on E such that p; (¢2) > 0 and
U2(@2) >0 and for all n =0,

1Py _ 2Py,
:ulpn]lE ,UZPn]lE

9.2)

<ca" (,Ul((Pl) N ,U2(<P1)).
TV i (@2)  p2(p2)

. P .
Fix xp € K. We set ) = 6, and up = Hf‘I‘Jll‘lE in (9.2). Since % < oo, because of

Lemmabelow, we have % < 0co. We deduce that, for some constant C > 0,

5xopn+1 6xoPn

- <Ca",
6x0Pn+1]lE 6x0pn]1E

TV
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and hence, using the completeness of the space of probability measures for the
total variation norm, we deduce that there exists a quasi-limiting measure vgsp
(which is hence a quasi-stationary distribution) such that

In particular, it follows from Lemma below that vosp(K) > 0 and hence that
vosp(g2) > 0. Since Lemma implies that % is uniformly bounded in
n =0, we deduce that vosp(¢1 A M) is bounded uniformly in M > 0 and hence
vQsp(@1) <oco.

Using again (up to another change of the constant C), we obtain that,

6x0Pn
5x0Pn]lE

v 1-a

—VQsSD

for all probability measure p on E such that % < 00,
P
“ Hin —VQSD SCan—H((pl).
pPnlE TV 1(g2)

Moreover, we immediately deduce that there exists a unique quasi-stationary
distribution such that vosp(¢1)/vQsp(¢2) < oco.
This ends the proof of Theorem[2.1]

9.2 Preliminary results
We start by proving two basic inequalities which are direct consequences of (E2).
Lemma9.5. Forallxe E\K andalln =0,
Px(n < Tk AT3) < Ex[91(Xn) Ln<Tinr,] < 07 @1(x).
Forallxe Eandn =0,
Px(n < 75) = Ex[2(Xn) Ln<r,] = 05 ¢2(x).

Proof of Lemmal[9.5. These two properties follow easily by induction from (E2).
For example, the first one makes use of the following relation: for all n = 1 and
x€eE,

[Ex[(Pl(Xn)]ln<TK/\ra] =lyepnk P1 [[E- ((Pl(Xn—l)]ln—KTK/\ra)] (x).

This and (E2) entail the property at time n = 1 and, by induction, at any time
n=1. O

The next lemma states that the expectation of ¢;(X,) is controlled by the
expectation of ¢ (X,) uniformly in time.
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Lemma 9.6. For all@ € (0,/0,,1], there exists a finite constant Dy > 0 such that,
for all probability measure i on E such that p(p,)/ 1(@2) < oo, forall T € Z, and
allx€ E,

HPro1 _ (QTIJ((PI)
pPrez U plp2)
Proof of Lemmal9.6. It follows from (E2) that

) v Dy 93)

UPT1¢01 <O1uPT@1+ CuPrlK

and
UPT 41902 = O2uPT .
Hence
pPragr _ O1pPrr + CpPrli(x)
MPT 12 O2uPr 2
< 01 pPrg: - C ‘
0> Pty  O2infyeg @2(y)
Since 61/60;, < 6, these arithmetico-geometric inequalities entail (9.3). O

We now give an irreducibility inequality.
Lemma 9.7. For all C =1, there exists a time ns(C) € N such that

as(C) := Py (Xpy(c) € K) > 0. (9.4)

inf
pey(E) s.t. p(p1)<Cpulp,)

Proof of Lemmal9.7 It follows from (E4) that there exists a time 7, € N such that,
forall n = n,, P, (X, € K) >0, and, using (E1), that for all n = n, + n;,

inf P, (X, € K) =2 ¢;Py(Xy—p, € K) >0.
xeK

Let C = 1 and p be such that p(¢1) < Cu(g,). It follows from Lemma[9.5| that, for
aln=1,

Pu(Tk ATy >n) < Ey [01(Xn) Lrgary>n] < 07 (1) < COT p(ep2).
and
Pu(n <75) = Eulg2(Xn)] = 05 puig2).
Therefore,

Pu(Tk = n<79) = (05 — COT) uig2).
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Choosing n(C) = [2C/log(02/6:)1, we deduce that

Qn(C) Qn(C)

2 )
5 wig2) = Yol

Pu(Tk = n(C) <715) =
Therefore,

PuXnCrnyim € K) = By [ Trsn©P s Xnron,sm—k € K|y |

n(C)
> min inf Py (X; € K) 2—.
ny+ni<k<n,+n+n(C) xeK 2C
Hence we have proved Lemma[9.7|with n5(C) = n, + ny + n(C). O

The next lemma shows that conditional distributions with initial conditions
in K give to K a mass uniformly bounded from below.

Lemma 9.8. There exists a time ng € N such that

inf infP, (X7 e K| T <13)>0.

T=ng xeK

Proof of Lemmal9.8 Since ¢, /¢, is bounded over K, we deduce from Lemma(9.6|

that, setting C := D +sup ,cx 32—83, we have for all x € K and all T = n5(C),

Pr_nyc)1(x) <C

< (9.5)
Pr_pn;c0)p2(x)

Using Lemma applied to u = %, we deduce that, for all x € K and
xET-ng
T =z ns5(C),
P 1
Py(XreK|T<15) =K s b, o)1k = as(C). O
KPns(c)LE

The next lemma shows that survival probabilities are controlled by the func-
tion ¢.

Lemma 9.9. Forallfe€ (0,,1), pe(l,logf;/logh), xce Eandn=1,
P .(n<TiATy) < (lipéw) 0" 9.6)
There exists a constant C > 0 such that, for all p € [1,log0,/log0,), x € E and

n=1,

@1(x)

1/p
T ) infPy(n<Ty). 9.7)
1 —91/95) yek VT

I]J’x(n<ra)SC(
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Proof of Lemmal[9.9 We first prove (9.6). It follows from Lemma[9.5]that, for all
0>0;and xe E\K,

P1(x)
1—91/9'

E. (0~ Tx"To) < (9.8)
By Markov’s and Hélder’s inequality, and since 687 > 6, for all p € [1,log6:/10g0),
forallxe E\K,

(pl(x) )llpen.

P,(n< TK/\Ta) < [Ex(Q_TKAT‘j)Qn < (m

The inequality is trivial if x € K.
We now prove (9.7). Fix p € [1,log6;/1og8-). Using (9.6), the second inequal-
ity of Lemma[9.5|and (E3), we have for all x € E

Pn<ty) =Py(n<TxAT3) +P(Txk ANT5=n<Tp)

1/p

(x) 1

<0, % +ZPx(TK/\Tazk)SUpPy(n—k<Ta)
1 01/62 k=0 yEK

. 1/p
foex P L
- NIzeg z(l’l<T0) ( (Pl(x) ) +C3Z[|:Dx(TKAT@:k) jnl’[;l]my(n—k<ra)
ye

infzex 2(2) 1-6, /95 k=0
@ (x) 1/p n
<CinfP L inf P P.(T =165,
<C;21< Z(n<ra)(1_91/0§) +C;1€1K Z(n<ra)k§0 «(Tk ATy =Kk)0,

9.9)

where we used the fact that, for some constant C > 0, for all n = k = 0 and all
ze K,

P.(n <1y = COF infPy(n -k <7p). (9.10)
yE

This is proved using the three following equations. For all n = k = ng and all

z € K, by Lemmatal9.8|and[9.5}
[P’Z(n < Ta) = Pz(Xk €K | k< T@)Pz(k < T@) inIt;Py(n— k< Ta)
NS
k . _
= CO, ¢2(2) ;gllzlpy(n k<Ttp)

> CHé‘}i,rellf(Py(n— k<tp).

70



Also, forall n = ng = k,
P.(n<ty) = CQ;6 Ji}Iellg[P’y(n —ng<Ty)
Ng - _
> C92 J1/2111:l]3>y(n k<tp)
k -
> (CH;Z‘*)H2 ;glgﬂj’y(n —k<1y).

Finally, for all k < n < ng,

P.(n<T5) = P,(ns <75 = COL = (COL) 0% infPy(n-k<1y),
JE

and (9.10) is proved.
Now it follows from Hélder’s inequality, and the inequality 65 > 01 that,
forall xe E\K,

® (x) 1/p
Ex(@, ") < | |

e 1-6,/67
Since the inequality is trivial for x € K, plugging this inequality in ends the
proof of Lemma9.9 O
9.3 Proof of Proposition(9.1

Markov’s property implies that, forall xe E\K and T,m = 1,

SoaWr-10x) = SHI wr_(x) =0y r(x). (9.11)
Indeed,
[Ex(HI_TKATlT<T )
0 = 9
vrx) P(T <75)
Ex|[licr,Ex, @ N0 | T -1 <15)Px (T-1<7
_ x[D1<r,Ex, ( _ | aPx, ( 3] ST ().
(T <71p)
Similarly, for all x €K,
st _
S()TJU/T—I(X) = S;THTJrl(//T_l(x) = H[Exo" @ UKAT), 9.12)

where

og:=min{n=1, X, € K}
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is the first return time in K. Setting

sT
C:=supsupkE,” (77«T),
T=0 xeK

which is finite (see Lemma[9.10), we can apply recursively (9.11) and (9.12) to
obtain

T T T
Sm,m+kWT—(m+k) = Sm,m+k—1 (HE\KSm+k—1,m+k(WT—(m"'k)))
T T
+ Sm,m+k—1 (]lKSm+k—1,m+k(WT—(m+k)))
= Hsyj;l,m+k_1WT—(m+k—l) +CO
k
<.<0fyr_n,+CYy 6.
/=1
Hence Proposition[9.1|follows from the next lemma.
Lemma 9.10. Forallf € (60,/0,,1),

ST
supsupE,” (07" < co.
T=0 xeK
Proof of Lemmal9.10, Fix x € K. On the one hand, by Lemma|[9.9] (with p = 1),
we haveforanyl<sn<T,
Px(n<ogand T <75) =Ex(Lp<opnr,Px, (T —n<7p))
= C}g]g”:by(T —n <73 Ex(Lp<gpnryP1(Xn)).

