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Abstract

For Markov processes with absorption, we provide general criteria en-
suring the existence and the exponential non-uniform convergence in to-
tal variation norm to a quasi-stationary distribution. We also characterize
a subset of its domain of attraction by an integrability condition, prove the
existence of a right eigenvector for the semigroup of the process and the
existence and exponential ergodicity of the Q-process. These results are
applied to one-dimensional and multi-dimensional diffusion processes,
to pure jump continuous time processes, to reducible processes with sev-
eral communication classes, to perturbed dynamical systems and discrete
time processes evolving in discrete state spaces.
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1 Introduction

Let (X t , t ∈ I ) be a Markov process in E ∪ {∂} where E is a measurable space and
∂ 6∈ E , with set of time indices I which might be R+ or 1

kZ+ for some k ∈ N :=
{1,2, . . .}, where Z+ := {0,1, . . .}. For all x ∈ E ∪ {∂}, we denote as usual by Px the
law of X given X0 = x and for any probability measure µ on E ∪ {∂}, we define
Pµ = ∫

E∪{∂}Px µ(d x). We also denote by Ex and Eµ the associated expectations.
We assume that ∂ is absorbing, which means that X t = ∂ for all t ≥ τ∂, Px -almost
surely, where

τ∂ = inf{t ∈ I , X t = ∂}.

Our goal is to study the existence of quasi-limiting distributions ν on E for the
process X , i.e. a probability measure ν such that

lim
t∈I , t→+∞

Pµ(X t ∈ A | t < τ∂) = ν(A)
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for some probability measure µ on E and for all A ⊂ E measurable. Such a mea-
sure ν is a quasi-stationary distribution for X , i.e. a probability measure such
that Pν(X t ∈ · | t < τ∂) = ν(·) for all t ∈ I . We refer the reader to [25, 68, 82] for
general introductions on quasi-stationary distributions. In particular, it is well-
known that there exists a constant λ0 ≥ 0 such that PνQSD (t < τ∂) = e−λ0t for all
t ∈ I .

More precisely, our first goal is to give general criteria involving Lyapunov-
type functions ϕ1 and ϕ2 ensuring the existence of a quasi-stationary distribu-
tion νQSD such that

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤Cαt µ(ϕ1)

µ(ϕ2)
, ∀t ∈ I , (1.1)

for some constants C ∈ (0,+∞) and α ∈ (0,1) and for all probability measure µ
on E such that µ(ϕ1) <+∞ and µ(ϕ2) > 0, where µ(ϕ) := ∫

E ϕ(x)µ(d x). Here, the
total variation distance is defined as

‖µ1 −µ2‖T V = sup
f :E→[−1,1] measurable

|µ1( f )−µ2( f )|.

This measure νQSD is the only quasi-stationary distribution ν such that ν(ϕ1) <
+∞ and ν(ϕ2) > 0. Our second goal is to show how our criteria can be ap-
plied to a wide range of Markov processes, including several classes of processes
for which even the existence of a quasi-stationary distribution was not known,
such as diffusions in irregular domains or perturbed dynamical systems in un-
bounded domains.

General criteria ensuring that the convergence in (1.1) holds uniformly with
respect to the initial distributionµhave been studied in [6, 15]. In this case, νQSD

is the quasi-limiting distribution of any initial distributions. However, these re-
sults do not apply to processes admitting several quasi-stationary distributions,
which is known to happen in a variety of specific cases, even for processes ir-
reducible in E (including branching processes [77, 2, 60, 63], one-dimensional
birth and death processes [80, 37, 36, 85] and one-dimensional diffusion pro-
cesses [62, 66]). In addition, as for non-absorbed processes, uniform conver-
gence with respect to the initial distribution only happens for processes that
come back quickly in compact sets [69, 15] or are killed fast [83]. The present pa-
per provides general criteria generalizing those of [15] to cases of non-uniform
convergence and, contrary to the above cited references, does not assume that
Px (t < τ∂) > 0 for all x ∈ E and all t ∈ I .

Given a quasi-stationary distribution ν, its domain of attraction is defined
as the set of probability measures µ on E such that Pµ(X t ∈ · | t < τ∂) converges
in total variation norm to ν. In the case where the domain of attraction of ν
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contains all Dirac masses, ν is called the Yaglom limit, or the minimal quasi-
stationary distribution. In all the models admitting several quasi-stationary dis-
tributions cited above, it has been proved that the minimal quasi-stationary dis-
tribution exists. The convergence (1.1) implies in addition that the domain of
attraction of the Yaglom limit νQSD actually contains all measures µ such that
µ(ϕ1) <∞ and µ(ϕ2) > 0.

Our first step is to provide criteria ensuring (1.1) for all t ∈ Z+. We also
obtain several consequences, including a larger set of initial distributions be-
longing to the domain of attraction of νQSD and a geometric convergence for
a stronger norm than the total variation. We also prove the geometric conver-
gence in L∞(ϕ1) of x 7→ eλ0nPx (n < τ∂) as n → +∞ to a function η satisfying
Ex (η(Xn)1n<τ∂) = eλ0nη(x) for all n ∈ Z+ and x ∈ E , and deduce a spectral gap
property for the semigroup of the absorbed process (Xn ,n ∈ Z+). Finally, we
also obtain the existence of the process (Xn ,n ∈ Z+) conditioned to never be
absorbed (the so-called Q-process) and its geometric ergodicity (we refer the
reader to [1] and references therein for general considerations on the link be-
tween Q-processes and quasi-stationary distributions through the α-theory of
general Markov chains). All these results are stated in Section 2 and proved in
Sections 9 and 10.

The last criterion assumes that (Xn ,n ∈Z+) is aperiodic but of course applies
to 1-periodic processes (X t , t ∈ I ). Under additional aperiodicity assumptions,
we show in Section 3 how the previous results extend to general time indices t ∈ I
and provide practical versions of our criteria for continuous-time processes. We
also provide simple criteria allowing to check our conditions and show that the
known criteria for uniform convergence in (1.1) obtained in [15] can be recov-
ered using our approach. The results of this section are proved in Section 11.

These results allow us to put in a unified framework a large body of works
on quasi-stationary distributions as illustrated by the rest of the paper, which
is devoted to the application of our abstract criteria. We start in Section 4 with
diffusion processes in Rd , d ≥ 1, absorbed at the boundary of a domain D . Our
analysis provides for example the following general result.

Theorem 1.1. Assume that E = D is a bounded connected open subset of Rd and
that (X t , t ∈R+) is solution to

d X t = b(X t )d t +σ(X t )dBt

until its first exit time τ∂ from D, where B is a r -dimensional Brownian motion
and b : Rd → Rd and σ : Rd → Rd×r are Hölder functions, such that σ is uni-
formly elliptic. Then, the process X has a unique quasi-stationary distribution
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νQSD which satisfies

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤ 1

µ(ϕ2)
αt , ∀t ∈ [0,+∞)

for some positive function ϕ2 on D and a constant α ∈ (0,1). In addition, there
exists a positive, bounded C 2(D) function η such that

d∑
i=1

bi (x)
∂η

∂xi
(x)+ 1

2

d∑
i , j=1

r∑
k=1

σi k (x)σ j k (x)
∂2η

∂xi∂x j
(x) =−λ0η(x), ∀x ∈ D

and
η(x) = lim

t→+∞eλ0tPx (t < τ∂), ∀x ∈ D,

where the convergence is uniform in D.

We emphasize that one of the main contributions of this result with respect
to the existing literature (see for example [73, 42, 10, 57, 33, 12, 18]) is that it
applies to any bounded domain D without any regularity assumption. Theo-
rem 1.1 is in fact obtained in Section 4 as a particular case of a criterion for
unbounded domains and coefficients b and σ only locally Hölder and locally
uniformly elliptic in D . We also consider the case of diffusions with killing in
Section 4.4. All these results are proved in Section 12.

Absorbed one-dimensional diffusions with or without killing have received
a lot of attention (see for instance [64, 24, 62, 66, 78, 9, 61, 58, 48, 71, 19, 17]). We
consider these models in Section 4.5. Our main contributions with respect to the
literature are the characterization of a larger subset of the domain of attraction
of the minimal quasi-stationary distribution, weaker regularity of the drift and
diffusion coefficients and explicit general bounds onϕ1 andλ0 allowing to check
our criteria.

The case of continuous-time Markov processes in discrete state spaces is
considered in Section 5 with application to multitype birth and death processes
absorbed at the exit of any connected E ⊂Zd+ (in the sense of the nearest neigh-
bors structure of Zd+). Note that the quasi-stationary behavior of finite state
space processes [29] and of one-dimensional birth and death processes [54, 43,
11, 55, 80, 81] has been extensively studied using spectral methods that do not
generalize easily to the multi-dimensional countable state-space setting. The
quasi-stationary behavior of multi-dimensional birth and death processes was
studied in the case of uniform convergence in (1.1) in [16, 18, 22, 23].

All the previous examples assumed irreducibility of X in E . In Section 6, we
show that our criteria also apply to reducible cases, as those considered in [72]

6



(for Galton-Watson processes), [44] (for discrete processes), [14] (for Feller dif-
fusions) and [13, 82] (in the finite case). We first give a general criterion in Sub-
section 6.1 and we study in details an example with a countable infinity of com-
munication classes in Subsection 6.2.

In Section 7, we consider general models in discrete time and continuous
space, first extending the criteria of [6, 12] in order to cover the case of Euler
schemes for stochastic differential equations absorbed at the boundary of a do-
main (as defined in [65, 40]) and penalized semigroups (as in [31, 32]; note that
all our results naturally extend to penalized homogeneous semigroups, provided
the penalization rate is bounded from above, see [20]). We then study in de-
tails the case of perturbed dynamical systems, as those considered for example
in [5, 4, 49], where the quasi-stationary behavior was studied using the criterion
of [6]. As an illustration of our method, let us mention the following original
result.

Theorem 1.2. Let D be a measurable set of Rd with positive Lebesgue measure
and let ∂ 6∈ D. Assume that

Xn+1 =
{

f (Xn)+ξn if Xn 6= ∂ and f (Xn)+ξn ∈ D,

∂ otherwise,

where f :Rd →Rd is a locally bounded measurable function such that

|x|− | f (x)| −−−−−−→
|x|→+∞

+∞

and (ξn)n∈N is an i.i.d. non-degenerate Gaussian sequence in Rd . Then (1.1) is
satisfied for ϕ1(x) = e |x| and a positive measurable function ϕ2 on D.

Finally, we study in Section 8 the case of processes in discrete time and dis-
crete space. This is the most studied situation in the literature since it cov-
ers both the Galton-Watson processes [88, 46, 51, 2] and the general discrete
case [28, 77, 37, 38, 36, 35, 44, 67]. We first show in Subsection 8.1 that our
results allow to recover the general criterion of [35], based on the theory of R-
positive matrices. We then consider general population processes dominated by
population-dependent multi-type Galton-Watson processes in Subsection 8.2.
The case of population-dependent Galton-Watson processes with a single type
was studied in [44] using quasi-compactness methods. We also obtain as a corol-
lary results on subcritical multi-type Galton-Watson processes. We do not re-
cover the optimal L logL assumption on the offspring distribution [51, 47] for
the existence of a minimal quasi-stationary distribution νQSD having finite first
moment, but we obtain a stronger form of convergence in (1.1), a larger subset
of its domain of attraction and stronger moments properties on νQSD .
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2 Main Results

Let (X t , t ∈ I ) be a Markov process in E ∪ {∂} where E is a measurable space and
∂ 6∈ E , with set of time indices I which might be Z+ = {0,1, . . .}, R+ or 1

kZ+ for
some k ∈N= {1,2, . . .}. We define the absorption time τ∂ as

τ∂ = inf{t ∈ I , X t = ∂}.

In this section, we study the sub-Markovian transition semigroup of X consid-
ered at integer times, (Pn)n∈Z+ , defined as

Pn f (x) = Ex
(

f (Xn)1n<τ∂
)

, ∀n ∈Z+,

for all bounded or nonnegative measurable function f on E and all x ∈ E . We
also define as usual the left-action of Pn on measures as

µPn f = Eµ
(

f (Xn)1n<τ∂
)= ∫

E
Pn f (x)µ(d x),

for all probability measure µ on E and all bounded measurable f . We make the
following assumption.

Assumption (E). There exist positive integers n1 and n2, positive real constants
θ1,θ2,c1,c2,c3, two functions ϕ1,ϕ2 : E → R+ and a probability measure ν on a
measurable subset K ⊂ E such that

(E1) (Local Dobrushin coefficient). ∀x ∈ K ,

Px (Xn1 ∈ ·) ≥ c1ν(·∩K ).

(E2) (Global Lyapunov criterion). We have θ1 < θ2 and

inf
x∈E

ϕ1(x) ≥ 1, sup
x∈K

ϕ1(x) <∞

inf
x∈K

ϕ2(x) > 0, sup
x∈E

ϕ2(x) ≤ 1,

P1ϕ1(x) ≤ θ1ϕ1(x)+ c21K (x), ∀x ∈ E

P1ϕ2(x) ≥ θ2ϕ2(x), ∀x ∈ E .

(E3) (Local Harnack inequality). We have

sup
n∈Z+

supy∈K Py (n < τ∂)

infy∈K Py (n < τ∂)
≤ c3
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(E4) (Aperiodicity). For all x ∈ K , there exists n4(x) such that, for all n ≥ n4(x),

Px (Xn ∈ K ) > 0.

Note that it follows from (E2) that θ2 ≤ 1 and thus θ1 < 1.
In Section 3, criteria implying (E) and adapted to the continuous time setting

are provided. Several examples of Markov processes satisfying this assumption
are provided in Sections 4 to 8.