Using (E2) and Markov’s property as in the proof of Lemma(9.5, we deduce

P.(n<ogand T<ty)<C inllz[P’y(T— n< Ta)Bf_lpl(pl(x) (9.13)
y€
sCinfle(T—n<Ta)9{’. (9.14)
yeK

On the other hand, Lemma implies the existence of a constant C > 0 such
that, for all x € K and all n = ng,

P, (X, € K) = CPy(n < 1y).
We deduce from Markov’s property and Lemma([9.5|that
P (T <75 =Py(X, € K)yixellg[@y(T —n<1p)
= CPyx(n<71y) }i}?If(IPy(T— n<Tty)

> Cﬁgyiglf(Py(T— n<ty).
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Combining this with (9.13), we finally deduce that there exists a constant C > 0
such that, forall xe K and all T = n = ng,

9 n
P.(n<ogl T<ra)sC(9—1) . (9.15)
2

The conclusion follows. O

9.4 Proof of Proposition[9.2]
We start by stating a lemma proved at the end of this subsection.

Lemma9.11. Forallxe Kandnm +ng<n<T,
Px(X,€-|T<T5) =cyv, (9.16)

where the measure v and the integer n, are the one of Condition (E1), the integer
ng is from Lemma and ¢} >0 is independent of x,n and T.

Fix 0 € (0,/0,,1) and set kg = [log(2R)/log(1/6)1+ ny + ng and fix T = kg. For
all x € E such that ¢ r(x) < R, Markov’s inequality implies that
T

N 1
PX(TK>ICR—I’Z1—YZ6|T<Ta)=|]:on' (TK>kR—n1—n6)SWSE.

It follows from Lemma that, for all measurable A c E,

Ex [ZkR_nl_nG 11 =kPx, (Xpp-k €A T—k< Ta)]

Sq, k=1
P ez P (T <715)
R L P (T k< 1o)]
=cv(A) Pt
X

= V(AP (Txk <kp—n1—ne | T <71p)
> 1civ(A).
2
This concludes the proof of Propositionwith = ci /2.

Proof of Lemmal9.11] For all measurable set A c K, we deduce from Markov’s
property that, forall xe Kand all T = n = n; + ng,

P (X, €A, T<1g) >E,

Ix, , exEx,.,, (ﬂaneAIPX,ll (T-n< Ta))]

>,

Ix, ,exPx,, (Xn € A)] Ji,glf(PY(T -n<Ty)

> V(AP (Xy-n, €K) inlgumy(T—nqa), (9.17)
4SS
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where we used (E1). Now, using Lemma(9.9) we deduce that there exists a con-
stant ¢ > 0 such that

P (T < 75) <Po(T =11 <75) = Ex (Lnny<r,Px, , (T =1 <))

= cEx (ln—n1<T@(P1(Xn—n1)) Ji/IelIi;Py(T —n<Tty).

Since ¢1(x)/¢@2(x) is uniformly bounded over x € K, Lemma [9.6] implies that
there exists a constant ¢’ > 0 such that, for all x € K,

Ex [ln—n1<ra(ﬂl (Xn—nl)] = C,[Ex [ﬂn—n1<ra¢2(Xn—n1)] = C,Px (n—n1<715).

But n—n; = ng, hence Lemmal9.8|entails that there exists a constant ¢” > 0 such
that, for all x € K,

Py(n—ny <1y < "Px(Xp-n, € K).
Hence we obtain
Py(T <75) < cc'¢" Py (Xp—n, €K) }i’EIl:Py(T— n<tp).
Combining this with (9.17), we obtain

P (X,€A|T<Ty) =

v(A).

CCICI/

This ends the proof of Lemma|9.11 O

9.5 Proof of Proposition(9.3

We transpose the ideas of [45] to the time-inhomogeneous setting. We fix the
constants R = 4C/(1—0) and 8 = ay/2C, where C is the constant of Proposi-
tion[9.1] Forall T =0 and all ¢ : E — R, we set

~ lp(x) — ()]
|||90|||T - XS;IEPE 2+ Byr)+Pyr(y)

Fix nand T = 0 such that (n+ 1)kr < T and let ¢ be such that |||(p|||T_(n+1)kR <1.
Then, replacing ¢ by ¢ + ¢ for some appropriate constant ¢, one has |[p| <1+
BYT—(n+1)k, (see Lemma 3.8 p.14 in [45]).
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If W7 nky (X) + WT_ni, () > R, then, using Proposition[9.1}

T T
Snkn, (n+ ke @) = Spn nr1) kg @ (V)

=2+ QIBWT—nkR (%) + HﬁWT—nkR (y) + Zﬁé
<2+ 0+ 1 -0)/2) (BY 1-niy (X) + BY 11k ()
- (RB)(1-0)/2+2pC

< (1= a) @+ Y r—ni, (X) + BYT_pi, (X)),
where @) € (0,1)issuch that2+ 0+ (1-0)/2)y<(1—-a;)(2+ y) forall y = BR.
Y r_nie (X) + Wr_ni, () < R, then, considering

(p — (p/+(pl/’

with |¢'| <1 and |¢”| < By 7—(n+1)k,» Propositions[9.1|and[9.2)entail

T T
Sk (nt kg @ () = SnkR,(nH)kR(p(y)’

<2(1 - o) + OV T—niy (X) + BOY i, (1) + 2BC.

Our choice 8 = ag/2C implies that

S,leR,(nH)kR(p(x) - S,T,kR,(n+1)kR<p(y)| < (1= a2) 2+ Y T—nky (X) + PY Tk (V).

for the constant a, = 52 A (1-6) > 0.
Hence, we obtained

which implies by iteration that

s

This concludes the proof of Proposition|9.3

SR | IELC SRS 7 P

}’lkR
O,I’lkR(p

oy S —a1n a)"|lelllo = - a1 A az)"l@llec2/ 2 +2p).

9.6 Proof of Lemmal9.4

This lemma in a generalization of Lemma Its proof is based on similar
computations. We give the details for sake of completeness.
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For all probability measure p on E, for any 0 < n < T, using Lemma 9.9]for
the second inequality and Lemma[9.5]for the third inequality, we have

Pu(n<Tgand T <75) <Eu(Ly<r Px, (T — n<15))

< C;?If;u)y(T —n< Ta)[E,u(:H-n<TK(,01(Xn))

< CinfP (T - n<717)07 pu(g1). (9.18)
YEK

For all integer n = n,, where

1)
Dy p(¢p2)

log(1/6)

ny:= {ng,(Dg) +

—_—

it follows from Lemmal[9.6] that

HPn—ns(Dp) 1 _

<Dy
HPn—ns(Dy) P2
and from Lemma[9.7/that
pP,1
HEn K - 45(Dg) > 0.
uPplg

Therefore, we obtain from the Markov property and Lemma(9.5|that
Pu(T <715 2Pu(X, € K)Ji}glf(Py(T— n<Tp)
= a5(Dg)P,(n <14 infP,(T—-n<
as(Dg)Py(n Ta)}?z( y(T—n<1p)

> as(De)QS#Upz)inElIf(Py(T— n<ty).

Combining this with (9.18), we obtain

C 01\" 1)
P,n<Txand T <1y) < (—) P, (T <7p).
pEm K A L U T
Hence
“TRAT wip1)
Ep (07 M Lyen,, 1<15) scu((pz)P“(Tqa).
We deduce that

p(p1)
p(p2)

Eu (07" 1rer,) < (c +6_””)|]3’H(T<Ta).

. _ ~(n5(Dg)+1)
Since 7™ < %, we have proved Lemma
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9.7 ThecasewhereP,(n<73) =0forsomexe Eandn=1

In this section, we assume that X satisfies assumption (E), but we do not assume
anymore that P,(n < 74) > 0 for all x € E and all n = 1. In order to recover the
result in this case, let 0y ¢ E U {0}, set E = EU{dy} and define the sub-Markovian
semigroup (Py,) ez, acting on measurable functions f: E — R, as

Pif(x)+011p1,00=0f(00) ifx€E,

P =
1709 {elf(ao) if x = 0,

where P;f := P1f|;. Let (X,) nez, be a discrete time Markov process evolving
in E U {0} with absorption in d and whose sub-Markovian semigroup is P, with
associated law (P5) ye (0)-

Note that, for all x € E, P,(X; #0) >0 and hence, forall x€ Eand all n€ Z.,
P.(n<15) >0. We prove in Step 1 that X satisfies condition (E) with the same set
K and constants 81,68.. Then, using the results of the previous sections applied
to X, we show in Step 2 that the conclusions of Theorem apply to X.

Step 1. X satisfies condition (E).
Conditions (E1) and (E4) for X are immediate consequences of (E1) and (E4)
for X. We set

p1(x) ifxeE ) @o(x) ifxeE
and @2(x) =

¢1(x) ={

For all x € E, one has

P11(x) = P1p1(x) + 011 p, 1 (=091 (00)

_JPip1(0) ifP11g(x)>0
e, if Py1p(x) =0

< Hl(pl(x)+02]lK(x) ifPl]lE(x)>0
I C2YE) if Py1E(x) =0

<0101(x) + 1 g (x).

Since 13(,2)1 (0p) = 6191(00), one deduces that the first and third lines of (E2) are
satisfied by X. Moreover, for all x € E,

P12 (x) = P1p2(x) = P12 (x) = 02¢02(x) = O2p2 ().

Since P12(09) = 0192(00) = 0 = 0292(0p), one deduces that the second and
fourth lines of condition (E2) are satisfied by X.
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Finally, using Lemrna (whose proof does not make use of (E3)) for X, one
deduces that there exist two constants ng € Z, and c¢g > 0 such that, forall y € K
and all n = ng, P, (n < 74) < csPy (X, € K). Since, for all y € E, P,(X, € K) =
Py (X, € K), one deduces that, for all n > ng and all y € K,

Py(n<1p) < csPy(Xy € K) < cges3 inf P, (X, € E) < cgc3 inf P, (n < 1p),
zeK zeK
where we used condition (E3) for X. We deduce that

sup e Py (n < 75)
sup - . < +00
n=ng lnfyeK[P)y(l’l<Ta)

Now, (E2) for X entails that infy<,<p, infyex Py (n < 79) = 0,° infg ¢, so that

supyeK[ﬁ’y(n <75) 1
sup - _ < ————— < +o0.
0<n<ng lnnyK Py(n<tp) 02 infx @2

The last two equations entail (E3) for X, which concludes the first step of the
proof.

Step 2. Conclusion of the proof.

One deduces from the previous subsections and from Step 1 that Theorem[2.]]
applies to X: there exist a probability measure vosp on E and some constants
C >0and a € [0,1) such that for all 7 > 1 and for any probability measure y on E
satisfying p(@;) < +oo and u(@») >0,

,u((/:)1) o
H(@2)
Since Vgsp(E) = Vosp(K) > 0, one can define the probability measure vosp on
E by vosp(-) = Vosp(-)/ Vgsp(E). We have, for any probability measure p on E
(extended to E by u(dg) = 0) such that u(¢;) < +oo and p(z) > 0, and for all
measurable set AcC E,

”[ﬁ)u()_(n €-| I’Z<Ta)—1_/QSD“TVS C

(9.19)

P.(X, € A) Pu(Xn€A)  Vosp(A)
—— —vosp(A)| = |=—= - =
Pu(n<ty) Pu(X, € E) Vosp(E)
~ Pu(n<14)
" Pu(Xn € EYvqsp(E)

x |Pu(Xn€ Al n<t9)vosp(E) —Pu(Xy € El n<15)Vosp(A)
Pu(n<75) _ _ w@) o,
< —— E)+ A)C
P (X € EYsn(E) (Vosp(E) +Vqsp(A)) H(@z)a

P
< _”(’_1<T6) 2C'u((’01) a.
PuXn€E)  pp2)
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On the one hand, using (9.19), one deduces that, for all n € Z, large enough so
that C Z&; a” < vosp(E)/2, we have

Pu(n<14) __ 2
Pu(Xn€E) ~ vosp(E)

so that

4C  ulpy) ,

Pu(Xy € A)
Vosp(E) p(g2)

Pu(n<ty)

- VQSD(A)‘ <

On the other hand, for all n € Z, small enough so that C % a” > vosp(E)/2,
we have

Pu(X, € A)
IPu(n <Tp)

4C ple1) o
vosp(E) plgz)

_VQSD(A)‘ <2<

This concludes the proof of Theorem[2.1]

10 Proof of the other results of Section 2]

We begin with the proof of Theorem[2.5in Section[10.1} which will then be used

to prove Theorem[2.4]in Section and Corollary[2.6/in Section The proof
of Theorem 2.7]is given in Section

10.1 Proof of Theorem/[2.5|

The inequality 8, < 6 follows from Lemmasince, foralln=1,
05 =Pyysp (1< T5) = vsp(K) yiglgﬂj’y(n <T9) = vQsp(K)Oy yig}:(ﬂz(y).

Forall n =0 and x € EuU {0}, let us denote

Py(n<tp)

xX)=0,"Py(n<t1y) = —————.
Mn 0 Fx ol Pygsy (1< T2)

By (E3), for all xe K,

Nn(x) <0, supPy(n <74) < c360," inIf<IP’y(n <Tp)
yE

yeEK
C3 -n C3
=—0,"P (n<t1y)=——. (10.1)
vosp(K) 0 TP 7" Vosp ()
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This implies that the sequence (1,,) ;>0 is uniformly bounded on K.
For all x € K and n, m = 0, by Markov’s property,

Nnem(X) = Np(X)Eyx [Oamlpxn(m <T)|n< Tg] .

Hence, by Theorem[2.1} for all x € K,

e (X) =10 (0] =10,(0) | S ,11m(x) - 1]
=1n(X) |561,n71m(x) - VQSD(nm)i
< Cnp(@)a" 1N mlloos

where C = SUP e % < oo. In particular, defining || f |l zeo(4) := Sup e 41 f(x)| for

all measurable A c E and all bounded measurable function f on A, we deduce
from (I0.I) that for all n =0,

_163

—a” (10.2)
vQsp(K)

M5 —Nn+1llzo ) < Clnall e @ 1M1 1l o) <

Hence the sequence 1, is Cauchy in L°°(K) and converges to some 7).
We set (0) = 0 and we define forall x€e E\ K

n(x) :=Ex (n(XTKm)%T"”") .

Note that, since 1 is bounded on K U {6} and since 8y = 6, > 0, implies that
n(x) <ocoforall xe E.

We fix p € [1,log8,/1og68) and choose a constant 8 € (9}/'7 V (Op),0). This
is possible since 05) >0; and a < 1. Forall xe E\ K, we have

N (X) =) < N () — 05 "Px(Tk ATy < N <T5)|
TK/\Ta)

+ |66n|]:bx(TK ANTg=n<T1y)—Ey (]l TK/\rasnn(XTK/\ra)H(;

+ -n(x)

TK/\Ta)

Ex (]l TK/\TaSnn(XTK/\Ta)H(;

We shall control each term of the right hand side. For the first one, we deduce
from Lemmal[9.9]and 6” > 6, that, for some constant C > 0,

Hn
Nn(0) —0;"Po(Tk ATy < n<Ty) =0y "Pr(n< Tk ATy) < Cﬁq)l(x)”p.
0

For the second one, Markov’s property implies that

n
Pe(Tk ATo<n<Ts) =Ex| Y Lynry=kPx,(n—k<75)].
k=1
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Now, entails that, forall x€e K and k < n,
P, (k < 75) —1n(x0)0| < CO)* < COF
Therefore,

TK/\Ta)

05 "Px(Tic ATy < 1< 7) = Ex (Trnnyentt X1nrs )0y

6\" 6\"
< CO,"Ey (L 1gnr,<n0™ TKAT0) < C(e_o) E. (677K o) < C(Q—O) o107,

where we used in the last inequality.
For the third term, using the a.s. inequality L1, ar;5n < 0/09)" TkATo | we
have

n(x) —Ex (]lTK/\‘[aSnT’(XTK/\‘[a)Q(;TK/\Ta) =, (]]‘TK/\T6>nT](XTK/\Ta)9(;TKATa)

C3 —TxA
< oo (Trenms=ny )

G (g)‘TK”@%Tm (g)
vosp(K) 0o 0o

n
< C(i) o107,
0o

since 6 > 9} P> 0 and where we used again in the last inequality.
Thus, forall xe E\ K,

9 n
Inn(x)—n(x)lsC(g—) P1(x)'P, (10.3)
0

which concludes the proof of the convergence of 1, to 7 in L°°((p}/p ).
It remains to prove that K < E, E' = {x € E: n(x) > 0}, vosp(n) =1 and P1n =

Oon. By definition of E', if x ¢ E', Tx = co a.s. under P,.. Therefore, by Lemmal9.5
Py(n<T15) =Py(n< Tk AT5) <0} (%).

Hence,

0:\"
Np(X) = || @1(x),
0o
andn(x) =0forall x¢ E'.
The fact that vosp(n) = 1 follows from the dominated convergence theorem
since vosp(n,) = 1 for all n = 0, the sequence (1,) ;o is uniformly bounded in

L>®(¢1) and vgsp(¢1) < co. Similarly, since P1¢1(x) <ooforall xe E,

Pin(x) = nl—i»IPoopln"(x) = nEIPmBE"Px(n +1<13) =6 nEernn+1(x) = 6013(x). |
10.4
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Since vsp (1) = 1, there exists xy € E’ such that n(xp) > 0. Then, by Lemma
with p = 1, letting n — +oo in (9.7), we obtain 1(xp) < C1(xo) infyexn(y) and
hence K < {x € E:7n(x) >0} and infyex n(y) > 0.

For all x € E’, there exists k = 0 such that Py 1x(x) > 0. Hence,

Miere() = 0" Py 15(0) = 0" PicLic(x) inf e ().
Since 1, converges to 17 in L>(K) and infyex n(y) > 0, we deduce that
N(x)= lim Ng4p(x) = BakPk]lK(x) liminfinfn,(y) >0,
f—+00 {—+o00 yeK
hence E' = {x € E:n(x) > 0}. This ends the proof of Theorem[2.5|

10.2 Proof of Theorem[2.4]

By Remark(]} it is enough to prove Theorem[2.4/for p = 1.
For all n = 1, we introduce the linear operator, defined on the set of functions
feL®(py) as

Ruf(x)= [Ex(f(Xn)]lTKSrKT@)» Vx€eE. (10.5)

Note that this operator is well-defined since |R;, f(x)| < || f/¢®1lloo Pr1(X) < co.
We first give some properties of R,;, which can be seen as a bounded approxima-
tion of P, in L*(¢y).

Lemma 10.1. We have

R :=supsup R,p1(x) < oo,

n=1 xeE

and foralln=1andx€E,
0 < Pup1(x) — Rpp1(x) <071 (x).
Proof. Using Markov’s property,

Rpp1(x) = Y Ex[1 =k Ppoip1 (Xg)]

k<n
< sup Prp1(V)Px(Tx <n)
Y€K, k=0

< sup Pryi1(y)<D;Vvsup 1)
yeK, k=0 yek 92(¥)

< +o00
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by Lemma(9.6] This proves the first inequality. For the second one, we observe
that for all x € E,

Prp1(x) = Rpp1 (%) = Ex (91 (X)) 1 <1) < 07 01(X)
by Lemma|9.5 a

We fix 1 < k < n, f such that |f| < ¢; and p such that p(@;)/ulp2) < co.
Theorem [2.1land Lemmall10.1] entail

P, R
uPy_i Ry f n-k H(p1) sup|Ref () < CRa'™ i (1)

-V (RN =Ca .
T 1(2) ek 11(p2)

The second inequality of Lemma implies

Ivospl(Px— Rp) f11 < 0Fvosp (1)

and

uPy_(Pr—Rp) f gkﬂpn K91 _p ( Vﬂ((Pl))
pPn_lp = ' pPn_pps 1(¢2)
by Lemma(9.6|

Combining the last three inequalities and recalling that vosp Py f = 9(’)‘ vosp(f)
and p(¢p1)/pn(p2) = 1, we obtain

PP f - —k{ n—k 1) ( u(wl))}
—_— — <6 R +0 +07 Dy +
OEuPnr 17 vosp(f)| =06, 102 “vosn(p1) +0F [ Dy @)

c% a"05% + 01100 .