In the rest of this section, we state our main results. We start with the expo-
nential contraction in total variation of the conditional marginal distributions
of the process given non-absorption. Its proof is given in Section 9.

Theorem 2.1. Assume that Condition (E) holds true. Then there exist a constant
C > 0, a constant α ∈ (0,1), and a probability measure νQSD on E such that∥∥∥∥ µPn

µPn1E
−νQSD

∥∥∥∥
T V

≤C αn µ(ϕ1)

µ(ϕ2)
, (2.1)

for all probability measure µ on E such that µ(ϕ1) <∞ and µ(ϕ2) > 0. Moreover,
νQSD is the unique quasi-stationary distribution of X that satisfies νQSD (ϕ1) <∞
and νQSD (ϕ2) > 0. In addition νQSD (K ) > 0.

Note that µ(ϕ2) > 0 and (E2) imply that µPnϕ2 > 0 and hence µPn1E > 0 for
all n ∈N. Hence the left-hand side of (2.1) is well-defined.

Remark 1. The last result characterizes a subset of the domain of attraction of
νQSD , defined here as the set of probability measures µ on E such that Pµ(Xn ∈
· | n < τ∂) converges to νQSD in total variation when n → +∞. Note that, for a
given semigroup (Pn), different choices ofϕ1 (andϕ2) satisfying Assumption (E)
can lead to bigger subsets of the domain of attraction. In particular, observing
that, for all p ≥ 1, Hölder’s inequality entails

P1(ϕ1/p
1 ) ≤ (θ1ϕ1 + c21K )1/p ≤ θ1/p

1 ϕ
1/p
1 + c2(p)1K

with c2(p) := (1+ c2/θ2)1/p − 1, we see that (ϕ1/p
1 ,ϕ2) satisfies Assumption (E)

for all p < logθ1/logθ2. Therefore, the domain of attraction of νQSD actually

contains any probability measure µ such that µ(ϕ2) > 0 and µ(ϕ1/p
1 ) < ∞ for

some p < logθ1/logθ2.

In Theorem 2.1, we obtain an exponential rate of convergence in total varia-
tion, uniform with respect to initial distributionsµ such thatµ(ϕ1)/µ(ϕ2) ≤ A for
any constant A. As will appear in applications, the function ϕ2 may have com-
pact support, and hence µ(ϕ2) could vanish for a large set of initial measures
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µ. However, the convergence toward the quasi-stationary distribution νQSD can
happen for such measures. The next result shows that it is the case as soon as
µ(ϕ1) <∞ and the process can reach K under Pµ, that is if µ(E ′) > 0 where

E ′ := {x ∈ E : ∃k ≥ 0 s.t. Pk1K (x) > 0} .

In fact,

E ′ = {
x ∈ E : ∃k ≥ 0 s.t. Pkϕ2(x) > 0

}
. (2.2)

To prove this, we first observe that E ′ ⊂ {
x ∈ E : ∃k ≥ 0 s.t. Pkϕ2(x) > 0

}
since ϕ2

is positive on K . For the converse inclusion, we notice that TK := inf{n ∈Z+, Xn ∈
K } is infinite Px -almost surely for all x ∈ E \ E ′. Hence it follows from (E2) that
Px (n < τ∂) ≤ Ex

[
1n<τ∂ϕ1(Xn)

] ≤ θn
1ϕ1(x) for all n ≥ 1 for such x. Since in addi-

tion (E2) entails that Px (n < τ∂) ≥ Ex
[
1n<τ∂ϕ2(Xn)

]≥ θn
2ϕ2(x) and since θ1 < θ2,

we deduce that ϕ2(x) = 0, and hence (2.2) is proved.
The next result follows immediately from Theorem 2.1 considering as initial

distribution the probability measure µPk /µPk1E .

Corollary 2.2. Assume that Condition (E) holds true. Consider any probability
measure µ on E such that µ(E ′) > 0 and µ(ϕ1) <∞. Then there exists k ≥ 0 such
that µPkϕ2 > 0 and∥∥∥∥ µPn

µPn1E
−νQSD

∥∥∥∥
T V

≤C αn−k µPkϕ1

µPkϕ2
, ∀n ≥ k, (2.3)

where the constants C and α and the measure νQSD are the same as in Theo-
rem 2.1.

Remark 2. Conversely, if µ(E ′) = 0, then Pµ(Xn ∈ K | n < τ∂) = 0 for all n ≥ 0.
Since νQSD (K ) > 0, we cannot have convergence in total variation of Pµ(Xn ∈
· | n < τ∂) to νQSD . Hence the domain of attraction of νQSD does not contain
measuresµ such thatµ(E ′) = 0. Examples where E 6= E ′ will be given in Section 6.

In particular, combining Remark 1 and Corollary 2.2, we obtain the following
subset of the domain of attraction of νQSD .

Corollary 2.3. Assume that Condition (E) holds true. Then the domain of attrac-
tion of νQSD contains all the probability measures µ on E such that µ(E ′) > 0 and

µ(ϕ1/p
1 ) <∞ for some p < logθ1/logθ2.

Note that, ifϕ1 is bounded and E ′ = E , there exists a unique quasi-stationary
distribution which attracts all the initial distributions.

The above results deal with convergence in total variation. We actually ob-
tain a stronger notion of convergence, proved in Section 10.2. Note that the
proof makes use of our next result Theorem 2.5, proved in Section 10.1.
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Theorem 2.4. Assuming that Condition (E) holds true, for any p ∈ [1, logθ1/logθ2),
there exist αp < 1 and a finite constant Cp such that, for all probability measure

µ on E such that µ(ϕ1/p
1 )/µ(ϕ2) < ∞ and for all real function h on E such that

|h| ≤ϕ1/p
1 ,

∣∣Eµ [h(Xn) | n < τ∂]−νQSD (h)
∣∣≤Cp

µ(ϕ1/p
1 )

µ(ϕ2)
αn

p . (2.4)

This result easily extends as in Corollary 2.2.

We also obtain under Condition (E) the asymptotic behavior of the absorp-
tion probabilities and an eigenfunction of P1 for the eigenvalue θ0, where θ0 ∈
(0,1] is such that

PνQSD (n < τ∂) = θn
0 , ∀n ∈N.

We recall that the existence of θ0 is a classical general result for quasi-stationary
distributions [68]. Note that, if τ∂ <∞ with positive Px -probability for all x ∈ K ,
θ0 < 1 and in this case, absorption occurs in finite time PνQSD -almost surely. The
case θ0 = 1 corresponds to the case where τ∂ =∞ PνQSD -almost surely. Because
of the next Theorem 2.5, under Condition (E), this will occurs if and only if there
exists x ∈ E such that τ∂ =+∞ Px -almost surely.

To state this result, we define for all positive functionψ on E the space L∞(ψ)
as the set of real functions f on E such that ‖ f ‖L∞(ψ) := supx∈E f (x)/ψ(x) <∞.
Note that (L∞(ψ),‖ ·‖L∞(ψ)) is a Banach space.

Theorem 2.5. Assume that Condition (E) holds true. Then, there exists a function
η : E →R+ such that

η(x) = lim
n→+∞

Px (n < τ∂)

PνQSD (n < τ∂)
= lim

n→+∞θ
−n
0 Px (n < τ∂), ∀x ∈ E , (2.5)

where the convergence is geometric in L∞(ϕ1/p
1 ) for all p ∈ [1, logθ1/logθ0). In

addition, infy∈K η(y) > 0, E ′ = {x ∈ E : η(x) > 0}, νQSD (η) = 1,

P1η= θ0η and θ0 ≥ θ2 > θ1.

Note that the last result implies that, when η is bounded, one can actually
take ϕ2 = η/‖η‖∞ in Condition (E2).

Theorem 2.5 implies that θ0 is an eigenvalue for P1 in L∞(ϕ1) and that the

associated eigenfunction η belongs to L∞(ϕ1/p
1 ) for all p < logθ1/logθ0. The

next result, proved in Section 10.3, shows a spectral gap between θ0 and the next

eigenvalue and that, actually, η ∈ L∞
(
ϕ

logθ0/logθ1

1

)
.
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Corollary 2.6. Assume that Condition (E) holds true and let P̂1 f (x) = Ex f (X1)
for all x ∈ E ∪ {∂} and f : E ∪ {∂} → R in L∞(1{∂} +ϕ1). Then each eigenfunction
h ∈ L∞(1{∂}+ϕ1) (possibly with complex values) of P̂1 for an eigenvalue θ (possibly
belonging to C) satisfies the following properties:

1. if h(∂) 6= 0 and if Px (τ∂ <∞) = 1 for all x ∈ E, then h is constant;

2. if h(∂) = 0, if there exists x ∈ E ′ such that h(x) 6= 0 and if νQSD (h) 6= 0, then
h = νQSD (h)η and θ = θ0 (with the convention η(∂) = 0);

3. if h(∂) = 0, if there exists x ∈ E ′ such that h(x) 6= 0 and if νQSD (h) = 0, then
|θ| ≤ θ0α1, where α1 < 1 is the constant of Theorem 2.4;

4. if h(∂) = 0 and h(x) = 0 for all x ∈ E ′, then νQSD (h) = 0 and |θ| ≤ θ1.

In addition, if |θ| > θ1 (which can only happen in cases 2. and 3. above), then there
exists a constant C such that

|h(x)| ≤Cϕ1(x)log |θ|/logθ11E ′(x), ∀x ∈ E . (2.6)

We end this section with the study of the Q-process and its ergodicity prop-
erties under Condition (E). In the next result, proved in Section 10.4, Ω= EZ+ is
the canonical state space of Markov chains on E and (Fn)n∈Z+ is the associated
canonical filtration.

Theorem 2.7. Condition (E) implies the following properties.

(i) Existence of the Q-process. There exists a family (Qx )x∈E ′ of probability mea-
sures onΩ defined by

lim
n→+∞Px (A | n < τ∂) =Qx (A)

for all x ∈ E ′, for all Fm-measurable set A and for all m ≥ 0. The pro-
cess (Ω, (Fm)m≥0, (Xn)n≥0, (Qx )x∈E ′) is an E ′-valued homogeneous Markov
chain.

(ii) Semigroup. The semigroup of the Markov process X under (Qx )x∈E ′ is given
for all bounded measurable function ϕ on E ′ and n ≥ 0 by

P̃nϕ(x) = θ−n
0

η(x)
Pn(ηϕ)(x). (2.7)

12



(iii) Exponential ergodicity. The probability measure β on E ′ defined by

β(d x) = η(x)νQSD (d x).

is the unique invariant distribution of the Markov process X under (Qx )x∈E ′ .
Moreover, for any p ∈ [1, logθ1/logθ2), there exist constants Cp > 0 and α̃p ∈
(0,1) such that, for all initial distributions µ on E ′ such that µ(ϕ1/p

1 /η) <∞
and for all measurable real function h on E ′ such that |h| ≤ϕ1/p

1 /η,∣∣EQµ
[h(Xn)]−β(h)

∣∣≤C α̃n
p µ

(
ϕ

1/p
1 /η

)
, ∀n ≥ 0, (2.8)

whereQµ =
∫

E ′Qx µ(d x). In addition, for all initial distributions µ on E ′,∥∥µP̃n −β∥∥
T V −−−−→

n→∞ 0. (2.9)

3 Other formulations and particular cases of Assumption (E)

In this section, we provide general comments on Assumption (E). Basic facts are
gathered in Subsection 3.1, Subsection 3.2 focuses on criteria adapted to contin-
uous time processes and we consider the case of uniform convergence in Theo-
rem 2.1 in Subsection 3.3.

3.1 General comments on the assumptions

When Conditions (E2) and (E4) are satisfied, one can use comparison techniques
on transition probabilities in order to check that Conditions (E1) and (E3) hold
true, as stated in the following proposition, proved in Subsection 11.1.

Proposition 3.1. Assume that Conditions (E2) and (E4) are satisfied and that
there exist two constants C > 0 and n0 ≤ m0 ∈N such that

Px (Xn0 ∈ ·∩K ) ≤C Py (Xm0 ∈ ·), ∀x ∈ E and y ∈ K . (3.1)

Then Condition (E) is satisfied. Moreover, there exists a constant C ′ > 0 such that,
for all x ∈ E and all n ≥ 0,

Px (n < τ∂) ≤C ′ϕ1(x) inf
y∈K

Py (n < τ∂).

In order to prove the existence of functions ϕ1 and ϕ2 in Condition (E2),
one may use probabilistic properties of the Markov process X , as stated by the
following lemmas, proved in Sections 11.2 and 11.3. The first lemma shows how
to construct ϕ2.

13



Lemma 3.2. Let K be a measurable subset of E. If there exists θ2 > 0 such that

inf
x∈K

θ−n
2 Px (Xn ∈ K ) −−−−−→

n→+∞ +∞,

then the function ϕ2 : E → [0,1] defined by ϕ2(x) = θ−1
2 −1

θ−`2 −1

∑`−1
k=0θ

−k
2 Px (Xk ∈ K ),

where ` is such that θ−`2 infx∈K Px (X` ∈ K ) ≥ 1, verifies infK ϕ2 > 0 and P1ϕ2(x) ≥
θ2ϕ2(x). Moreover, it implies that (E4) is satisfied.

The second lemma shows how to construct ϕ1. We define TK = inf{n ≥
0, Xn ∈ K }.

Lemma 3.3. Let K be a measurable subset of E. If there exists a constant θ1 > 0
such that

Ex

(
θ
−TK ∧τ∂
1

)
<+∞ ∀x ∈ E and C := sup

y∈K
Ey

(
EX1

(
θ
−TK ∧τ∂
1

)
11<τ∂

)
<+∞,

then the function ϕ1 : E → [1,+∞) defined by ϕ1(x) = Ex

(
θ
−TK ∧dτ∂e
1

)
satisfies

sup
K
ϕ1 <+∞ and P1ϕ1 ≤ θ1ϕ1 +C1K .

Conversely, if there exist two constants C > 0, θ1 > 0 and a function ϕ1 : E →
[1,+∞) such that supK ϕ1 < +∞ and P1ϕ1 ≤ θ1ϕ1 +C1K , then, for all θ > θ1,
there exists a constant Cθ such that

Ex
(
θ−TK ∧τ∂)≤Cθϕ1(x) ∀x ∈ E and sup

y∈K
Ey

(
EX1

(
θ−TK ∧τ∂)11<τ∂

)<+∞.

As many results of Section 2 make use of the function ϕ
1/p
1 with a parame-

ter p ∈ [1, logθ1/logθ2), it is important to characterize the best possible value of
θ2. The following lemma shows that the domain of attraction provided by Corol-
lary 2.3 can be taken as the set of probability measuresµ on E such thatµ(E ′) > 0
and µ(ϕ1/p ) <∞ for some p < logθ1/logθ0. This result is proved in Section 11.4.

Lemma 3.4. If Condition (E) is satisfied for some functions ϕ1 and ϕ2 with con-
stants θ1 and θ2, then, for all θ′2 ∈ (θ1,θ0) it is also satisfied for ϕ1 and some func-
tion ϕ′

2 with constants θ1 and θ′2.

In many general studies of quasi-stationary distributions [68, 15], one usu-
ally assumes that Px (τ∂ <∞) = 1 for all x ∈ E (so that the conditioning becomes
singular in the limit of large time) and Px (n < τ∂) > 0 for all n > 0 and all x ∈ E so
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that the conditioning is well-defined for all finite time t . The results of Section 2
are true without assuming these two conditions.

For the first one, if we assume that τ∂ = ∞ Px -almost surely for all x ∈ E ,
then Condition (E3) becomes void and one can take ϕ2 ≡ 1 in (E2), so that θ2 =
θ0 = 1. We recognize in (E1) the standard “small set” assumption of [70], in the
condition (E2) forϕ1 a standard Foster-Lyapunov criterion and condition (E4) is
an aperiodicity condition.

For the second one, under Condition (E), their may exist points x ∈ E \ E ′

such that Px (n < τ∂) = 0 for some n > 0. However, for all x ∈ E ′, there exists
k ∈ N such that Pk1K (x) > 0. Hence, for all n ≥ k, Pn1E (x) ≥ Pk (Pn−kϕ2)(x) ≥
θn−k

2 infK ϕ2 Pk1K (x) > 0. In particular, for all µ such that µ(E ′) > 0, µPn1E > 0
for all n ≥ 0 and thus, the conditional distribution in the left-hand side of (2.3) is
well-defined.

3.2 On continuous time

In Section 2, we only considered the conditional behavior of the process X at
integer times. In general, the results of Section 2 do not give information about
the process at intermediate times. In this section, we derive a sufficient condi-
tion which is well suited for continuous time Markov processes or for aperiodic
Markov processes. We consider an absorbed Markov process (X t )t∈I with time
parameter in I =Z+ or [0,+∞).

Assumption (F). There exist positive real constants γ1,γ2,c1,c2 and c3, t1, t2 ∈
I , a measurable function ψ1 : E → [1,+∞), and a probability measure ν on a
measurable subset L ⊂ E such that

(F0) (A strong Markov property). Defining

τL := inf{t ∈ I : X t ∈ L}, (3.2)

assume that for all x ∈ E , XτL ∈ L, Px -almost surely on the event {τL <∞}
and for all t > 0 and all measurable f : E ∪ {∂} →R+,

Ex
[

f (X t )1τL≤t<τ∂
]= Ex

[
1τL≤t∧τ∂EXτL

[
f (X t−u)1t−u<τ∂

]
u=τL

]
.

(F1) (Local Dobrushin coefficient). ∀x ∈ L,

Px (X t1 ∈ ·) ≥ c1ν(·∩L).

15



(F2) (Global Lyapunov criterion). We have γ1 < γ2 and

Ex (ψ1(X t2 )1t2<τL∧τ∂) ≤ γt2
1 ψ1(x), ∀x ∈ E

Ex (ψ1(X t )1t<τ∂) ≤ c2, ∀x ∈ L, ∀t ∈ [0, t2]∩ I ,

γ−t
2 Px (X t ∈ L) −−−−→

t→+∞ +∞, ∀x ∈ L.

(F3) (Local Harnack inequality). We have

sup
t≥0

supy∈LPy (t < τ∂)

infy∈LPy (t < τ∂)
≤ c3

The following result is proved in Section 11.5.

Theorem 3.5. Under Assumption (F), (X t )t∈I admits a quasi-stationary distribu-
tion νQSD , which is the unique one satisfying νQSD (ψ1) <∞ andPνQSD (X t ∈ L) > 0
for some t ∈ I . Moreover, there exist constantsα ∈ (0,1) and C > 0 such that, for all
probability measures µ on E satisfying µ(ψ1) <∞ and µ(ψ2) > 0,∥∥Pµ(X t ∈ · | t < τ∂)−νQSD

∥∥
T V ≤C αt µ(ψ1)

µ(ψ2)
, ∀t ∈ I , (3.3)

where ψ2(x) = ∑n0

k=0γ
−kt2
2 Px (Xkt2 ∈ L) for n0 ≥ 1 large enough. In addition, there

exists a constant λ0 ≥ 0 such that λ0 ≤ log(1/γ2) < log(1/γ1) and PνQSD (t < τ∂) =
e−λ0t for all t ≥ 0, and there exists a function η such that

η(x) = lim
t→+∞eλ0tPx (t < τ∂), ∀x ∈ E , (3.4)

where the convergence is exponential in L∞(ψ1/p
1 ) for all p ∈ [1, log(1/γ1)/λ0),

and Ptη(x) = e−λ0tη(x) for all x ∈ E and t ≥ 0.

In particular, if I = R+ and η is bounded,setting η(∂) = 0, the function η de-
fined on E ∪{∂} belongs to the domain of the infinitesimal generator L of X and
L η=−λ0η.

Remark 3. We shall actually prove that Assumption (F) implies that Assump-
tion (E) is satisfied for the sub-Markovian semigroup (Pn)n≥0 of the absorbed

Markov process (Xnt2 )n∈Z+ , with the functions ϕ1 = ψ1 and ϕ2 = γ
−t2
2 −1

γ
−(n0+1)t2
2 −1

ψ2,

any θ1 ∈ (γt2
1 ,γt2

2 ), θ2 = γt2
2 and the set

K = {
y ∈ E , Py (τL ≤ t2)/ψ1(y) ≥ (θ1 −γt2

1 )/c2
}⊃ L.

In particular, all the consequences of (E) stated in Section 2 hold true. More-
over, on can also obtain a continuous-time version of Theorem 2.7 about the
Q-process.
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Remark 4. For continuous-time Markov processes, a classical Foster-Lyapunov
inequality (cf. [70]) involving the infinitesimal generator L of the process X is
given by

Lψ1(x) ≤−λ1ψ1(x)+C1K (x), ∀x ∈ E . (3.5)

Equation (3.5) implies (formally, assuming one can apply Dynkin’s formula) that
Ex [11≤τL∧τ∂ψ1(X1)] ≤ e−λ1ψ1(x) and Ex [ψ1(X t )1t<τ∂ ] ≤ eC tψ1(x), so that the first
two lines of (F2) can be deduced. However, it is not possible to directly check (E2)
for ϕ1 = ψ1 from (3.5). This explains the specific form we choose for the first
and second lines of (F2), and the Foster-Lyapunov criteria that will be used for
diffusions in Section 4 and for pure jump processes in discrete state space in
Section 5. Note that a function ψ1 satisfying (3.5) usually does not belong to the
domain of the infinitesimal generator L , so one needs to extend the notion of
infinitesimal generator as in [70, 18].

As in the discrete time setting, one can use controls on the exponential mo-
ments for the return times in L instead of using Lyapunov type functionsψ1. The
following result is proved in Section 11.6.

Lemma 3.6. Assume that there exist positive constants γ1 > 0 and t2 ∈ I such that

Ex
(
γ
−τL∧τ∂
1

)<∞, ∀x ∈ E and sup
x∈L

Ex

(
EX t2

(
γ
−τL∧τ∂
1

))<+∞,

then ψ1(x) = Ex
(
γ
−τL∧τ∂
1

)
satisfies

Ex (ψ1(X t2 )1t2<τL∧τ∂) ≤ γt2
1 ψ1(x), ∀x ∈ E

Ex (ψ1(X t )1t<τ∂) ≤ c2, ∀x ∈ L, ∀t ∈ [0, t2]∩ I ,

for some constant c2 > 0.

3.3 The case of uniform exponential convergence

Let us now come back to the general case of Section 2. Note first that, in the case
where (E) is satisfied with a bounded function ϕ1, because of Corollary 2.3, the
domain of attraction of νQSD contains all the probability measures µ on E such
that µ(E ′) > 0. The next result hence follows from Remark 2.

Proposition 3.7. If Condition (E) is satisfied with a bounded function ϕ1, then
νQSD is the unique quasi-stationary distribution of (Xn) giving positive mass to
E ′ and its domain of attraction for the total variation distance is the set of prob-
ability measures µ on E such that µ(E ′) > 0. In addition, the function η in The-
orem 2.5 is bounded and (E) is satisfied with the bounded function ϕ1 and with
ϕ2 = η/‖η‖∞.
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In particular, if E ′ = E , νQSD attracts all the initial distributions.
We now want to characterize the case of exponential convergence in total

variation of the conditional distributions of (Xn) to νQSD , uniformly with respect
to the initial distribution µ. This question was already studied in [15]. The next
result, proved in Section 11.7, gives a necessary and sufficient condition based
on Condition (E).

Proposition 3.8. There exists constants C and α< 1 such that, for all probability
measure µ on E and all integer n,∥∥Pµ(Xn ∈ · | n < τ∂)−νQSD

∥∥
T V ≤Cαn , (3.6)

if and only if Condition (E) is satisfied with a bounded functionϕ1 and there exists
an integer n′

4 > 0 such that

c := inf
x∈E

Px (Xn′
4
∈ K | n′

4 < τ∂) > 0. (3.7)

4 Application to diffusion processes

In this section, we apply the criteria (E) and (F) to diffusion processes absorbed
at the boundary of a domain. We give a general criterion in Subsection 4.1 and
apply it to uniformly elliptic diffusions in Subsection 4.2 and to an example with
vanishing diffusion coefficient at the boundary of the domain in Subsection 4.3.
Our criteria are extended to diffusions with killing in Subsection 4.4 and the par-
ticular case of one-dimensional diffusions is studied in Subsection 4.5.

4.1 A general criterion in any dimension

We consider a diffusion process X on a connected, open domain D ⊂ Rd for
some d ≥ 1, solution to the SDE

d X t = b(X t )d t +σ(X t )dBt , (4.1)

where B is a standard, r -dimensional Brownian motion and b : D → Rd and σ :
D →Rd×r are locally Hölder functions, such thatσ is locally uniformly elliptic in
D , i.e.

∀K ⊂ D compact, inf
x∈K

inf
s∈Rd \{0}

s∗σ(x)σ∗(x)s

|s|2 > 0,

where | · | is the standard Euclidean norm on Rd . We assume that the process is
immediately absorbed at some cemetery point ∂ 6∈ D at its first exit time of D ,
denoted τ∂. The existence and basic properties of this process need some care.
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Details are given in Subsection 12.1. For the moment, let us only observe that,
for all k ≥ 1, defining the compact set

Kk = {
x ∈ D : |x| ≤ k and d(x,Dc ) ≥ 1/k

}
,

a weak solution to (4.1) can be constructed up to the first exit time τK c
k

of Kk as
defined in (3.2). The proper definition of the absorption time τ∂ is

τ∂ = sup
k≥1

τK c
k

. (4.2)

We introduce the differential operator associated to the SDE (4.1), related to
the infinitesimal generator of the process X : for all f ∈ C 2(D), we define for all
x ∈ D

L f (x) :=
d∑

i=1
bi (x)

∂ f

∂xi
(x)+ 1

2

d∑
i , j=1

r∑
k=1

σi k (x)σ j k (x)
∂2 f

∂xi∂x j
(x). (4.3)

We define the constant

λ0 := inf
{
λ> 0, s.t. liminf

t→+∞ eλt Px (X t ∈ B) > 0
}

(4.4)

for some x ∈ D and some open ball B such that B ⊂ D . It is standard to prove
using Harnack inequalities (proved in our case in Section 12.2) that, under the
previous assumptions, λ0 < +∞ and its value is independent of the choice of
x ∈ D and of the non-empty, open ball B such that B ⊂ D .

The following result is proved in Section 12.

Theorem 4.1. Assume that there exist some constants C > 0, λ1 > λ0, a C 2(D)
functionϕ : D → [1,+∞) and a subset D0 ⊂ D closed in D such that supx∈D0

ϕ(x) <
+∞ and

Lϕ(x) ≤−λ1ϕ(x)+C1x∈D0 , ∀x ∈ D. (4.5)

Assume also that there exists a time s1 > 0 such that

sup
x∈D0

Px (s1 < τKk ∧τ∂) −−−−→
k→∞

0. (4.6)

Then X admits a quasi-stationary distribution νQSD which satisfies νQSD (ϕ1/p ) <
+∞ for all p > 1. Moreover, for all p ∈ (1,λ1/λ0), there exist a constant αp ∈ (0,1),
a constant Cp and a positive function ϕ2,p : D → (0,+∞) uniformly bounded
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away from 0 on compact subsets of D such that, for all probability measures µ
on E satisfying µ(ϕ1/p ) <∞,

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤Cpα
t
p
µ(ϕ1/p )

µ(ϕ2,p )
, ∀t ∈ [0,+∞).