We now recall (10.3) for p = 1: there exists 8 < 1 such that |n,(x) —n(x)| <
CO" 1 (x) for all x € E, where 11,,(x) = 0, "Px(n < 75). In particular,

170 (X) = Nk (0] < CO" oy (x).

We deduce that
pPuf  pPuf 00" uPulfl L= il
OkuP, (1 WPulE|” WPl pPyle " 7"
1 P
< Cen—k ,U n(Pl I.l((pl)

BN n-k) BPnp2
n-k
- co (D v 1)
infyso t(ny) 1(@2)

)u((Pl),
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where infy-q u(n,) > 0 since p(ny) — p(n) >0 when ¢ — +oo and p(n,) > 0 for all
¢ =0 (since u(g2) > 0). Hence,

UPnf
/JPnHE

K1)
wip2)

a" %05k + (01100)F +0" K|

_VQSD(f)‘ <C

Choosing k = [en] for some fixed € > 0 small enough, all the terms in the right-
hand side converge to 0 geometrically as a function of n. This concludes the
proof of Theorem[2.4]

10.3 Proof of Corollary[2.6|

If f € L®(15 + 1) is an eigenfunction for P; for the eigenvalue 6, for all x €
Eu{dtandn=0,
Ex[f (X))l = Pnf(x)=0"f(x).

We first assume f(0) # 0 and that P,(t9 < o0) =1 for all x € E. Taking x =
0 implies that & = 1. For all x € E', let k > 0 be such that Py@,(x) > 0. Then
Lemmal[9.6)implies that

Pyikp1(x) - Pyikp1(X) - Prp1(x)
Puiklp(x)  Ppyx@a(x)  Prgo(x)

VvV D; < oo.

Therefore,

|Exf (Xpak) = fO)] < CEx [Lnskar, (IFO)+@1(Xpns))]
Pn+k(p1 (%)

=CP +k 0)| +
x(n <Ta) |f( )| Pn+k]1E(X) oo

For all x ¢ E, we have 75 = Tk AT a.s. and hence, by Lemmal9.5)

|Ex f(Xn) = f(O)] < CEx[Lp<rynt (If (O] + 1 (X5))]
< CPx(n<14)+CO' 1 (x)

n—+00 0.
Since Ex[f(X,)] = f(x), we deduce from these two inequalities that f(x) = f(9)
for all x € E and hence Point 1. of Corollary[2.6]is proved.

We now assume f(9) = 0 (and do not assume anymore that P, (15 < co) =1
for all x € E) and that f(xg) # 0 for some xj € E'. In this case, Theoremimplies
that, for all x € E’, there exists a constant C, such that, forall n =1,

‘(Q)” fx) Py f(x)
0o) Nn(x) Pylg(x)

_VQSD(f)‘ = —VQSD(f) SCxa’f. (10.6)
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Assume vqsp(f) # 0. The last inequality for x = xo and Theorem 2.5/imply that
0 =0 and hence that f(x) = vgsp(f)n(x) forall x € E'.

Now, forall x € E\E', Tx = oo P,-almost surely, and hence, Lemma entails
(even in the case 8 # 0,), forall x€ E\ E,

10171 ()] = Pn f(x)| < CPpep1(x) < COTp1 (x). (10.7)

This implies that, in any case when |0| > 61, f(x) =0 for all x€ E\ E’. We deduce
that, if £(8) =0, f(xo) # 0 for some xg € E' and vosp(f) #0, then f = vosp(f)n.
This concludes the proof of Point 2. of Corollary[2.6]
We now assume f(0) =0, f(xp) # 0 for some xo € E' and vosp(f) = 0. Apply-
ing for x = xo, we deduce that || < 6pa,. This is Point 3. of Corollary[2.6}
In the case where f(d) =0 and f(x) = 0 for all x € E’, we deduce from
applied to any x € E' that vsp(f) = 0 and we deduce from that 0] < 6.
It only remains to prove (2.6). Because of (I0.7), we only need to check that

|f(x)] < Copy (x)108101/ 10801y e B/

To prove this, we use the operator R, introduced in (10.5). By Lemma|10.1} for
allxe E/,

|£ 1 =101""1Pnf ()] < ClOI™" [Rup1(x) + (P~ Rn)p1(x))]

(6"
=CRIOI"+C| 0| 910,

Applying this inequality for n = |-log¢; (x)/log8; ], we deduce

log @ (x)

If(x)lsCexp( logf

logIHI) < Cp; (x)'0801/ 10861
We have proved (2.6).

10.4 Proof of Theorem[2.7]

We start with Point (i). We introduce I';, = 1,<;, and define for all x € E’' and
n = 0 the probability measure

I'x — rn
TEL(Tp)

X

so that the Q-process exists if and only if ngx admits a proper limit when n — co.
For all 0 < k < n, we have by the Markov property
ExTpnlZr) _ ILk<1,3[|:l>Xk (n—k<tp)
Ex(Tp) Pr(n<ty)
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By Theorem|2.5] this converges almost surely as 7 — +oo to

e (X _kNn(Xg)
My =11y, 07F =0 )
k k<t3Y%0 n(x) 0 n(x)

and Ex(My) = 6, k % = 1. These two properties allow to apply the penal-

ization’s theorem of Roynette, Vallois and Yor [76, Theorem 2.1], which implies
that M is a martingale under P, and that Q" (A) converges to E, (M1 4) for all

A€ i when n — oco. This means that Q, is well defined and

dQx
dPy |z,

= M.

Note that the fact that n(x) = 0 for all x € E\E' implies that (X,,, n = 0) is E'-valued
Qx-almost surely for all x € E’. The fact that X is Markov under (Qy)eg and
Point (ii) can be easily deduced from the last formula (see e.g. [15, Section 6.1]).
It remains to prove Point (iii). Because of Remark/1} it is enough to prove it
for p =1 only.
We define the function ¥ = ¢;/n on E’. Note that, since n € L®(¢), v is
uniformly lower bounded. Moreover, for all x € E',

- ;1 0,
Piy(x) = ﬁPltm(X) = 9—01//(36) +Clg(x), (10.8)

where we used that infxn > 0. Using a similar inequality as in Lemma (9.5} we
deduce that, forall x€ E'\ K and all 8 € (8;/6,, 1),

Eg, (07 %) < w(x)/ inf y/(y) < co. (10.9)
YeE
Now, we deduce from Lemmal9.11|that for all x € K and n = n; + ng,
Qx(Xp€)=c)v. (10.10)

Fix R > 0 and fix x € E’ such that y(x) < R. By (10.9) and Markov’s inequality,
there exists kg = 17 + ng such that

1
Qx(Tk > kp—n1—ng) < 3

It then follows from (10.10) and from Markov’s property that, for all measurable
ACE,

Qx (Xky € A) = Qx (Tk < kr — 11 — 16, Xi,, € A)

>1/(A)
> —c1v(A).
5¢1
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This implies that, for all x, y € E' such that y(x) + ¢/(y) <R,

||6kaR _5)’PkR ”TV =a,
for some @ € (0, 1) independent of R.

By [45] Thm 3.9], together with (10.8), the last assertion implies that there
exist constants C > 0 and &; € (0,1) such that, for all real function % on E’ such
that [ [l < oo,

|B||| = C@lin,

where 7(x) - h(y)]
x —
Ikl = sup Y

x,yeE' 24y x)+yw(y) '

Following the same argument as for Theorem 2.1} this implies 2.8). In particu-
lar, for all x € E',
0

n—-+oo

||6xﬁn _,BHTV

Hence, (2.9) is a consequence of Lebesgue’s dominated convergence theorem.
This ends the proof of Theorem[2.7]

11 Proof of the results of Section

In this section are proved Proposition[3.1]in Subsection[11.1} Lemma[3.2)in Sub-
section[11.2] Lemma|3.3]in Subsection Lemma|[3.4)in Subsection Then

we prove Theorem[3.5/in Subsection[11.5} Lemma[3.6]in Subsection Finally,
we prove Proposition 3.8]in Subsection[11.7

11.1 Proof of Proposition|3.1

Condition (E4) implies that there exists xp € E such that Py, (X, € K) > 0. One
immediately deduces from our assumption that Condition (E1) is satisfied with
the probability measure v on K defined by

Py, (X5, €-NK)

YO= T X e K

and the constants ¢; =Py, (X, € K)/C >0 and n; = my.

Let us now check Condition (E3) and the last part of Proposition We
define TI(<"°) =inf{n = ng s.t. X, € K}. Lemma (which only makes use of Con-
dition (E2)) implies that, forall x € E, P, (n < Tx A Tg) < 0{1(p1(x). Hence, for all
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x € Eand all n = ny,
Pu(n <15 A TIY) =, (]lnoqauwxno (M=o <Tg A TK))
<0 Ex (Lng<z,#1(Xn,))
< (61 +¢2)™0] " @1 (x). 1L1)
Therefore, for some constant C > 0,

Pr(n<7p) <Pr(n<to A Tu”) +Po(T{™ < n<15)

n
<Co 0+ Y [Ex(ILTI((nO):kPXk(n—k<Ta)). (11.2)
k:}’lo

Now, for all x € E, all y € K and all k € {ny, ..., n}, and entail

E, (ﬂT;(,lo):ku»Xk(n k< ra)) <E, (]lk_n0<Tl((no)Ma[EXk7”0 (]anOEK Px,, (n—k< T@)))

<E(1 L CRy(n+mo—k<15))

k—n0<T,(<"°)/\
<0K 0, (0 CPy(n-k < 1p),
where the constant C may change from line to line. Using Lemma 9.8} which

only makes use of (E1), (E2) and (E4), there exists ng € Z, such that, for all y € K
and for all n, k € Z, such that n— k = ng,

Py(n<19) = Py (X, € K) inf P (k < 75)
ZE

=P, (n—k<tp) Tinf nIEIPZ(XT eK|T<1y) Zig}EPk(pz(z)

i
>ng Z€
>C"05Py(n—k<1y),
where C" := infrs  infe gk P2 (X7 € K| T < 1) infzex ¢2(2) > 0. Hence,
01k 07"
Ex (100 Px,(n=k <79) = 01() o)~ Pyin<Ta).