In particular, νQSD is the only quasi-stationary distribution of X which satisfies
νQSD (ϕ1/p ) <+∞ for at least one value of p ∈ (1,λ1/λ0).

Remark 5. We shall actually prove that, under the conditions of the previous
theorem, Assumption (F) is satisfied with L = Kk for some k ≥ 1, and ψ1 =ϕ1/p ,
for any p ∈ (1,λ1/λ0).

Remark 6. In general, the assumptions of Theorem 4.1 do not ensure the non-
explosion of the Markov process X . In the case of an explosive Markov process,
the definition of τ∂ in (4.2) implies that, in the event of an explosion, the absorp-
tion time τ∂ is defined as equal to the explosion time.

The last result has other consequences of interest, gathered in the next corol-
lary, proved in Section 12.4.

Corollary 4.2. Under the assumptions of Theorem 4.1, the infimum defining the
constant λ0 in (4.4) is actually a minimum and it satisfies PνQSD (t < τ∂) = e−λ0t

for all t ≥ 0. In addition, the function η of Theorem 3.5 satisfies Ptη = e−λ0tη for
all t ≥ 0. In particular, η belongs to the domain of the infinitesimal generator of
the semigroup of the process X defined as acting on the Banach space L∞(ϕ1),
and it is an eigenfunction for the eigenvalue −λ0. In addition, η ∈ C 2(D) and
L η(x) =−λ0η(x) for all x ∈ D.

4.2 Application to uniformly elliptic diffusion processes

We consider the case whereσ can be extended as a locally uniformly elliptic ma-
trix to Rd . In the following corollary, we consider a general situation where (4.6)
holds true. We emphasize that, contrary to previous results on existence of quasi-
stationary distributions for diffusions in a domain (see [73, 42, 57, 33, 12]), no
regularity on the boundary of D is required.

Corollary 4.3. Let D be an open connected subset of Rd , d ≥ 1. Let X be solution
to the SDE

d X t = b(X t )d t +σ(X t )dBt , t < τ∂,

where b : Rd → Rd and σ : Rd → Rd×r are locally Hölder continuous in Rd and
σ is locally uniformly elliptic on Rd . Recall the definition (4.4) of λ0 and assume
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that there exist constants C > 0, λ1 > λ0, a C 2(D) function ϕ : D → [1,+∞) and a
bounded subset D0 ⊂ D closed in D such that

Lϕ(x) ≤−λ1ϕ(x)+C1x∈D0 , ∀x ∈ D. (4.7)

Then the process X absorbed at the boundary of D satisfies the assumptions of
Theorem 4.1.

Note that we do not assume thatϕ is a norm-like function, hence the process
X may be explosive (see Remark 6).

Proof. Let us consider the diffusion process Y solution to (4.1) onRd . Due to our
regularity assumptions on b and σ, this process is well-defined up to a possibly
finite explosion time τexpl. The Harnack inequality (12.6) applied to Y on the
compact set D0 ensures the existence of constants δ> 0 and N such that, for all
f :Rd → [0,1], for all x ∈ D0 and all y ∈ B(x,δ),

Ex [1δ+δ2<τexpl
f (Yδ+δ2 )] ≤ NEy [1δ+2δ2<τexpl

f (Yδ+2δ2 )].

By compactness of D0, there exist a positive integer n and y1, . . . , yn ∈ D0 such
that D0 ⊂ ⋃n

i=1 B(yi ,δ). Setting s1 = δ+δ2, we deduce that, for all k ≥ 1 and all
x ∈ D0,

Px (Ys1 ∈ D \ Kk ) ≤ N max
1≤i≤n

Pyi (Ys1+δ2 ∈ D \ Kk ) −−−−−→
k→+∞

0.

Hence (4.6) is satisfied. This and Theorem 4.1 end the proof of Corollary 4.3.

We give three examples of application.

Example 1. Assume that D is bounded. Then, one can choose D0 = D andϕ1 = 1
in Corollary 4.3. This implies Theorem 1.1 of the introduction.

Example 2. Assume that D ⊂Rd+ is open connected and that

d X t = b(X t )d t +σ(X t )dBt

in D , where b : Rd → Rd and σ : Rd → Rd×r are locally Hölder continuous in Rd ,
σ is locally uniformly elliptic on Rd and

〈b(x),1〉
〈x,1〉 −−−−−−→

|x|→+∞
−∞,

where 〈·, ·〉 is the standard Euclidean product inRd and |·| is the associated norm.
Then (4.7) is satisfied forϕ(x) = 1+x1+. . .+xd and hence the process X absorbed
at the boundary of D satisfies the assumptions of Theorem 4.1.
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Example 3. Assume that D ⊂Rd is open connected and that

d X t = b(X t )d t +dBt

in D , where b :Rd →Rd is locally Hölder continuous in Rd and

limsup
|x|→+∞

〈b(x), x〉
|x| < −3

2

√
λ0, (4.8)

where 〈·, ·〉 is the standard Euclidean product in Rd and λ0 is defined in (4.4).
Then the process X absorbed at the boundary of D satisfies the assumptions of
Theorem 4.1.

Indeed, let us check that (4.7) is satisfied for ϕ(x) = exp(
√
λ0|x|). One has,

for all x 6= 0,

Lϕ(x) =
d∑

i=1

e
p
λ0|x|

2

(√
λ0

|x| −
√
λ0x2

i

|x|3 + λ0x2
i

|x|2
)
+

d∑
i=1

e
p
λ0|x|

√
λ0bi (x) xi

|x|

≤
√
λ0ϕ(x)

(
d −1

2|x| +
√
λ0

2
+ 〈b(x), x〉

|x|

)
≤−(λ0 +ε)ϕ(x)

for some ε> 0 and for all x such that |x| is large enough. This implies (4.7).
To apply this criterion, it is necessary to obtain a priori bounds on λ0. We

will give some ideas about how to do so for one-dimensional diffusions in Sec-
tion 4.5. In general, one can also use of course that (4.8) is implied by

lim
|x|→+∞

〈b(x), x〉
|x| = −∞.

4.3 Non-uniformly elliptic diffusions: the Feller diffusion with com-
petition

We provide an example where the diffusion matrix σ cannot be extended out of
D as a locally uniformly elliptic matrix. This example deals with Feller diffusions
with competition and is motivated by models of population dynamics with d
species in interaction, where absorption corresponds to the extinction of one of
the populations [10, 18].

Assume that D = (0,∞)d and

d X i
t =

√
γi X i

t dB i
t +X i

t bi (X t )d t ,

where γi > 0 for all 1 ≤ i ≤ d , B 1, . . . ,B d are independent standard Brownian
motions and bi are locally Hölder in (0,∞)d and locally bounded in Rd+.
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Proposition 4.4. Assume that there exist constants c0,c1 > 0 such that

d∑
i=1

xi bi (x)

γi
≤ c0 − c1|x|, ∀x ∈ (0,∞)d .

Then the process X absorbed at the boundary of D satisfies the assumptions of
Theorem 4.1.

Compared to the existing literature on multi-dimensional Feller diffusions
[10, 18], the main novelty of this result is that it covers cases where the pro-
cess does not come down from infinity, e.g. bi (x) = ri −∑d

j=1 ci j
x j

1+x j
, for some

positive constants ri and ci j such that ri < ci i for all 1 ≤ i ≤ d . Also, the case
considered in [10] is restricted to (transformations of) Kolmogorov diffusions
where the drift derives from a potential (b = ∇V ), which allow the authors to
use a spectral theoretic approach as in the one-dimensional case [9]. In the case
of logistic Feller diffusions, where bi (x) = ri −∑d

j=1 ci j x j , this requires that the
matrix (ci jγ j )1≤i , j≤d is symmetric (which is quite restrictive for demographical
models) and positive definite. Our result shows that one can actually replace the
assumption of symmetry and positive definiteness of (ci jγ j )1≤i , j≤d by the sole
positive definiteness of the matrix (ci jγ j + c j iγi )1≤i , j≤d , which is always sym-
metric. While our results on existence and convergence to quasi-stationary dis-
tributions are more general than those of [10], we do not recover finer results
on the spectrum of the process, such as its discreteness. Compared to the re-
sults of [18] on Feller diffusions, our criterion covers weakly cooperative cases as
in [10], i.e. cases where ci j might be negative for some i 6= j .

Proof. Our aim is to prove that the assumptions of Theorem 4.1 hold true with
ϕ(x) = exp(c(x1/γ1 + . . .+xn/γn)), where c = c1 mini γi /

p
d .

We have, for all x ∈ D ,

Lϕ(x) =
d∑

i=1

(
xi c2

2γi
+ cxi bi (x)

γi

)
ϕ(x) ≤

(
c0c − c1c|x|

2

)
ϕ(x).

Choosing λ1 = λ0 + 1 and D0 = {x ∈ D, s.t. |x| ≤ (2c0 + 2λ1/c)/c1}, one deduces
that (4.5) holds true with C = c0c maxD0 ϕ.

Let us now prove that

Px (1 < τ∂) −−−−−−−−→
x→∂D,x∈D0

0, (4.9)

which implies that (4.6) holds true with s1 = 1. Fix ε > 0 and define the set

F =
{

x ∈Rd+, s.t. ϕ(x) ≥ eC supy∈D0
ϕ(y)/ε

}
. Using Itô’s formula (see the proof
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of (12.8) in Section 12.3 for details), we deduce from (4.5) that, For all x ∈ D0,

Px (τF ≤ 1)eC sup
y∈D0

ϕ(y)/ε≤ Ex
(
ϕ(XτF∧1)1τF∧1<τ∂

)≤ eCϕ(x),

so that Px (τF ≤ 1) ≤ ε for all x ∈ D0. Since F c is bounded, we have

β := sup
x∈F c ,i∈{1,...,d}

|bi (x)| < +∞.

Let (Zt )t∈[0,+∞) := (Z 1
t , . . . , Z d

t )t∈[0,+∞) be the solution of the system of SDEs

d Z i
t =

√
γi Z i

t dB i
t +Z i

t βd t , Z i
0 = X i

0 ∈ (0,+∞),

with absorption at the boundary of D . Note that the components of Z are inde-
pendent one dimensional diffusion processes such that 0 is reachable and hence
that

Px

(
∀t ∈ [0,1], ∀i ∈ {1, . . . ,d}, Z i

t > 0
)
−−−−→
x→∂D

0.

Standard comparison arguments show that X i
t ≤ Z i

t for all t < τ∂∧τF ∧1 and all
i ∈ {1, . . . ,d}, so that

Px

(
∀t ∈ [0,1], ∀i ∈ {1, . . . ,d}, X i

t > 0 and 1 < τF

)
−−−−→
x→∂D

0.

But Px (1 < τF ) ≥ 1−ε, so that

limsup
x→∂D

Px

(
∀t ∈ [0,1], ∀i ∈ {1, . . . ,d}, X i

t > 0
)
≤ ε.

Since this is true for all ε > 0 and since {∀t ∈ [0,1], ∀i ∈ {1, . . . ,d}, X i
t > 0} =

{1 < τ∂}, we deduce that (4.9) holds true, which concludes the proof or Propo-
sition 4.4.

4.4 Diffusion processes with killing

This section is devoted to the study of diffusion processes with killing. More pre-
cisely, we consider as above a diffusion process X on a connected, open domain
D ⊂Rd for some d ≥ 1, solution to the SDE

d X t = b(X t )d t +σ(X t )dBt (4.10)

absorbed in ∂ at its first exit time τexit of D , as defined in (4.2), with the same
assumptions as in Section 4.1. We also assume that the process is subject to
an additional measurable killing rate κ : D →R+ which is locally bounded: there
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exists an independent exponential random variable ξwith parameter 1 such that
the process is instantaneously sent to the cemetery point ∂ ∉ D at time

τ∂ = τexit ∧ inf

{
t ≥ 0,

∫ t

0
κ(Xs)d s > ξ

}
.

Since κ is assumed to be locally bounded, one easily checks that λ0 in (4.4)
is finite, and that it does not depend on x ∈ D or on the open ball B such that
B ⊂ D .

The following result is an extension to the multi-dimensional setting of [58,
Theorem 4.3].

Theorem 4.5. Assume that there exist a subset D0 (D closed in D such that

inf
x∈D\D0

κ(x) >λ0, (4.11)

and a time s1 > 0 such that

sup
x∈D0

Px (s1 < τ∂∧τKk ) −−−−−→
k→+∞

0. (4.12)

Then the process X absorbed at time τ∂ admits a unique quasi-stationary dis-
tribution νQSD and there exist a positive function ϕ2 on D (uniformly bounded
away from 0 on compact subsets of D) and a positive constant C such that∥∥Pµ(X t ∈ · | t < τ∂)−νQSD

∥∥
T V ≤ C

µ(ϕ2)
αt , ∀t ∈ [0,+∞)

for all probability measures µ on E.

Remark 7. Let us make some comments on the assumptions of the above result.

1. If the process without killing rate satisfies (4.12), then the process with
killing rate also satisfies this property. Hence the analysis provided in Sec-
tion 4.2 can also be used to check the assumptions of the above theorem.

2. If infx∈D\Kk κ(x) → +∞ when k → +∞, then the assumptions of Theo-
rem 4.7 are trivially satisfied.

3. In order to reach the conclusion of Theorem 4.1 in the setting of killed
diffusion, it is also possible to use a Lyapunov type criterion: the assump-
tion (4.5) can be simply replaced by the assumption that there exist λ>λ0

and C > 0 such that

Lϕ(x)−κ(x)ϕ(x) ≤−λϕ(x)+C1x∈D0 .
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Note that (4.11) of course implies the last inequality for ϕ≡ 1. This exten-
sion follows from a simple adaptation of the arguments of Theorem 4.1
observing that

Ex
[

f (X t )1t<τ∂
]= Ex

[
f (X D

t )1t<τexit exp

(
−

∫ t

0
κ(X D

s )d s

)]
,

where the process X D is the process solution to (4.10) without killing, ab-
sorbed at its first exit time of D , at time τexit.

4. If in addition the killing rate κ is locally Hölder in D , we can apply [39,
Cor. 3.1] as in Section 12.4 to prove that η is C 2(D) and L η(x)−κ(x)η(x) =
−λ0η(x) for all x ∈ D .

Proof. The proof follows the same lines as the proof of Theorem 4.1 in Sec-
tion 12. We emphasize that the construction of the process in Section 12.1 is
still valid. The same is true for the Harnack inequalities of Section 12.2 since
they are based on Krylov’s and Safonov’s general result [59] which is obtained
for diffusion processes with a bounded and measurable killing rate. The rest of
the proof is exactly the same, replacing ϕ1 =ϕ by ϕ1 = 1.

4.5 The case of one-dimensional diffusions

In this section, we consider the case of one-dimensional diffusion processes.
Here, the Hölder regularity of the coefficients is not needed. Let X be the solu-
tion in D = (α,β), where −∞≤α<β≤+∞, to the SDE

d X t =σ(X t )dBt +b(X t )d t , X0 ∈ D,

where σ : D → (0,+∞) and b : D → R are measurable functions such that (1+
|b|)/σ2 is locally integrable on D . We assume that the process is sent to a ceme-
tery point ∂ when it reaches the boundary of D and that it is subject to an ad-
ditional killing rate κ : D → R+ which is measurable and locally integrable w.r.t.
Lebesgue’s measure. This assumption implies that the killed process is regular
in the sense that, for all x, y ∈ D , Px (τ{y} <∞) > 0.

We define λ0 as in (4.4). The fact that λ0 does not depend on x nor B is a
consequence of the regularity of the process.

Let δ : D →R+ and s : D →R be defined by

δ(x) = exp

(
−2

∫ x

α0

b(u)

σ(u)2 du

)
and s(x) =

∫ x

α0

δ(u)du,
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for some arbitrary α0 ∈ D . We recall that s is the scale function of X (unique up
to an affine transformation), meaning that s(X t ) is a local martingale. We also
recall that the boundary α (and similarly for β) is said to be reachable (for the
process without killing) if s(α+) >−∞ and∫ +

α

s(x)− s(α+)

σ(x)2δ(x)
d x <+∞.

Theorem 4.6. Assume that one among the following conditions (i), (ii) or (iii)
holds true:

(i) α and β are reachable boundaries;

(ii) α is reachable and there exist λ1 > λ0, a C 2(D) function ϕ : D → [1,+∞) and
x1 ∈ D such that, for all x ≥ x1,

σ(x)2

2
ϕ′′(x)+b(x)ϕ′(x)−κ(x)ϕ(x) ≤−λ1ϕ(x); (4.13)

(iii) there exist λ1 > λ0, a C 2(D) function ϕ : D → [1,+∞) and x0 < x1 ∈ D such
that (4.13) holds true for all x ∈ (α, x0)∪ (x1,β).

Then the conclusions of Theorem 4.1 hold true.

Remark 8. We shall not detail the proof of this result since it is very close to the
proof of Theorem 4.1 given in Section 12. We only explain the places that need
to be modified. First, weak existence, weak uniqueness and the strong Markov
property are well-known under the assumptions that σ > 0 and (1+ |b|)/σ2 ∈
L1

loc(D) (weak existence and uniqueness in law are proved up to an explosion
time in [53, Thm. 5.5.15], so we can construct a unique weak solution and prove
the strong Markov property as in Section 12.1). Second, in order to construct an
appropriate functionϕ on D , we choose D0 = (α, x1] in case (ii) and D0 = [x0, x1]
in case (iii) and we can extend ϕ on D0 as a bounded C 2(D) function. In case
(i), we can take ϕ ≡ 1 and D0 = D . Third, (4.6) follows from the fact that the
boundaries α and β are reachable in case (i) and α is reachable in case (ii), since

sup
x∈(α,α+1/k]

Px (s1 < τ∂) ≤Pα+1/k (s1 < τ{α}) −−−−−→
k→+∞

0.

In case (iii), the limit is trivial since D0 ⊂ Kk for k large enough. Finally, all the
arguments using Harnack’s inequality can be replaced by arguments using the
regularity of the process and standard coupling arguments for one-dimensional
diffusions (see [19, 17]).
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In order to apply this result in practice, one needs to find computable esti-
mates for λ0 and candidates for ϕ. One may for instance use the bounds for the
first eigenvalue of the (Dirichlet) infinitesimal generator of (X t , t ≥ 0) obtained
in a L2 (symmetric) setting using Rayleigh-Ritz formula in [74, 86, 87], as ob-
served in [58]. We propose here two different upper bounds for λ0 which follow
from the characterization (4.4) of the eigenvalue λ0 and Dynkin’s formula.

Proposition 4.7. For all α< a< b<β, we have

λ0 ≤ sup
x∈[a,b]

1

2

 πσ(x)∫ b
a exp

(
−2

∫ y
x

b(z)
σ2(z) d z

)
d y

2

+κ(x)

 .

If x 7→ b(x)/σ(x)2 is C 1([a,b]), then

λ0 ≤ sup
x∈[a,b]

π2σ(x)2

2(b−a)2 +σ(x)2
(

b

2σ2

)′
(x)+ b(x)2

2σ(x)2 +κ(x).

Proof. For the proof of the first inequality, set

ϕ(x) = sin

(
π

s(x)− s(a)

s(b)− s(a)

)
.

Then, for all x ∈ (a,b),

σ(x)2

2
ϕ′′(x)+b(x)ϕ′(x)−κ(x)ϕ(x) =−

(
π2σ(x)2δ(x)2

2(s(b)− s(a))2 +κ(x)

)
ϕ(x)

=−

 π2σ(x)2

2
(∫ b

a exp
(
−2

∫ y
x

b(z)
σ2(z) d z

)
d y

)2 +κ(x)

ϕ(x)

≥−Cϕ(x),

where

C := sup
x∈[a,b]

1

2

 πσ(x)∫ b
a exp

(
−2

∫ y
x

b(z)
σ2(z) d z

)
d y

2

+κ(x)

 .

Since ϕ is C 2 and bounded, we deduce from Itô’s formula that, for all x ∈ (a,b),

Ex (ϕ(X t )1t<τ{a,b} ) ≥ e−C tϕ(x).

Now, using the fact that 0 <ϕ(x) ≤ 1 for all x ∈ (a,b), we deduce that

Px (X t ∈ (a,b)) ≥ e−C tϕ(x), ∀x ∈ D.
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As a consequence, the definition of λ0 entails λ0 ≤C .
The proof of the second inequality is the same, using instead the function

ϕ(x) := exp

(
−

∫ x

c

b(u)

σ(u)2 du

)
sin

(
π

x −a

b−a

)
for some c ∈ (a,b).

The next result provides two candidates for ϕ. Its proof is a straightforward
computation.

Proposition 4.8. Let ϕ : (0,+∞) be any C 2(D) function such that, for some con-
stants α− <α0 <α+ ∈ D,

ϕ(x) =
{p

s(x) if x ≥α+,p−s(x) if x ≤α−.
(4.14)

Then, for all x ∈ (α,α−]∪ [α+,β)

σ(x)2

2
ϕ′′(x)+b(x)ϕ′(x)−κ(x)ϕ(x) ≤−

(
σ(x)2δ(x)2

8s(x)2 +κ(x)

)
ϕ(x).

If x 7→ b(x)/σ(x)2 is C 1(D), then

ϕ(x) = exp

(
−

∫ x

α0

b(u)

σ2(u)
du

)
(4.15)

satisfies

σ(x)2

2
ϕ′′(x)+b(x)ϕ′(x)−κ(x)ϕ(x) =−

(
b2(x)

2σ2(x)
+ σ2(x)

2

(
b

σ2

)′
(x)+κ(x)

)
ϕ(x).

Remark 9. The first function ϕ is always uniformly lower bounded on (α,α−]∪
[α+,β) by min{

p
s(α+),

p−s(α−)}. To ensure that the second one is also uni-
formly lower bounded, one needs further assumptions on the behavior of b/σ2

close to α and β.

The above results can be used as follows. In the case where α is reachable
and b ≡ 0, Condition (ii) of Theorem 4.6 holds true if

liminf
x→β−

σ2(x)

8(x −α)2 +κ(x) >λ0,

choosing α0 =α and using the function ϕ of (4.14). Similarly, in the case where
α is reachable, σ≡ 1 and b is C 1, condition (ii) of Theorem 4.6 holds true if

liminf
x→β−

b2(x)

2
+ b′(x)

2
+κ(x) >λ0,

using the function ϕ of (4.15).
We give below more precise examples.

29



Example 4. Assume that D = (0,+∞), κ is locally bounded and that X is solution
to the SDE in D

d X t =
√

X t dBt −X t d t .

Then 0 is reachable for X and, since

σ(x)2δ(x)2

8s(x)2 −−−−−→
x→+∞ +∞,

we deduce from Proposition 4.8 and Theorem 4.6 that X admits a quasi-statio-
nary distribution νQSD and, for all p ≥ 1, there exist positive constants Cp ,γp

and a positive function ϕ2,p on (0,+∞) such that

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤Cp

∫
(0,+∞) exp(x/p)µ(d x)

µ(ϕ2,p )
e−γp t ,

for all probability measure µ on D . In particular, one deduces that the domain
of attraction νQSD contains any initial distribution µ admitting a finite exponen-
tial moment. Note that, in the case where κ ≡ 0, the process X is a continuous
state branching process (Feller diffusion), for which quasi-stationarity was al-
ready studied (see [60] and the references therein).

Example 5. Assume that (α,β) = R, that b ≡ 0 and σ is bounded measurable
on R. Assume also that the absorption of X is due to the killing rate κ(x) =
κ0

(
1− 1

1+|x|
)

for some constant κ0 > 0. We deduce from the first inequality of

Proposition 4.7 (taking b> 0 and a=−b) that

λ0 ≤
π2‖σ‖2∞

8b2 +κ0

(
1− 1

1+b

)
≤ κ0

(
1− 1

1+2b

)
for b large enough. Moreover, choosingϕ= 1 and x0 =−3b, x1 = 3b, one deduces
that, for all x 6∈ [−x1, x1],

σ(x)2

2
ϕ′′(x)−κ(x)ϕ(x) ≤−κ0

(
1− 1

1+3b

)
ϕ(x).

Hence Theorem 4.6 implies that there exists a unique quasi-stationary distribu-
tion νQSD for X and that it attracts all probability measures µ on D .

Example 6. We consider the case (α,β) = (0,+∞), σ(x) = 1, b(x) = x sin x, and
κ(x) = κ0

(
1− 1

1+x

)
for some constant κ0 > π2 + 3. This corresponds to a SDE

d X t = dBt +∇U (X t )d t where the potential U (x) = sin x − x cos x has infinitely
many wells with arbitrarily large depths, meaning that the process X without
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killing has a tendency to be “trapped” away from zero for large initial condi-
tions. Nevertheless, thanks to the killing, we are able to prove convergence to
a unique quasi-stationary distribution. Indeed, using the second inequality of
Proposition 4.7, we have

λ0 ≤ sup
x∈(0,1)

π2

2
+ sin x +x cos x +x2 sin2 x

2
+κ0

(
1− 1

1+x

)
≤ π2

2
+ 3

2
+κ0/2.

Moreover, 0 is a reachable boundary for X and, taking ϕ = 1, one has, for all
x1 > 0 and all x > x1,

σ(x)2

2
ϕ′′(x)+b(x)ϕ′(x)−κ(x)ϕ(x) ≤−κ0

(
1− 1

1+x1

)
ϕ(x)

Hence, since we assumed that κ0 >π2+3, one deduces that there exists a unique
quasi-stationary distribution νQSD for X and that it attracts all probability mea-
sures µ on D .

Remark 10. The case of general one-dimensional diffusion processes [52] can
be handled using our framework, although using the infinitesimal generator is
more tricky [50]. However, in the case of a regular diffusion process on (0,+∞)
such that 0 is a reachable boundary and such that +∞ is entrance, one easily
shows (see for instance [19]) that, for all λ> 0, there exists y > 0 such that

sup
x∈(0,+∞)

Ex

(
eλτ[0,y]

)
<+∞.