Now, we deduce from (11.2) and (I1.I) that, forall x€ E and all y € K,

n—ng 91 k
07 +Py(n<ty) ). (—)
k=1 02

<Co1(x) [0] +Py(n <o) +67 "]

=Cp1(0)Py(n<1y)

Py(n<T1s) < Cey(x) +P(TP A5 = n—ng)

since Py (n < 15) = Bg infg ¢,. This implies the last part of Proposition and,
since supg ¢ < oo, that Condition (E3) is satisfied.
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11.2 Proof of Lemmal3.2]

The function ¢, defined in the statement satisfies, for all x € E, ¢2(x) € [0,1] and,

1
> 0. Moreover, we have, forall x € E,

1
forall x € K, 2 (x) = zgz_
2

0;1 -1
=4
0;¢ -1

P12 (x) = 02¢2(x) — (92 1x(x)-65°1p, ]lK(x)) = 02¢2(x)

since ¢ is chosen such that 6, ¢ 1P, 1g(x) =01k (x) forall xe E

Our assumption also implies that there exists 7y such that, for all n = ny,
0, " infyex Py (X, € K) = 1. Choosing n4(x) = ng for all x € K entails (E4), which
concludes the proof of Lemma|3.2

11.3 Proof of Lemma/3.3|

Assume that

E, (BI—TK/\Té) <+o00 Vx€ E and 31611[3 E, ([EX1 (BI_TK/\TB) ]ll<ra) < 400

and set ¢ (x) = Ey (HITKA rm) for all x € E. Then, for all x € E\ K, using Markov’s
property at time 1,

Py () = Ey ([Exl (HI—TK/\fTa])) -F, (HI—(TKAfTa]—l)) = 0191 (%).

Moreover, for all x € K, P1¢p; (x) <67 supexEy ([EXl (GI_T’(A”) Illqa), and hence
the first part of the lemma is proved.

Assume now that there exist two constants C > 0, 8; > 0 and a function ¢ :
E — [1, +00) such that supg ¢ < +oco and P1¢; < 81¢1 + Clk. Then, foralln=1
andall xe E\ K,

Ex ((.01 (Xn)]ln<TK/\ra) = 9?(,01 (x).

Thus, using the fact that ¢, = 1, we deduce that, for all x € E (the inequality
being trivial for x € K),

Py (n< Tx A1) <0} 1 (%).

In particular, one deduces that, for all @ > 6, and all x€ E\ K,

Ey (07 Tk"0) < ¢1(x) < +00

0-0,
and the inequality is trivial for all x € K. One also deduces that

1
supk, (Ex, (0~ 7%"")) < 7o sup P11 (x) < +oo.
xeK 1 xeK

This concludes the proof of Lemma|3.3
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11.4 Proof of Lemmal[3.4]
Combining (10.2) and the fact that infx > 0, we deduce that

liminf inf6,"Py(n < 14) > 0.
n—+oo xekK

Let 0}, < 69. Using Lemmal9.8}

lim inf(0}) P (X, € K) = +oo0.

n—+oo xekK

Hence the result follows from Lemmal[3.2]

11.5 Proof of Theorem[3.5

We assume that Assumption (F) is satisfied. In Subsection[11.5.1} we prove that
Assumption (E) holds true for the sub-Markovian semigroup (P;),=o of the ab-
sorbed Markov process (X;y,,n € Z). In Subsection we prove the exis-
tence of a quasi-stationary distribution for (X;); with the claimed properties
and in Subsection we prove the convergence of ehot P.(t < 74) to n(x) for
tel, t— +oo.

11.5.1 Proof of (E)

We fix 0; € (yiz,y?) and set 6, = yéz. Let us first remark that the last line of Con-
dition (F2) implies that Y, 'P,(X; € L) — +oo when t — +o0. Hence, using Con-
dition (F1), we deduce that

infy; 'Py(X; € L) +00. (11.3)
xeL

t—+oo
We consider a number n € N* large enough so that infye; v, ‘P (X;el)=1v
90—222, forall £ = (ng— 1)t and we set
l_Yl
-1 !

pr=v1 and ¢y=———r > Yz_ktzpk]lb
Y2 -1 k=0

Step 1. Proof of (E2), (E4) and (E1) for (Py) ez, .
For all x € E'\ L, it follows from (F0) and the second line of (F2) that

Pry1(x) =Ex (v1(X,) L par nry) +Ex (]lrLstz[EXTL (Lg—s<r,¥1 (XtZ—s))‘S:TL)

<yPY1(0) + Pyt < B)co.
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We define K = {y € E, Py (1 < 1) [y1(y) = (61 —y?)/cz}. The second line of
(F2) at time ¢ = 0 and the fact that 6, — y? < 1 imply that L < K. Moreover, we
have, forall x ¢ K,

Pry(x) < 0191 (x). (11.4)
Hence, forall x € E,
Pry1(x) =011 (%) + a1 (x). (11.5)

Note that it immediately follows from the definition of K that sup ;¢ x %1 (x) < co.
In particular, the first and third lines of (E2) are proved.

Moreover, using the Markov property provided by (F0) and the definition of
ng, we deduce that, for all £ = ng1,,

inf v, 'P,(X; € L) = inf P <t) inf infy;'P,(X;—sel)=>1, 11.6
;EKYZ x(Xrel) ;IelK x(TL 2)$€£t2];2L72 y (Xi—s€L) ( )

2
01—,
C2

where we used the fact that, forall xe K, P, (7. < ) = . In particular,

_tz—l

Pl(pg = ')/52(/)2 + W (Yz_(no_l)tzpno]lL _'}/52 ]lL) = Yéz(Pz = 62(,02.
5 _
In addition, for all x € K,
-t -0l
Yo =1 - Y, " —
@2(x) = _ZnT}/Z(nO l)tzu:Dx(Xnotz el)= _znT.
Y, 1 , 1

Hence (E2) is proved. Moreover, (11.6) also entails that (E4) holds true.
Fix ny = 1 such that n;t, — t; = npt,. Condition (F1) and then (11.6) imply
that, for all x € K,

Py(Xnz, € NK) 2Py(Xp, -1, € De1v(-n L) 2y 2 M epv(-n L.

Extending v as a probability measure on K, we obtain (E1).

Step 3. Estimation of the survival probability.
Our goal here is to prove a version of Lemmal9.9] where (9.7) is replaced by
P, (nt <T)<C(p1—(x)inf[|3’ (ntr <1y), VxeEVneN (11.7)
SR g 70, e V2T T ’ ' '
Since the proofis similar, we only highlight the main differences. First, Lemma[9.§|
only uses (E1), (E2) and (E4), so that there exist ng = 1 and {; > 0 such that, for
all x€ K and all n = ng,
5xpn]l[< = (16xpn]1E-
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Hence, for all x € K and all N = ng + ng, using (11.6),
OxPNLL = Y5 0xPN-ny Lk 2 {175 OxPN-nyLE = (175 65PN LE.

Hence,
inf infPy(Xng, €LING <715) >0. (11.8)

N=rng+ng x€K
Third, it follows from (F2) that, forall xe E\ L,
Pe(nt, <TpATo) < ¥ 21 (x) =071 (). (11.9)
and from (E2) that, for all x € E,
Py(nt, <15) = y5 2 pa(x). (11.10)

Therefore, following the same lines as in (replacing K with L), we deduce
from (11.9) and (11.10) that, forall xe E

nt
Py(nt <ty < H{Qpl(x) + 03f in{IPy (n=Tslt)t<ty) Pr(Tr ATHE dS)
0 Je

—
C3Y, ’

infP,(nt; < 75)Ex (v, - "),
infP,(nt; <75) x(r2™")

< CinfP;(nt <15)¢1(x) +
zeL
which entails (11.7), where we used in the second inequality the fact that
Py(nt <13 = cyé“z in{le (n-kt<ty), Vxel,
yE
which is deduced from (I1.8) exactly as in Lemma[9.9}

Step 4. Proof of (E3).
Using (I1.7) and the fact that sup, g ¢1(x) < +00, we deduce that there exists
a constant C > 0 such that, forall n e N,

supPy(nt; <75) < CinfPy(nf; <7,).
xeK yeL

Moreover, using the Markov property at time ngt; and (11.6), we deduce that,
forall £ =0,

infP,(t<7y) = infPy(t+ nots <75) =y™2infP, (¢ < 15).
Int x( 2) inf x( 02 <Ty) =Y, Inf yl( 2)

These inequalities imply (E3).
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11.5.2 Existence of a quasi-stationary distribution for (X;) ;s

Subsection[11.5.1Jand Theorem[2.1]imply that there exists a probability measure
vosp on E such that

[FDVQSD (Xnt2 €- | ntZ < 776) = VQSDY Vn € Z+7

such that vgsp(¢1) < oo and vgsp(g2) > 0, which is equivalent to vosp(L) > 0
because of the quasi-stationarity and the form of ¢,. For all ¢ € [0, 2], let us
define the probability measure v; on E by

V= PVQSD(Xf €-t< T5).

For all n € Z,, we have, using the Markov property and the fact that vgosp is a
quasi-stationary distribution for (X;,s,) n=0,

Py, (Xng, €1 nt2 <75) =By, (Px,, (Xr €11 <Tp) | nt2 <T5) =Py, (Xy €| £ <7Tp),

hence v, is a quasi-stationary distribution for (P,),>¢. Moreover, the third line
of (F2) and the quasi-stationarity of v; imply that v(L) is positive.

Fix p; € (6} ”2,)/2). It follows from that there exists a constant C > 0
such that, forall x € E,

—TLN\Tp

@1(x) = =Ex(p] ) < Co1(x).