Hence, using the same proof as in Theorem 4.1 and using Lemma 3.6, one de-
duces that there exists a unique quasi-stationary distribution νQSD for X and
that it satisfies∥∥Pµ(X t ∈ · | t < τ∂)−νQSD

∥∥
T V ≤ 1

µ(ϕ2)
αt , ∀t ∈ [0,+∞)

for some positive functionϕ2 and someα< 1. Whether the convergence to νQSD

holds uniformly with respect to the initial distribution (as in Proposition 3.8)
without further assumptions remains an open problem. It has been shown to be
true for a wide range of cases in [19, 17].
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5 Application to processes in discrete state space and con-
tinuous time

Let X be a non-explosive1 Markov process in a countable state space E ∪ {∂} ab-
sorbed in ∂, with generator L acting on nonnegative real functions f on E ∪ {∂}
such that

∑
y∈E∪{∂} qx,y f (y) <∞ for all x ∈ E as

L f (x) = ∑
y 6=x∈E∪{∂}

qx,y ( f (y)− f (x)), ∀x ∈ E , L f (∂) = 0, (5.1)

where qx,y is the jump rate of X from x to y 6= x and
∑

y∈E∪{∂}\{x} qx,y <∞ for all
x ∈ E .

Theorem 5.1. Assume that there exists a finite subset D0 of E such that Px (X1 =
y) > 0 for all x, y ∈ D0, so that the constant

λ0 := inf
{
λ> 0, s.t. liminf

t→+∞ eλt Px (X t = x) > 0
}

is finite and independent of x ∈ D0. If in addition there exist constants C > 0, λ1 >
λ0, a function ϕ : E ∪ {∂} → R+ such that ϕ E ≥ 1, ϕ(∂) = 0,

∑
y∈E\{x} qx,yϕ(y) <∞

for all x ∈ E and such that

Lϕ(x) ≤−λ1ϕ(x)+C1x∈D0 , ∀x ∈ E , (5.2)

then Assumption (F) is satisfied with L = D0, γ1 = e−λ1 , any γ2 ∈ (e−λ1 ,e−λ0 )
and ψ1 = ϕ E . In addition, PνQSD (t < τ∂) = e−λ0t for all t ≥ 0, the function η of

Theorem 2.5 satisfies Ptη = e−λ0tη for all t ≥ 0 and
∑

y∈E\{x} qx,yη(y) < ∞ and
L η(x) =−λ0η(x) for all x ∈ E.

Remark 11. If in addition to the assumptions of Theorem 5.1 we assume that
λ1 > supx∈E q(x,∂), it is possible to adapt the proof of Theorem 3.5 given in Sec-
tion 11.5 to prove that the conclusion of Theorem 3.5 holds true with ψ2 ≡ 1.
Therefore, we obtain the improved convergence∥∥Pµ(X t ∈ · | t < τ∂)−νQSD

∥∥
T V ≤C µ(ϕ)αt

instead of (3.3). If moreover ϕ is bounded over E , the convergence is uniform
and there exists a unique quasi-stationary distribution.

1One could actually consider the case of explosive Markov processes as in Section 4 (see Re-
mark 6), but then τ∂ has to be defined as the infimum between the first hitting time of ∂ and the
explosion time.
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Before turning to the proof of Theorem 5.1, we give an example of applica-
tion.

Example 7. We consider general multitype birth and death processes in contin-
uous time, taking values in a connected (in the sense of the nearest neighbors
structure of Zd ) subset E of Zd+ for some d ≥ 1, with transition rates

qx,y =


bi (x) if y = x +ei ,

di (x) if y = x −ei ,

0 otherwise,

with ei = (0, . . . ,0,1,0, . . . ,0) where the nonzero coordinate is the i -th one and
with the convention that the process is sent instantaneously to ∂ when it jumps
to a point y 6∈ E according to the previous rates. To ensure irreducibility, it is
sufficient (although not optimal) to assume that bi (x) > 0 and di (x) > 0 for all
1 ≤ i ≤ d and x ∈ E .

We show below that Theorem 5.1 applies under the assumption that

1

|x|
d∑

i=1
(di (x)−bi (x)) −−−−−−−−−→

x∈E , |x|→+∞
+∞. (5.3)

or that there exists δ> 1 such that

d∑
i=1

(di (x)−δbi (x)) −−−−−−−−−→
x∈E , |x|→+∞

+∞. (5.4)

This improves the general criteria obtained in [18] since this reference assumes
(among other assumptions) that E =Zd+ and that

∑d
i=1(di (x)−bi (x)) ≥ |x|1+η for

some η > 0 and |x| large enough. Note that this example applies to birth and
death processes in any connected domain of Zd+.

Let us first show that (5.3) implies that the assumptions of Theorem 5.1 are
satisfied. In order to do so, we define ϕ(x) = |x| = x1 + . . .+ xd and ϕ(∂) = 0 and
obtain

Lϕ(x) =
d∑

i=1
(bi (x)−di (x)) =−ϕ(x)

∑d
i=1(di (x)−bi (x))

|x|

The proof is concluded by setting D0 =
{

x ∈ E , s.t.
∑d

i=1(di (x)−bi (x))
|x| ≥λ0 +1

}
.

Let us now show that (5.4) implies that the assumptions of Theorem 5.1 are
satisfied. Setting ϕ(x) = exp〈a, x〉 for a given a ∈ (0,∞)d and ϕ(∂) = 0, we obtain

Lϕ(x) ≤−ϕ(x)

(
d∑

i=1
(1−e−ai )di (x)+ (1−eai )bi (x)

)
.
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Choosing a = (ε, . . . ,ε) with ε small enough, we have

liminf
x∈E , |x|→+∞

d∑
i=1

(1−e−ai )di (x)+ (1−eai )bi (x) =+∞.

Taking D0 =
{

x ∈ E , s.t.
∑d

i=1(1−e−ai )di (x)+ (1−eai )bi (x) ≥λ0 +1
}

allows us to
conclude the proof.

Proof of Theorem 5.1. The fact that λ0 is independent of x is classical for irre-
ducible processes (cf. e.g. [56]). We set L = D0. Since X is a non-explosive pure
jump continuous time process, it satisfies the strong Markov property and the
entrance times τL and τ∂ are stopping times. This entails (F0).

For all x, y ∈ L, we have

Px (X2 ∈ ·) ≥ inf
u,v∈L

Pu(X1 = v)Py (X1 ∈ ·),

where infu,v∈LPu(X1 = v) > 0 by assumption, which implies Conditions (F1) and
(F3).

We set ψ1 = ϕ. For all 0 ≤ s ≤ 1, using (5.2) and Dynkin’s formula, one has
that for all x ∈ L

Ex
(
ψ1(Xs)1s<τ∂

)≤ eC s sup
y∈L

ψ1(y).

Similarly, setting γ1 = e−λ1 , for all x ∈ E \ L,

Ex
(
ψ1(X1)11<τL∧τ∂

)≤ e−λ1ψ1(x) = γ1ψ1(x).

Choosing any γ2 ∈ (γ1,e−λ0 ), one obtains that condition (F2) is satisfied and the
first part of Theorem 5.1 is proved.

The inequality
∑

y∈E\{x} qx,yη(y) < ∞ for all x ∈ E follows from the fact that

η ∈ L∞(ψ1) and the fact that Ptη(x) = e−λ0tη(x) was proved in Theorem 3.5. It
then follows from Markov’s property and the last equality that (eλ0tη(X t ), t ≥ 0)
is a martingale for the canonical filtration associated to X , with the convention
that η(∂) = 0. Now, it is standard to represent the Markov process X as a solution
to a stochastic differential equation driven by a Poisson point process: assume
that the elements of the finite or countable set E are labeled by distinct positive
integers, that ∂ = 0 and, for all x, i ∈ Z+, let κi (x) = qx,0 + qx,1 + . . .+ qx,i with
the convention that qx,x = 0 and qx,i = 0 for all x or i 6∈ E ∪ {∂} and set q(x) =∑

i∈Z+ qx,i <∞. Given a Poisson point measure N (d s,dθ) on R2+ with intensity
the Lebesgue measure on R2+, the process X solution

X t = X0 +
∫ t

0

∫ q(Xs−)

0

∞∑
i=0

1θ∈[κi+1(Xs−),κi (Xs−))(i −Xs−)N (d s,dθ)
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is well-defined for all time t ≥ 0 almost surely and is a Markov process with ma-
trix of jump rates (qi , j )i , j∈Z+ . Introducing the compensated Poisson measure
Ñ (d s,dθ) = N (d s,dθ)−d s dθ, it follows from basic stochastic calculus for jump
processes (cf. e.g. [75]) that

eλ0tη(X t ) = X0 +
∫ t

0

∫ q(Xs−)

0
eλ0s

∞∑
i=0

1θ∈[κi+1(Xs−),κi (Xs−))(η(i )−η(Xs−))Ñ (d s,dθ)

+
∫ t

0
eλ0s

( ∞∑
i=0

q(Xs , i )(η(i )−η(Xs))+λ0η(Xs)

)
d s.

Since eλ0tη(X t ) is aPx -martingale, the Doob-Meyer decomposition theorem en-
tails that ∫ t

0
eλ0s

( ∞∑
i=0

q(Xs , i )(η(i )−η(Xs))+λ0η(Xs)

)
d s = 0

Px -almost surely for all t ≥ 0 and all x ∈ E . Hence, if there exists y ∈ E such
that L η(x) 6= −λ0η(x), by irreducibility, there exists an event with positive prob-
ability under Px such that the previous integral is non-constant. We obtain a
contradiction and hence L η(x) =−λ0η(x) for all x ∈ E .

6 On reducible examples

The criteria and examples studied in the last two sections assume that the pro-
cess X is irreducible in E . However, the abstract results of Section 2 do not
require the state space to be irreducible. Our goal in this section is to explain
that our criteria are also well-suited to cases of reducible absorbed Markov pro-
cesses, in the sense that the state space E can be partitioned in a finite or count-
able family of communication classes. The study of quasi-stationary behavior
for such processes has been up to now restricted to particular classes of mod-
els [72, 44, 14, 13, 82]. Our criteria provide new practical tools to tackle this
problem.

In Subsection 6.1, we consider a general setting with three successive sets. In
Subsection 6.2, we consider a birth and death process with a countable infinity
of communication classes.

6.1 Three successive sets

In this section, we consider a discrete time Markov process (Xn ,n ∈Z+) evolving
in a measurable set E ∪ {∂} with absorption at ∂ ∉ E . We assume that the transi-
tion probabilities of X satisfy the structure displayed in Figure 1 : one can find
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Figure 1: Transition graph displaying the relation between the sets D1, D2, D3

and ∂.

a partition {D1,D2,D3} of E such that the process starting from D1 can access
D1 ∪D2 ∪D3 ∪ {∂}, the process starting from D2 can only access D2 ∪D3 ∪ {∂},
and the process starting from D3 can only access D3 ∪ {∂}. More formally, we
assume that Px (TD3 ∧τ∂ < TD1 ) = 1 for all x ∈ D2 and that Px (τ∂ < TD1∪D2 ) = 1
for all x ∈ D3, where we recall that, for any measurable set A ⊂ E , TA = inf{n ∈
Z+, Xn ∈ A}.

Our aim is to provide sufficient conditions ensuring that X satisfies Assump-
tion (E). In order to do so, we assume that Assumption (E) is satisfied by the pro-
cess X before exiting D2. This corresponds to the following assumption.

Assumption (H1). The absorbed Markov process Y evolving in D2 ∪ {∂}, de-
fined by

Yn =
{

Xn if n < TD1∪D3∪{d},

∂ if n ≥ TD1∪D3∪{d},

satisfies Assumption (E). In what follows, we denote the objects related to Y with
a superscript Y , for instance, the constants of Assumption (E) for Y are denoted
by θY

1 > 0, θY
2 > 0.

We also assume that the exit times from D1 and D3 for the process X ad-
mit exponential moments of sufficiently high order, as stated by the following
assumption.

Assumption (H2). There exists a positive constant γ < θY
0 such that, for all

x ∈ D1,

Ex

(
γ−TD2ϕY

1

(
XTD2

)
1TD2<TD3∧τ∂

)
<+∞, Ex

(
γ−TD3∧τ∂1TD3∧τ∂<TD2

)
<+∞,
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and such that
sup
x∈D3

Ex
(
γ−τ∂

)<+∞.

We are now able to state the main result of this section.

Theorem 6.1. Under Assumptions (H1) and (H2), the process X satisfies Assump-
tion (E) with K = K Y ,

ϕ1(x) = Ex
(
γ−TK ∧τ∂) and ϕ2(x) ≥ c1x∈K , ∀x ∈ E .

In particular, it admits a unique quasi-stationary distribution νQSD such that
νQSD (ϕ1) <∞ and νQSD (ϕ2) > 0. Moreover, there exist two constants C > 0 and
α ∈ (0,1) such that, for all probability measure µ on E such that µ(ϕ1) <∞ and
µ(ϕ2) > 0, ∥∥Pµ(Xn ∈ · | n < τ∂)−νQSD

∥∥
T V ≤Cαn µ(ϕ1)

µ(ϕ2)
.

Finally, θ0 = θY
0 , νQSD (D1) = 0 and the function η of Theorem 2.5 vanishes on D3.

In particular, one deduces from the last property that E ′ ⊂ D1 ∪D2 (see Re-
mark 2), where we recall that E ′ = {x ∈ E : ∃n ∈N, Pn1K (x) > 0}.

Before turning to the proof of this result, let us make some remarks.

Remark 12. 1. The fact that there are three different sets D1, D2 and D3 in the
decomposition of E is not restrictive on the number of communication
classes. Indeed, the three sets can contain several communication classes.

2. A similar result can be obtained for continuous time processes, based on
Assumption (F) instead of (E), with the additional technical assumption
that the exit times of D1 and D2 are stopping times.

3. We emphasize that, beside the exponential moment assumption, there is
no additional requirement on the behavior of the Markov process in D1

and D3. In these sets, the process might be periodic or deterministic for
instance. In particular, one might havePx (n < τ∂) = 0 for some x ∈ D1∪D3

and some n ∈N (this situation is discussed in Section 3.1).

4. One easily checks from the proof that the function ϕ1 in Assumption (E)
for X is bounded (up to a multiplicative positive constant) from above by

Ex

(
γ−TD2ϕY

1

(
XTD2

)
1TD2<TD3∧τ∂

)
+Ex

(
γ−TD3∧τ∂1TD3∧τ∂<TD2

)
on D1, by ϕY

1 on D2 and by a constant on D3.
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5. In particular, if ϕY
1 is uniformly bounded and if the first statement in As-

sumption (H2) is replaced by

sup
x∈D1

Ex
(
γ−TD2∪D3∧τ∂)<+∞,

then one can also choose a bounded function ϕ1 in Assumption (E) for X .

Remark 13. Assume in addition that Condition (E) is satisfied for the process
X D1 started from D1 with the same transitions as X but absorbed at its first
exit time of D1 and for the process X D3 started from D3 with the same transi-
tions as X and absorbed in ∂. Then the quasi-stationary distribution ν

D3
QSD of

Theorem 2.1 for X D3 extended by 0 to E \ D3 is a quasi-stationary distribution
for the absorbed process X . This shows that uniqueness of a quasi-stationary
distribution may not hold even if ϕ1 is bounded (see Corollary 2.3). Moreover,
the constant θD1

0 and the function ηD1 of Theorem 2.5 for X D1 extended by 0 to
D2 ∪D3 ∪ {∂} satisfies, for all x ∈ D1,

P̂1η
D1 (x) = Ex

[
11<TD2∪D3∧τ∂η

D1 (X1)
]
= θD1

0 ηD1 (x).

Hence ηD1 is an eigenfunction for P̂1 corresponding to case 3. in Corollary 2.6,
so θD1

0 ≤ θ0α1.

Proof of Theorem 6.1. Let us prove that Assumption (E) is satisfied by the pro-
cess X . Note that, because of Lemma 3.4, one can assume without loss of gener-
ality that γ< θY

2 .

Step 1. Assumption (E1).
We set K = K Y , n1 = nY

1 , c1 = cY
1 and ν = νY (remember that the objects

with a superscript Y are those of Assumption (E) satisfied by the process Y ).
Assumption (E1) for X is an immediate consequence of Assumption (E1) for Y .

Step 2. Assumption (E2).
We set θ2 = θY

2 and

ϕ2(x) =
{
ϕY

2 (x) if x ∈ D2

0 if x ∈ D1 ∪D3.

Then the second and fourth lines of Assumption (E) for X are direct conse-
quences of the same lines of Assumption (E) for Y .

Without loss of generality, we assume (reducing θY
1 if necessary) that γ ∈

(θY
1 ,θY

2 ). We define

ϕ1(x) = Ex
(
γ−TK ∧τ∂) , ∀x ∈ E ∪ {∂}.
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Let us first check thatϕ1 is finite on E . For all x ∈ D3, using thatPx (τ∂ < TD1∪D2 ) =
1 and that K ⊂ D2, one deduces that

ϕ1(x) = Ex
(
γ−τ∂

)≤ A := sup
x∈D3

Ex
(
γ−τ∂

)<+∞.

For all x ∈ D2, using the strong Markov property and inequality (9.8) for the pro-
cess Y , one deduces that

ϕ1(x) = Ex

(
γ
−TK ∧TDc

21TK <TDc
2

)
+Ex

(
γ−τ∂1TDc

2
<TK

)
= Ex

(
γ
−TK ∧TDc

21TK <TDc
2

)
+Ex

(
γ
−TK ∧TDc

21TDc
2
<TK EXTDc

2

(
γ−τ∂

))
≤ AEx

(
γ
−TK ∧TDc

2

)
≤ A

1−θY
1 /γ

ϕY
1 (x). (6.1)

For all x ∈ D1, one has, using the Markov property and the above inequalities,

Ex
(
γ−TK ∧τ∂)= Ex

(
γ−TD2∪D3∧τ∂ϕ1(XTD2∪D3∧τ∂)

)
≤ A

1−θY
1 /γ

[
Ex

(
γ−TD2ϕY

1

(
XTD2

)
1TD2<TD3∧τ∂

)
+Ex

(
γ−TD3∧τ∂1TD3∧τ∂<TD2

)]
,

which is finite by Assumption (H1).
The definition of ϕ1 immediately implies that infE ϕ1 ≥ 1 and, since ϕY

1 is
uniformly bounded over K ⊂ D2, (6.1) implies that supK ϕ1 < +∞. Hence the
first line of Assumption (E2) is satisfied. Moreover, for all x ∈ K ,

P1ϕ1(x) = Ex
(
1X1∈D2EX1

(
γ−TK ∧τ∂))+Ex

(
1X1∈D3EX1

(
γ−τ∂

))
≤ Ex

(
1X1∈D2

A

1−θY
1 /γ

ϕY
1 (X1)

)
+ A

= A

1−θY
1 /γ

P Y
1 ϕ

Y
1 (x)+ A ≤ A

1−θY
1 /γ

cY
2 + A.

Hence, the third line of (E2) for X with θ1 = γ follows from Lemma 3.3.

Step 3. Assumption (E3).
For all x ∈ K , we have, for all n ≥ 1,

Px (n < τ∂) ≤Px (n < τ∂∧TD3 )+Px (TD3 ≤ n < τ∂). (6.2)

On the one hand, by Lemma 9.9, there exists a constant C > 0 such that

Px (n < τ∂∧TD3 ) ≤ CϕY
1 (x)

1−θY
1 /θY

2

inf
y∈K

Py (n < TDc
2
) ≤ C supK ϕ

Y
1

1−θY
1 /θY

2

inf
y∈K

Py (n < τDc
2
).
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On the other hand, using Markov’s property and Markov’s inequality,

Px (TD3 ≤ n < τ∂) = Ex

(
1TD3≤nPXTD3

(n −u < τ∂)
u=TD3

)
≤ Ex

(
1TD3≤nϕ1(XTD3

)γn−TD3

)
≤ AEx

(
1TDc

2
≤nγ

n−TDc
2

)
,

since {TD3 ≤ n} ⊂ {TDc
2
= TD3 }. Now, using Theorem 2.5 and the fact that ηY is

uniformly bounded from above and away from 0 on K , we deduce that there
exist constants C ,C ′ > 0 such that

Ex

(
1TDc

2
≤nγ

n−TDc
2

)
=

n∑
k=1

Px (TDc
2
= k)γn−k ≤

n∑
k=1

Px (TDc
2
> k −1)γn−k

≤C
n∑

k=1
(θY

0 )k−1γn−k ≤C (θY
0 )n−1 1

1−γ/θY
0

≤C C ′ (θY
0 )−1

1−γ/θY
0

inf
y∈K

Py (n < TDc
2
).

Finally, we obtain from (6.2) that there exists a constant C ′′ > 0 such that, for
all x ∈ K ,

Px (n < τ∂) ≤C ′′ inf
y∈K

Py (n < T c
D2

) ≤C ′′ inf
y∈K

Py (n < τ∂). (6.3)

This concludes Step 3.

Step 4. Conclusion.
Assumption (E4) for the process X is an immediate consequence of Assump-

tion (E4) for the process Y , and hence we have checked that X satisfies Assump-
tion (E). The convergence result of Theorem 6.1 is exactly the convergence result
obtained in Theorem 2.1.

Note that (6.3) entails that, for any x ∈ K ,

limsup
n→+∞

(θY
0 )−nPx (n < TDc

2
) ≤ limsup

n→+∞
(θY

0 )−nPx (n < τ∂)

≤C ′′ limsup
n→+∞

(θY
0 )−nPx (n < TDc

2
)

and that Theorem 2.5 applied to Y entails

limsup
n→+∞

(θY
0 )−nPx (n < TDc

2
) = ηY (x) <+∞.

Since it follows from Theorem 2.5 applied to X that limn→+∞θ−n
0 Px (n < τ∂) > 0,

we deduce that θ0 = θY
0 .
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Finally, for all x ∈ K , the structure of the transition graph of X implies that

0 =Px (Xn ∈ D1 | n < τ∂) −−−−−→
n→+∞ νQSD (D1),

so that νQSD (D1) = 0. Moreover, for all x ∈ D3, Markov’s inequality and the sec-
ond line of Assumption (H2) yield the inequality Px (n < τ∂) ≤ Aγn , for all x ∈ K
and all n ≥ 1. Since θ0 = θY

0 > γ by assumption, we deduce that, for all x ∈ K ,
limn→+∞θ−n

0 Px (n < τ∂) = 0, which means that η(x) = 0.
This concludes the proof of Theorem 6.1.

6.2 Countably many communication classes

In this section, we study a particular case of a continuous time càdlàg Markov
process (X t )t∈[0,+∞) with a countable infinity of communication classes and we
show that the process admits a quasi-stationary distribution.

More precisely, we assume that X evolves in the state space N×Z+ and, de-
noting Nt ∈N and Yt ∈Z+ the two components of X t for all t ∈ [0,+∞), that there
exist three positive functions b,d , f :N→ (0,+∞) such that

• N is a Poisson process with intensity 1,

• Y is a process such that, at time t ,

Y jumps from Yt to y ∈Z+ with rate


f (Nt )b(Yt ) if y = Yt +1 and Yt ≥ 1,

f (Nt )d(Yt ) if y = Yt −1 and Yt ≥ 1,

0 otherwise.

The set N× {0} is absorbing for X and we are interested in the quasi-stationary
behavior of X conditioned to not hit this set. Note that, in this case, each set
{n}×N is a communication class.

Remark 14. This process can be used to model the evolution of the vitality of an
individual (for example a bacterium) whose metabolic efficiency (for example its
ability to consume resources) changes with time, due to aging [78]. Here Y is the
vitality of the individual, who dies when its vitality hits 0, f (N ) is the metabolic
rate of the individual, which may improve in the early life of the individual up to
age n0 and then accelerates progressively.

This can also model the accumulation of deleterious mutations in a pop-
ulation under the assumption that mutations do not overlap, i.e. that when a
mutant succeeds to invade the population (either because they are advantaged
or due to genetic drift for deleterious mutations), other types of mutants disap-
pear rapidly. Here Y represents the size of the population and N the number of
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mutations. It is typical to assume that the first n0 mutations that invade are ad-
vantageous (which corresponds to adaptation), and afterwards that deleterious
mutations start to accumulate, hence accelerating the extinction of the species
(extinction vortex [27, 26]).

In both cases, it is relevant to assume that f is decreasing on {1,2, . . . ,n0} and
increasing on {n0,n0 +1, . . .}.

We assume that (d(y)−b(y))/y →+∞when y →+∞ or that there existsδ> 1
such that d(y)−δb(y) →+∞. Hence the birth and death process Z evolving in
N, with birth rates (b(z))z∈N and death rates (d(z))z∈N, satisfies Assumption (F)
by Theorem 5.1 (see Example 7). In particular, there exist an eigenvalue λZ

0 > 0
and eigenfunction ηZ : N→ (0,+∞) such that, for all z ∈ N, L ZηZ = −λZ

0 η
Z ,

where the operator L Z is defined as the operator L in (5.1).

Theorem 6.2. Assume also that there exists a unique n0 ∈ N such that f (n0) =
minn∈N f (n) and that liminfn→+∞ f (n) > f (n0)+ 1

λZ
0

. Then the process X satisfies

Assumption (F) and admits a quasi-stationary distribution νQSD whose domain
of attraction contains all Dirac measures δn,y , with n ≤ n0 and y ∈N.

Of course, all the consequences of Theorem 3.5 also apply here, taking the
functions ψ1 and ψ2 as described in the proof.

In practice, one may use the fact that λZ
0 is always smaller than d(1). Note

that we can construct the process Y as

Yt = Z∫ t
0 f (Ns )d s , ∀t ≥ 0.

The proof of the next result mainly makes use of this special structure of the pro-
cess and might be generalized to processes Z that are not birth-death processes.

Proof. In general, we shall denote the objects related to Z with a superscript Z ,
for example ψZ

1 is the functions involved in (F2) and LZ is the set involved in (F)
for Z . We can assume without loss of generality as in Theorem 5.1 that LZ = D Z

0 ,
i.e.

L ZψZ
1 ≤−λZ

1 ψ
Z
1 + C̄1LZ (6.4)

with ψZ
1 (0) = 0 and λZ

1 >λZ
0 .

Our goal is to apply Theorem 5.1 to the process X = (N ,Y ). We define the
finite set D0 = {n0} × LZ , so that X is irreducible on L, and check that λ0 ≤
f (n0)λZ

0 +1. Indeed, for all y ∈ LZ ,

e t ( f (n0)λZ
0 +1)P(n0,y)((Nt ,Yt ) = (n0, y)) ≥ e t f (n0)λZ

0 PZ
y (Z f (n0)t = y)

−−−−→
t→+∞ ηZ (y)νZ

QSD ({y}) > 0.
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We fix λ1 such that

f (n0)λZ
0 +1 <λ1 <

(
λZ

0 inf
n 6=n0

f (n)+1

)
∧

(
λZ

0 liminf
n→+∞ f (n)

)
∧ (
λZ

1 f (n0)+1
)

and we choose

• n1 > n0 such that, for all n ≥ n1, λ1 <λZ
0 f (n);

• c > 0 small enough so that ψZ
1 (x) ≥ cηZ (x) for all x ≥ 1 (such a constant

exists thanks to Theorem 2.5);

• a > 0 large enough so that λ1 <λZ
1 f (n0)+1−e−a ;

• ε> 0 small enough so that λ1 < (λZ
0 −ε) infn 6=n0 f (n)+1;

• b > a large enough so that λ1 < (λZ
0 −ε) infn 6=n0 f (n)+1−e−b and C̄ ea−b <

ε infy∈LZ ηZ (y), where the constant C̄ is the one of (6.4).