In addition, forall xe E\ L,

—TLN\Tj

Ey (ﬂ t2<TL/\Ta(P/1 (th)) = ,Oiz[Ex (ﬂ H<ti ATy )
<plg(x) (11.11)

and the inequality is trivial for x € L. In addition, for all ¢ € [0, »] and all x €
L, Ex (¢} (X)) 1i<r,) < CEx (¥1(X)1<1,) < Cc,. Hence Condition (F) is satisfied
replacing y; with p; and y, with ¢}. Therefore, we can apply Step 1 to prove
that (E) is satisfied with ¢} and ¢/, where

—b nh—1
Yo —1 &0 g
('0,2: —n6t2 Z YZ zpk]IL
—1 k=0

2

for an integer n6 that can be chosen larger than ny. We also deduce as in the be-
ginning of Step 2 that vsp is the unique quasi-stationary distribution of (Py) >0
such that vosp(¢@]) < oo and vosp(L) > 0.
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Moreover, by Markov property, we have for all x € E and ¢ =0,

(pll (x) =[x [ﬂt<rL/\rapl_TLAT6] +[Eyx []lter/\Tapl_TLATa]

= ,Ol_t[Ex [ﬂt<n/\ra(P,1 (Xt)] + Pl_tpx(t ZTLATH)
<1 " (ExlLicr, @) (X1 +1) (11.12)
so that, for all £ € [0, 5],

Vi) = 0170 [Evgsp (Liy<rg @) (X2,)) 1Py, (£ < Tg) +1]

= pl_(tz_t) [[EVQSD (]]~I2<T,3(p,1 (th)) /[FDVQSD (tz < Ta) + 1]

=p1" %7 (vosp(@)) +1) < co.
Since we observed that v,(L) > 0, we deduce that v; = vgsp forall £ € In [0, £2].

Using the Markov property, we deduce that v; = vogsp for all ¢ € I and hence

that vgsp is a quasi-stationary distribution for (X;) ;. Since any quasi-statio-
nary distribution for (X;);cs is also a quasi-stationary distribution for (P;) =0,
we deduce that vggsp is the unique quasi-stationary distribution for (X;) ;7 such
that vosp(@1) < +oo and vgsp(L) > 0. By the quasi-stationarity property of
vQsp, it is also the unique one satisfying vosp(¢1) < +oo and Pyosp (Xe € L) >0
for some t € I.

Let ¢t = £, be fixed and define k € N'such that 0 < ¢t — kt, < £,. It follows from
the fact that P ¢ < Ce} and from (IL.I2) that

Exl1r<ry @} (X1 < C¥Ex [11— ety <, @) (Xi—kr,)]
= C_wkpl_(kH)[zH'Ex []lt2<ra</’,1 (Xy,) + Ht—kl’2<ra]
< Cckpl—(k+1)t2+t[Ex []11?2<15(P1(Xt2) + 1]
< CCkp, kDt 4 ) + 1)y (x). (11.13)

Now, let u be a probability measure such that u(g;) < co and u(p2) > 0.
Then, for all £ = ngy £y, it follows from (11.6) that, for all k =0,

Pu(Xyi ks, € L) 2Py (Xgp, € L) Ji/rg{Py(Xt €)= yiP,(Xpy, € 1.

Therefore, for all ¢ € [ngto, (ng + 1) 2],

YZ_tZ —1 7ol kt
Eplp2(X0) = —5mm— ) 15 PulXtrk, € 1)
Y. —1k=0
Yz_tz -1 (no+1)¢; = ke (no+1) 1.
= Y—nol’z _ IYZ ’ ’ ICX‘E) Y2 ZPM(X]CIZ €l)= Yo ’ Z:U(()DZ)
2 =
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This and inequality imply that (using that nj = ny), for all t € [ng t,, (ng +
1)t;] and for a constant C > 0 that may change from line to line,

e (@) SC/Jt((p,l) SC/J((pl),
:ut((P/z) He(p2) H(@2)

where y; := Py(X; € - | t < 75). It then follows the fact that (E) is satisfied by
(P, n = 0) with the functions ¢ and ¢, that there exist constants & < 1 and
C >0 such that, forall ¢ € [ngty, (ng + 1) 21,

Using Markov property, we deduce that

WPy

:utPn]lE

TV pp2)’

—VQsp

n /J((pl)

|||]3’#(Xm2+t €-|ntr+1t<T5) —VvQsp ||TV <Ca 1)

This ends the proof of (3.3).

11.5.3 Convergence to 7

Our goal is to prove (3.4), where the convergence is exponential in L°°(1//}/p )-

Because of Remark(]} it is enough to prove this for p = 1. Since we proved that (E)
holds true for the semigroup (Py) =0 and for the functions (p’1 and ¢, it follows
from Theorem2.5|that there exist constants A € [0,log(1/y2)], @ € (0,1) and C >
0 such that, forall y€ E,

|ek°"t2|]3’y(nt2 <7p) —n(y)‘ < Ca"<p'1 ).

For any t € [1,21,], integrating this inequality with respect to Py (X; € dy; t < T5),
we deduce from (11.13) that

|eA°"t2[P>x(nt2 +1<79) ~Ex (X)L 1<z,)| = Capy (x)

for a constant C independent of ¢ € [£,21,]. Setting n;(x) = Ey [e’10 M(X)Li<r,),
we obtain for all £ € [£»,215]

’el"(”tzﬂ)ﬂmx(ntg +1<1p) —nt(x)’ < Cez’%tzan(pl(x).
Proceeding as in (10.4), we deduce, letting 1 — +oo, that P;n; = e %%p,. There-

fore, the uniqueness result in Point 2. of Corollary [2.6|implies that 17, = . This
ends the proof of Theorem[3.5]
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11.6 Proof of Lemmal3.6/
Proceeding as in (11.11) and (11.12), we have that, forall x€ Eand t € I,

Ex (¥1(Xe) Liyaring,) S YEW1(X) and  y1(x) < 7" (Ex [Lear,¥1(X)] +1).
Therefore, forall t < t, andall xe L,

Ex []lt<‘raw1(Xt)] = Yf(tz_t)[Ex{[[EX, (]ltZ—t<‘ra7~/«’1(Xt2—t)) + 1] ]lt<‘r@}
<7 T [Ex (1 yery 1 (X2,)) +1]

<cpi=y]" [supEy (1s<r,y1(Xp,)) +1].
yeL
This concludes the proof of Lemma|3.6

11.7 Proof of Proposition|3.8

Let us first assume that (E) is satisfied with ¢; bounded and and prove
that holds true. Corollary[2.2|entails that, for all = n},

H HPu ., N N
wPylg Q TV B infyeg @2 (x) /,lpn‘;]ll(
B 1~
ElnfxeK @2(x)

Hence the convergence is uniform.
Let us now assume that (3.6) holds true. It was proved in [I5] that this is
equivalent to the following condition.

Condition (A). There exist positive constants ci, ¢z, a positive integer ky and a
probability measure v on E such that

(A1) (Conditional Dobrushin coefficient) For all x € E,
[FDx(Xko €-kog<T1g)=C1V.

(A2) (Global Harnack inequality) We have

supepPy(k <75) <
= (0.

su
keZIi Py (k< 1p)
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Several consequences of Condition (A) were deduced in [15], among which
the fact that the convergence in Theorem [2.5/holds true with respect to the
L* norm on E with n(x) > 0 for all x € E. In particular, n is bounded, P11 = 6yn
and there exists a constant C’ such that, for all n =0,

supPx(n <19 <C'6)]. (11.14)
xe€E
We fix € € (0,1/(4C")). Since 7 is positive on E, there exists § > 0 such that the
set K := {x € E : n(x) = 6} satisfies vosp(K) = 1—¢€ and v(K) > 0. Setting ¢, =
1/ 1w, the part of (E2) dealing about ¢, is satisfied. Since the convergence in
Theoremholds true with respect to the L norm, we deduce from the choice
of K that there exists k = k; such that

c:=infP,(kg <T7y) = infP,(k <15) >0.
xeK xeK
It follows from (A1) and (A2) that, for all n =0,

. . cC
inf Py(n<75) 2 inf Pyx(n+ko <75) = c1¢cPy(n<75) =2 —supPy(n<15).
xeK xeK C2 yeE

This implies (E3) and that inf,cx P, (ko < T5) > 0. Hence, (E1) follows from (Al)
with the probability measure Vé'&lf). Moreover, for any n large enough to have
Ca™ < 1/2 where the constants C and « are those of (3.6), we have P, (X,, € K |
I <7T5) 2vosp(K) — Ca"™ =1/2—¢ >0 and hence (E4) is satisfied. The last com-
putation also entails with nj = n.

It remains to construct a function ¢, satisfying (E2). For all x € E,

Py(Xp€ E\K|n<1y) <vosp(E\K)+Ca" <e+Ca".
Using (T1.14), we deduce that
Py(Xn€ E\K)<C'(e+ Ca™0y],
so that there exists ny large enough such that

6o )"

1
Px(ng< Tk A1) < 59610 = (M

From this follows that, for all ke Nand all x€ E,

o k}’lo
Py(kng < Tx AT5) < (31/n0) .
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In particular, for 6 := 0y/2/™,
@1(x):=Ey (HITK””]) , Vx€E,
is a bounded function on E and Lemmaimplies that, for all x € E,

Prp1(x) = 0101 (%) + @1 lloo L (X).

Since 6, < 0y, (E2) is proved.

12 Proof of the results of Section

In order to prove Theorem we check Condition (F). The goal of Subsec-
tion [12.1] is to give the construction of the process X and to check (F0) with
L = K} for some k = 1. In Subsection[12.2} we explain how (F3) can be deduced
from general Harnack inequalities. Finally, Subsection|12.3|completes the proof
of Theorem 4.1} The proof of Corollary[4.2]is then given in Subsection[12.4]

12.1 Construction of the diffusion process X and Markov property

The goal of this section is to construct a weak solution X to the SDE with
absorption out of D, and prove that it is Markov and satisfies a strong Markov
property at appropriate stopping times, enough to entail Condition (F0) for L =
K} for some k = 1. We introduce the natural path space for the process X as

9D = {w Ry - Du{0}: Yk =1, wiscontinuous on [0, T (w)]

and w(t) =0, Vit = suprk(w)},
k=1
where 7 (w) :=inf{t = 0: w; € D\ K;}. Note that &2 contains functions which are
not cadlag since they may not have a left limit at 75— and, indeed, it is easy to
construct examples where X is not cadlag IP’-a.sE] Note also that this definition
means that we are looking for a process X such that

Ty := SUPTD\K;.»
k=1

2For example, one may consider D the open disc of radius 1 centered at 0 in R?, o = Id and
b(x) = (=x2 B(Ix]), x1 B(Ix])) where x = (x1, x2) € D. Decomposing the process in polar coordinates
(R, 0p) := (1X¢l, arctan(Xgl) /X;Z))), the radius Ry is a 2-dimensional Bessel process, and X; is sent
to 0 when Ry hits 1 (in a.s. finite time). The angle 6 is solution to d6; = Rt_ldW[ —B(Ry)dt before
75, for some Brownian motion W. Hence, if B(r) converges sufficiently fast to +oowhen r — 1, 0;
a.s. converges to —oo when ¢ — 75—, so X does not admit a left limit at time 7.
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which is the natural definition of 75 when the left limit of X at time 75 does not
exist.
We endow the path space 2 with its natural filtration

gt:U(ws,SS t): V 0(wtl,w,2,...,wtn)
n=1,0shH<BH<..<t,<t

and we follow the usual method which consists in constructing for all x € D a
probability measure P, on & and a stochastic process (By, t = 0) on 2 x € (R4, R"),
such that B is a standard r-dimensional Brownian motion under P, ® W', where
W’ is the r-dimensional Wiener measure and such that wy = x P, ® W™ -almost
surely and the canonical process (wy, t = 0) solves the SDE for this Brown-
ian motion B on the time interval [0, sup; T (w)) ﬂ

For this construction, we use the fact that b and o can be extended out of Kj
to R? as globally Holder and bounded functions by and o and such that oy is
uniformly elliptic on R?. Hence (see e.g. [563} Rk. 5.4.30]) the martingale problem
is well-posed for the SDE

dxF =bp(xhdr+o (X5 dB,;.

Let us denote by P the solution to this martingale problem for the initial condi-
tion x € R%. This is a probability measure on € := € ([R,,R%), equipped with its
canonical filtration (%;) ;>¢.

For all k = 1, we define T’k(w) = inf{t = 0, w; ¢ int(Ky)}, where int(K}) is
the interior of Ki. Since the paths w € & or € are continuous at time ‘L';C and
RY\ int(Ky) is closed, it is standard to prove that T;C is a stopping time for the
canonical filtration (%;);>0 on 2 and for the canonical filtration (%) ;>0 on 6.

We define as usual the stopped o-fields 9,;6 and éﬁrk , and we define for all x €

int(Kj) the restriction of P, to ‘%L as the restriction of IP’; to égr;c , where we
can identify the events of the two filtrations since they both concern continu-
ous parts of the paths. This construction is consistent for k and k + 1 (meaning
that if x € Ky, they give the same probability to events of %;,) by uniqueness of
the solutions PX and PX*! to the above martingale problems. Hence there exists
a unique extension P, of the above measures to \/ > 9,;6 . Note that, because of
the specific structure of the path space &, we have

k\>/1377;“ =P (12.1)

3Since o(x) is non-degenerate for all x € D, the space € (R4,R") equipped with the Wiener
measure W’ is only used to construct the Brownian path B; after time supy, 7 (w) and could be
omitted for our purpose since we only need to construct the process B up to time supy 7 (w).
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To check this, it suffices to observe that, for all £+ = 0 and all measurable A c
Du{o},

fwre A}={t<71y, wie AND}U{Ty<t, 0€ A}

=(Ulr<7), w e AnD}
k=1

, (12.2)

u(ﬂ{r;cs t,0€ A}
k=1

hence {w; € A} € Vi1 ngk , and, proceeding similarly, the same property holds
for events of the form {w,, € Ay,..., w;, € Apl.

We recall (see [53] Section 5.4]) that (IP’;) +epd forms a strong Markov family
on the canonical space €. Our goal is now to prove that the family of probability
measures (Py) xe puis}, where Py is defined as the Dirac measure on the constant
path equal to 9, forms a Markov kernel of probability measures, for which the
strong Markov property applies at well-chosen stopping times.

We first need to prove that (°,) xep defines a kernel of probability measures,
i.e. that x — P, (I') is measurable for all events I" of Z,,. We prove it for an event
of the form {w; € A}, the extension to events of the form {wy, € Ay,..., w;, € Ay},
and hence to all events of ., being easy. This follows from (12.2):

Py(w;e A= lim Py(r<7), w;€ AND)+1gea lim Py(r). < 1)
k—+oo k—+oo

. k+1 . k+1
:kl—l»r-il:lool]:bx+ (r<7}, wteAnD)+ﬂa€AkEToopx+ (T < D).

Since all the probabilities in the right-hand side are measurable functions of x,
sois x— P, (w; € A).

Now, let us prove that (X;, t = 0) is Markov. It is well-known that this is im-
plied by the following property: foralln =1land0<#f; <... <t and Ay, ..., Aps1
measurable subsets of D U {0},

Px(wtl €Ay,..., Wy, € Apy1) =Ey ]lwtleAl,...,wtneAn[pwtn (wtnﬂ—tn €Ans1)|.

We prove this property only for n = 1. It is easy to extend the proof to all values
of n=1. We have

Px(wy € Ay, wy, € Ag) =Py (wy, € Ay, Wy, € A2, 75 > 12)

+Py(wy € A1, 11 <T5 =< 1) 1gen, +Px(To < 11)1sca,na,-
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Now, using that (P¥) . pa is a Markov family for all k =1,

Px(wtl € Ay, Wy, € AZ’Ta > 17)

= lim Pyx(wy, € A1, wy, € A, Tk > 1)

k—o0
= klim I]J’l;(wt1 €A, W, €A, Tk > 1)
—00
. k k
= khm [Ex [lwtlEAl,t1<‘[k|Pw[1 (wtz—h € AZ!T]C >l tl)]
—00

k—o0

HWZIEAI,I1<T]€[FDLU,I (wtz—tl € AZ) Tk > t2 - tl)]
= [EX [ﬂwrleAl,t1<r,3[FDw,1 (wfzftl € AZ!Ta > t2 - tl)J

and similarly

Pyx(wy, € A1, 11 <75 < 12)1geca, =Ex [Ilw,leAl,tha[P’w,l (To< b — t1)] Loea,
= |Ex I::H-W[IEAI,[1<T0[FDLU[1 (Ta = t2 - tl, wtg—l’l € AZ)] .

Since
Px(Ts =< t1)1sea,na, =Ex []lwtleAl,TaSﬁPwtl (W1, € Az)] )

we have proved that P (w;, € A1, wi, € A2) = Ex | 1, e4,Pu, (Wi, 4 € 42). This
ends the proof of the Markov property.

To conclude this subsection, let us prove that the strong Markov property
holds for all stopping times 7 where F c D is closed in D. Note that 7 is indeed
astopping time for the filtration &%; since T = sup,; v F/\T’k = SUpy. T(FuD)Uint(Ki)®»
where the complement is understood in R%, (Fu D€) uint(K})€ is a closed subset
of R and all w € 9 is continuous at time T(FuD)uint(K,)c- Let X €D, f1,1,s =0
and A, B c D be measurable sets. We proceed as above: first, observe that

{wy €A, 1 <Tp =<1y, Wy 4+s€ B}

= Jlwy €A ti<tp<ty, Wrpss€B, wr €Ky Vre[0,Tp + sl}
/=1
! !
= Jlw, €A 1 <TpAT, <1y, Wrnt,+s € B, Ty >Tr+ s}
/=1

Since T A ng is a ¥;-stopping time on € (R, R%) and using the strong Markov
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property under P/, we deduce that

Px(wy €A, 11 <TF =<1, W 4+s € B)

= lim Plw, €A i <TRAT, <1, Wyt +s € B, Ty > Tp+3)
—+00

= lim [Ei
{—+o0

4 1
lwtleA, I1<T]:/\T}St2|]:DuITFAT,[ (ws€ B, s< Tg)

— 1; 0 14 /
= gl_l}zloo[Ex []lwtleA, l‘1<TFS‘L"€/\t2|PwTF(wS €B, s< Té)]

=,

Ilw,leA, t1<TFST5/\t2[FDwTF (wseB, s< Ta)] .
Similarly,

I]:Dx(wtl €A, nh<Tp=1i, Wrpt+s = a)

=€lil}_l Pllwy, €A i <Tp<tyAT), T)<Tp+5)
—+00

=[E,

lw,IEA, t1<rFst2/\Ta[FDw,F (ws = 0)]
and thus

Px(wy €A, 1 <Tp =<1z, Wr15€B) =y

lwtleA, t1<rpst2A15Pw,F (ws € B)]

for all A,B ¢ D u {0} measurable. The previous computation extends without
difficulty to prove

Py (wn €Ay, ..., W, €Ay, ty <TF=1lpt1, Wrpts, €B1,..., Wrpys, € Bm)
=[Ey []lwtlt—:Al,...,wtneAn, tn<‘rpst,,+1n:bww (ws, € By,..., Ws,, € Bm)] (12.3)

foraln,m=1,0<t1<...<ty:1,0<s1<...<spand A,...,A,,B1,...,.B C
D u {0} measurable. This implies the strong Markov property at time 7, in the
sense that, forall k=1, all xe Eand allT € Z,,

Py (w' el | H;,) = Pu,, (), Px-almost surely,
where w'F = (wy,+5,§ 20) and
Sy, = U({wtl €AL..., W, €Ay, ty <TF < tpi1},
0<ti<..<tys1, 4A1,...,Ap€D measurable).

This form of strong Markov property at time 7 ¢ is enough for our purpose, since
it entails (FO) for L = K} for all k = 1. It will be also needed in the next section.

102



12.2 Harnack inequalities

Our goal here is to check Conditions (F1) and (F3) for the diffusion process con-
structed above. We will make use of general Harnack inequalities of Krylov and
Safonov [59].

Proposition 12.1. There exist a probability measurev on D and a constant t, >0
such that, for all k = 1, there exists a constant by > 0 such that

P.(X;, €)= biv(), Vx€ Ky (12.4)

Moreover, for all k = 1 such that Ky is non-empty,

infxeKk [FDx(t < Ta)

in (12.5)
120 SUP e g, Pi(t<Tp)

Proof. Consider a bounded measurable function f : D — R with || flloo =1 and
define the application u : (f,x) € Ry x E — Ex[1;<7,f(X,)]. It is proved in [18]
using [59] that, for all k = 1, there exist two constants Ni > 0 and d; > 0, which
do not depend on f (provided || flloo < 1), such that

udy+ Gi,x) < Nyu(dy +252,y), for all x, y € K such that [x — y| < d¢. (12.6)

Note that the proof given in [18] makes use of the following strong Markov prop-
erty: for all open ball B such that B c Ki forsome k=1, all xe€ B, t =0 and all
measurable f: DU {0} — Ry,

Ex [F XD Leppee] = Ex [Trpeix,, [FOG-0] |, |-
This property follows from (12.3).
Step 1 : Proof of

Fix x; € D and k; = 1 such that x; € int(K,). Let v denote the conditional law
Px, (Xak1 82 €0k + 6%1 < 174). Then, for all measurable A < D uU {0}, Harnack’s
1

inequality (12.6) with f = 1 4 entails that, for all x € D such that |x — x| < 6, A

d(X], D \ Kkl))

Py, 6k, + 5%1 <75)
Ni

[FDx(X5k 4262 € A) = v(A).
1 ky

1

Since the diffusion is locally elliptic and D is connected, for all k = 1, there exists
a constant d;. > 0 such that

inf [P’x(Xl € B(x1,5k1 /\d(xl,D\Kkl)) = dk.

x€Kj
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This and Markov’s property entail that, for all x € K,

Py, 6k, + 6%1 <15)

P, (X €)= V.
x( 1454, +26% ) = d Ne

This implies the first part of Proposition[12.1

Step 2 : Proof of

Fix k = 1 such that K} is non-empty and consider ¢ > k such that Kj is in-
cluded in one connected component of int(Ky). For all ¢t = 6, +20 2 the inequal-
ity applied to f(x) =Py (t—0¢— 262 < 73) and the Markov property entail
that

Py (t— 6? <715) = N/P,(r<7yp), forall x, y € Ky such that |x — y| < §,.
Since s — P (s < 1p) is non-increasing, we deduce that
Px(t<75) < N/Py(t <1p), forall x, y € K, such that |x — y| < §,.

Since K has a finite diameter and is included in a connected component of
Ky, we deduce that there exists N ]’C equal to some power of N, such that, for all
t=60+267,

Py(t <79) < NP, (t <), forall x,y € K.

Now, for ¢ < §, + 262, we simply use the fact that x — P, (6, + 25? < Tp) is uni-
formly bounded from below on K by a constant 1/N;’ > 0. In particular,

P.(t <75) <1< NJPy(6¢+265 <75 < NJPy(t <75), forall x,y € K.

This concludes the proof of Proposition|12.1 O

12.3 Proof of Theorem[4.1]

Our aim is to prove that Condition (F) holds true with L = Kj. for some k= 1. We
have already proved (F0), (F1) and (F3) with L = K} for any k = 1. Hence we only
have to check (F2). Fix p; € (A9, A1), p2 € (g, p1) and p € (1,A;/p;1) and define

y1(x) =px)YP, VxeD.
Fix p! € (p1,A1/p) and

. 251(C+Ay) log2
T Ahi-pey o pi-pr
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where the constant C comes from [@.5). Set L = K}, with kj large enough so that
v(Kk,) > 0 and, using (4.6),

i
Px(s1 < TKy, N Tg)<e (Pr+CIpte

for all x € Dy.
From the definition of 1y and applying the same argument as in Step 2 of
the proof of Proposition with f(x) = Px(X;_5,_552 € L) with £ large enough
4
to have K}, included in one connected component of K,, we deduce that

liminfe?! infP, (X, € L) = +oo,
t—+o00 xXeL

and hence the last line of (F2) is proved with y, = e™°2.

Let us now check that the first line of Assumption (F2) holds true for all x €
Dy and then for all x € D\ Dy. For all x € Dy, we have ¥ (x) < SUP e p,
var phi” P(x) < 400, and hence, for all £ € sy, 2], using Holder’s inequality and
the definition of kg,

p-1
Ex (w1(X0) Lr<r,nry) < Ex (Licr,@(X0) P Px(t <11 ATg) 7

p-1
<@x)V'PeCLIPP () <TiATH) P (12.7)

<e Pt <o Py (x).
To prove (12.7), we used the fact that Z¢ < C < C¢ and It6’s formula to obtain
P, < eClp. Since this argument is used repeatedly in the sequel, we give it in

details for sake of completeness. It follows from Itd’s formula that, for all k = 1,
P, -almost surely,

_ c ! -
e C(MTKk)(p(Xt/\TK,ﬁ) :<P(x)+f0 JlSSTKﬁe e (g(p(XS)—C(P(Xs)) ds

I3
+f ]lserc e_CSV(P(Xs)*U(Xs)st-
0 k

Since V¢ (x) and o (x) are uniformly bounded on K, the last term has zero ex-
pectation, and thus

[Ex e_C(tATKli)

(1) (XMTKE) =px).

Letting k — 400, we deduce form Fatou’s lemma that

Ex[e™C T er,0(X))] < (%) (12.8)
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as claimed.

This proves the second line of (F2) for all x € Dy and y; = e 1.

Now, for all x € D\ Dy, since Dy is closed in D, it follows from the strong
Markov property at time 7 p, that

[Ex (WI (th)ﬂt2<‘[1‘/\'[5) = [Ex (]ll‘z—S]<T1‘/\Ta/\TDO |EX[2_31 (WI(X31)181<T[‘/\T5))

+[EX (:H'TDOStZ_Sl[EXTDO (1//1(Xt2—u)]]-t2—u<775/\TL) ‘u—r ) (129)
=Tp,
Using Hoélder’s inequality and (12.8), we deduce that, for all y € D,

s1C s1C
Ey (¥1(Xs) Ls<r,nr,) < Ey (X)) Ls<r,) P <€ 7 @P =€ b yi(y).
Hence, the first term in the right-hand side of satisfies

s1C
[Ex (]]-[2—51<TL/\T5/\TD0 [EX,Z,SI (1//1 (Xsl)]lsl<TL/\ra)) =evr |Ex (]]-tz—SI<TL/\Ta/\TD0w1 (th—sl)) .
As a consequence, using again Hoélder’s inequality and applying as above Itd’s
formula using that Z¢(x) < —A1¢(x) for all x ¢ Dy, one has

R 1/p
Ey (]ltz—sl<rLAroATD0[EX,2,sl (Wl(Xsl)ﬂsl<TL/\ra)) =e roer @x)

_ pl+ALIp
<e ™ 2 1//1 (x))
where we used in the last inequality that #, = %}ml). Moreover, using ([12.7),
1
we obtain that the second term in the right-hand side of (12.9) satisfies

[EX (lT[)O <Ilh—S] [EXTDO (1//1 (th—u) ]l tz-Lt<Ta/\TL) u:TDO)
<e M 2P (tp, <t —$1) < e_p;tzwl(x).
We finally deduce from (12.9) and from the definition of L = K, that

Ex (W1 (X0,) Lpy<r,nry) < 26 P1200 (x) < e P20, (x),

where we used that f, >=1og2/(p, — p1). This concludes the proof that the second
line of (F2) holds true.
Since ¢ is locally bounded, sup; ¢ < oo, and hence, using again (12.8), we
deduce that, forall r =0,
sup Ex(y1(X1)1s<r,) < sup Ex(@(X)1;<r,) < €“* supp(x) < oo,
xeL xeL xeL
which implies the third line of Assumption (F2).
In addition, because of the local uniform ellipticity of the diffusion X, for all
np=1,yy:= ZZ":O Py 1} is uniformly bounded away from zero on all compact
subsets of D. This and Theorem 3.5|concludes the proof of Theorem[4.1]
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12.4 Proof of Corollary[4.2]
Using Theorem there exists /16 such that, for all x € D,

n(x)= lim eM'Py(r<1y).
t—+o0o

We choose in the definition of A¢ a ball B such that vosp(B) > 0 (recall that A is
independent of the choice of B). Given x € D such that n(x) > 0,
lim eM'P (X, € B) =1(x)vqsp(B) € (0,+00).
—+00
Hence, Ay = )L() and the infimum in the definition of A is a minimum. The rest
of the properties stated in Corollary[4.2]are direct consequences of Theorem|3.5
Let us now prove that 7 is %2. First, it follows from [79, Theorem 7.2.4] that
eMIP (f < 15) is continuous for all £ = 0 (see [18] for a detailed proof). Hence
the uniform convergence in Theorem[2.5implies that 7 is continuous on D.
Now, let B be any non-empty open ball such that B ¢ D. We consider the

following initial-boundary value problem (in the terminology of [39]) associated
to the differential operator £ defined in

oru(t,x)—Lu(t,x)— Agu(t,x)=0 forall (¢,x)€ (0,T]x B,
u(0,x) =n(x) forall x€ B,
u(t, x) =n(x) for all (¢, x) € (0, T] x 0B.

Since the coefficients of % are Holder and uniformly elliptic in B and since 7 is
continuous, we can apply Corollary 1 of Chapter 3 of [39] to obtain the existence
and uniqueness of a solution u to the above problem, continuous on [0, T] x B
and €Y2((0, T] x B). Now, we can apply Itd’s formula to eMSy(T — s, X;): for all
s<1pc AT and all x € B, P,-almost surely,

s 0
elosu(T—s,Xs):u(T,x)+f ehor (—a—L:-k!fu-Hlou (T-rX,)dr
0

S
+[ MV uU(T -1, X,)o(X,) dB,.
0

Since u is bounded and continuous on [0, T] x B and Vu(t, x) is locally bounded
in (0, T] x B, it follows from standard localization arguments that

w(T,x) = Ex [TV U(T = (T A Tpe), Xra,e)

=Ex [eAO(TATBC)U(XT/\TBc) .
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Now, the Markov property and the fact that P;n =e

~Molpy entail that eloin(X,) is

amartingale on (2, (%) s=0, Px), hence

e/lo(T/\TBc)

n(x) =Ex N(X7arge) | = ulT, x).

Therefore, 1 € %2(D) and Zn(x) =—-Aon(x) forall x e D.
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