We can now define

ψ1(n, y) =


ψZ

1 (y) if n = n0,

ea(n0−n)ψZ
1 (y)+eb(n0−n)ηZ (y) if n < n0,

ce−a(n−n0)ηZ (y) if n0 < n < n1,

ce−a(n1−n0)ηZ (y) if n1 ≤ n.

In the case where n < n0, it follows from (6.4) that

Lψ1(n, y) ≤− (
λZ

1 f (n)+1−e−a)
ea(n0−n)ψZ

1 (y)

−
(
λZ

0 f (n)+1−e−b
)

eb(n0−n)ηZ (y)

+ C̄

infz∈LZ ηZ (z)
f (n)ea(n0−n)ηZ (y)

≤−λ1ea(n0−n)ψZ
1 (y)−

[
(λZ

0 −ε) f (n)+1−e−b
]

eb(n0−n)ηZ (y)

+ε f (n)ea(n0−n)
(
eb−a −e(b−a)(n0−n)

)
ηZ (y)

≤−λ1ψ1(n, y).

When n = n0, we have

Lψ1(n0, y) ≤−λZ
1 f (n0)ψZ

1 (y)+ C̄1LZ (y) f (n0)+ ce−aηZ (y)−ψZ
1 (y)

≤−λ1ψ1(n0, y)+ C̄ f (n0)1D0 (n0, y).
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When n0 < n < n1, we have

Lψ1(n, y) ≤−λZ
1 f (n)c e−a(n−n0)ηZ (y)+ c e−a(n−n0+1)ηZ (y)− c e−a(n−n0)ηZ (y)

≤−λ1ψ1(n, y).

When n1 ≤ n, we have

Lψ1(n, y) ≤−λZ
1 f (n)ηZ (y) ≤−λ1ψ1(n, y).

Finally we have proved that Lψ1(n, y) ≤ −λ1ψ1(n, y)+ C̄ f (n)1D0 (n, y), where
λ1 > λ0. Now, note that, since Z is a birth-death process, basic comparison ar-
guments imply that ηZ (k) ≥ ηZ (1) > 0 for all k ≥ 1. Therefore, the function ψ1 is
uniformly lower bounded, so that it satisfies the assumptions of Theorem 5.1 up
to a multiplicative constant.

Hence, Theorem 5.1 allows us to conclude the proof. The fact that all Dirac
masses δ(n,y) with n ≤ n0 belong to the domain of attraction follows from Corol-
lary 2.3.

7 Application to processes in continuous state space and
discrete time

Discrete time Markov models in continuous state space and with absorption
naturally arise in many applications, typically for perturbed dynamical systems,
cf. e.g. [34, 5, 4, 49], or piecewise deterministic Markov processes when one
looks at the process at jump times only (see e.g. [3]). We provide in Section 7.1 a
general criterion applying to such processes with arbitrarily large, state-dependent
killing probability, and we give applications to Euler schemes for diffusions ab-
sorbed at the boundary of a domain. In Section 7.2, we consider perturbed dy-
namical systems in finite dimension. We first consider the case of unbounded
domains with unbounded perturbation. Subsection 7.2.1 assumes that the per-
turbation has bounded density with respect to Lebesgue’s measure and Subsec-
tion 7.2.2 provides examples with perturbations with unbounded density. Fi-
nally, the case of bounded perturbations is studied in Subsection 7.2.3.

The particular case of dynamical systems perturbed by a Gaussian noise is
considered in Example 9 of Subsection 7.2.1. In this setting, it is shown that the
perturbed dynamical system Xn+1 = f (Xn)+ξn with (ξi )i∈Z+ i.i.d. Gaussian, ab-
sorbed when it leaves any given measurable set D of Rd with positive Lebesgue
measure, admits a quasi-stationary distribution as soon as |x| − | f (x)| → +∞
when |x|→+∞.
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7.1 Two sided estimates with additional killing rate

Let (Yn ,n ∈Z+) be a Markov process evolving on a measurable state space E∪{∂}
with transition kernel (Q(y, ·)y∈E∪∂) such that ∂ ∉ E is absorbing (i.e. Q(∂, {∂}) = 1)
satisfying a two-sided estimates (see for instance [6, 30, 12]), which means that
there exist a probability measure ζ on E , a positive function g : E → (0,+∞) and
a constant C > 1 such that, for all y ∈ E and all measurable sets A ⊂ E ,

g (y)ζ(A) ≤Q(y, A) ≤C g (y)ζ(A). (7.1)

It is well known (see [6, 12]) that this implies that Y admits a unique quasi-
stationary distribution νY

QSD for which the convergence in (2.1) is geometric and
uniform with respect to the initial distribution µ on E . Our aim is to generalize
this result to processes obtained from Y with additional killing (or penalization,
see Remark 15). Note that Condition (7.1) is known to be satisfied for a lot of
models (see e.g. [5] or the references in [12]).

More precisely, let p : E ×E → (0,1] be measurable and consider the Markov
process X evolving in E ∪ {∂} with transition kernel P (x, ·)x∈E∪{∂} defined by

P (x,d y) =
{

p(x, y)Q(x,d y)+ (1−p(x, y))δ∂(d y) if x ∈ E

δ∂(d y) if x = ∂.

Observe that Condition (7.1) may not be satisfied by the kernel P in cases where
infx,y∈E p(x, y) = 0.

Theorem 7.1. Assume that there exists an increasing sequence (Lk )k≥1 of mea-
surable subsets of E such that E = ∪+∞

k=1Lk and such that infx,y∈Lk p(x, y) > 0 for
all k ≥ 1. Then X satisfies Assumption (E) with ϕ1 = 1 and ϕ2 positive on E. In
particular, X admits a unique quasi-stationary distribution whose domain of at-
traction contains all probability measures on E.

Remark 15. Note that, for any function f : E → R+, all x ∈ E and all n ≥ 1, one
has

Ex
(

f (Xn)1n<τ∂
)
) = Ex

(
p(x,Y1) · · ·p(Yn−1,Yn) f (Yn)1n<τY

∂

)
,

where τY
∂

is the absorption time for Y . This kind of penalized Markov processes
is also of interest if p is not bounded by 1 (see [31, 32]). We emphasize that
our result implies that, if p : E ×E → R+ is a bounded function (not necessar-
ily bounded by 1) such that infx,y∈Lk p(x, y) > 0 for all k ≥ 1, then there exists a
probability measure νlim on E , a constant α ∈ (0,1) and a positive measurable
function ϕ2 on E such that, for all bounded measurable f : E →R,∣∣∣∣∣∣

Eµ

(
p(x,Y1) · · ·p(Yn−1,Yn) f (Yn)1n<τY

∂

)
Eµ

(
p(x,Y1) · · ·p(Yn−1,Yn)1n<τY

∂

) −νlim( f )

∣∣∣∣∣∣≤ αn

µ(ϕ2)
‖ f ‖∞, ∀n ∈Z+.
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To see this, one simply has to consider the penalization p ′ = 1
‖p‖∞+1 p, which

enters the settings of this section and is such that

Eµ

(
p(x,Y1) · · ·p(Yn−1,Yn) f (Yn)1n<τY

∂

)
Eµ

(
p(x,Y1) · · ·p(Yn−1,Yn)1n<τY

∂

) =
Eµ

(
p ′(x,Y1) · · ·p ′(Yn−1,Yn) f (Yn)1n<τY

∂

)
Eµ

(
p ′(x,Y1) · · ·p ′(Yn−1,Yn)1n<τY

∂

) .

Example 8. Typical examples of discrete-time Markov processes in continuous
state space are given by Euler schemes for stochastic differential equations. We
consider the SDE dYt = b(Yt )d t +σ(Yt )dBt in Rd , with b and σ bounded mea-
surable on Rd and σ uniformly elliptic on Rd . Its standard Euler scheme with
time-step δ is the Markov chain (Xn ,n ≥ 0) defined as

Xn+1 = b(Xn)δ+
p
δσ(Xn)Gn , (7.2)

where (Gn ,n ≥ 0) is an i.i.d. sequence of N (0, Id) Gaussian variables inRd . In the
case of a SDE absorbed at its first exit time of a bounded open connected domain
D ⊂Rd , the “naive” Euler scheme, constructed as above with the additional rule
that Xn is immediately sent to ∂ when Xn 6∈ D , is not good in terms of weak
error. Indeed, when Xn is close to the boundary of D and Xn+1 remains in D , the
path of the SDE Y in the time interval [nδ, (n +1)δ] might have exited D . In this
case, it is more efficient to construct the Brownian path that links 0 to Gn on the
time interval [nδ, (n +1)δ] as a Brownian bridge (G̃t , t ∈ [nδ, (n +1)δ]) such that
G̃nδ = 0 and G̃(n+1)δ =Gn , so that one can approximate the path of the diffusion
on this time interval as

X̃ t = b(Xn)(t −nδ)+
p
δσ(Xn)G̃t , ∀t ∈ [nδ, (n +1)δ],

and approximate the absorption event as {∃t ∈ [nδ, (n +1)δ] : X̃ t 6∈ D}. The cor-
responding Euler scheme is thus obtained as the Markov chain X as defined
in (7.2) with the penalization p(Xn , Xn+1) = P(∃t ∈ [nδ, (n +1)δ] : X̃ t 6∈ D). For a
detailed presentation and study of this kind of modified Euler schemes, we refer
the reader to [65, 40, 41, 7].

Using Theorem 7.1, we obtain the existence and convergence to a unique
quasi-stationary distribution for this Euler schemes. Indeed, (7.1) is satisfied for
the naive Euler scheme with ζ equal to the restriction of Lebesgue’s measure to
D and a constant function g , thanks to the boundedness of the domain D , the
uniform ellipticity of σ and the boundedness of b and σ. In addition, it follows
from the connectedness of the domain D , the uniform ellipticity of σ and the
boundedness of b andσ that supx,y∈K p(x, y) > 0 for any compact subset K of D .
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Proof of Theorem 7.1. For all k ≥ 1, we define the set Kk = {x ∈ Lk s.t. g (x) ≥ 1/k}.
Let k0 be large enough so that ζ(Kk0 ) > 0. Then one has, for all k ≥ k0, all x ∈ Kk

and all measurable set A ⊂ E ,

Px (X1 ∈ A∩Kk0 ) ≥ g (x)
∫

A∩Kk0

p(x, y)ζ(d y) ≥ ζ(Kk0 ) infu,v∈Lk p(u, v)

k
ν(A∩Kk0 ),

(7.3)

where ν is the probability measure on Kk0 defined by ν(A) = ζ(A)/ζ(Kk0 ). We fix

k ≥ k0 large enough so that C /k < ζ(Kk0 ) infu,v∈Lk0
p(u,v)

k0
, where the constant C is the

one of (7.1), and set K = Kk .
Let us now check that Condition (E) is satisfied with the above choices of K

and ν (extended by 0 to Kk \ KK0 ), and with θ1 =C /k and θ2 =
ζ(Kk0 ) infu,v∈Lk0

p(u,v)

k0
.

Setting ϕ1 = 1, one has

P1ϕ1(x) ≤ 1, ∀x ∈ K ,

P1ϕ1(x) ≤C g (x) ≤ θ1 = θ1ϕ1(x), ∀x ∈ E \ K ,

so that the first and third lines of Condition (E2) are satisfied. Using Markov’s
property, one deduces from (7.3) that θ−n

2 infx∈K Px (Xn ∈ Kk0 ) →+∞ when n →
+∞. Hence Lemma 3.2 implies that the second and fourth lines of Condition (E2)
are satisfied. It also implies that Condition (E4) is satisfied. Note also that the
function ϕ2 provided by Lemma 3.2 is positive on E since g is positive in (7.1).

Moreover, for all x ∈ E , all y ∈ K and all measurable set A ⊂ E ,

Px (X1 ∈ A∩K ) ≤C g (x)ζ(A∩K ) ≤ C g (x)kg (y)

infK×K p

∫
A∩K

p(y, z)ζ(d z)

≤ C‖g‖∞k

infK×K p
Py (X1 ∈ A∩K ).

We deduce from Proposition 3.1 with n0 = m0 = 1 that Conditions (E1) and (E3)
are satisfied, which concludes the proof of Theorem 7.1.

7.2 Perturbed dynamical systems

We consider the following perturbed dynamical system

Xn+1 = f (Xn)+ξn ,

where f : Rd → Rd is a measurable function and (ξn)n∈N is an i.i.d. sequence
in Rd . We assume that the process evolves in a measurable set D of Rd with
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positive Lebesgue measure, meaning that it is immediately sent to ∂ 6∈Rd as soon
as Xn 6∈ D . We shall consider two situations below, where the random variables
ξn are unbounded or almost surely bounded. In the unbounded case, different
methods must be used depending on whether ξn has a bounded density with
respect to Lebesgue’s measure or not.

The same arguments would also work if Xn+1 = f (Xn)+ ξn(Xn), where the
sequence of random maps (x 7→ ξn(x))n≥0 are i.i.d. We leave the appropriate
extensions of our assumptions and arguments to the reader.

7.2.1 The case of unbounded perturbation with bounded density

We consider here the case where the random variables ξn have support Rd .
Note that, if D is bounded, the following result is already a consequence of

the classical criterion based on (7.1).

Proposition 7.2. Assume that f is locally bounded, that the law of ξn has a boun-
ded density g (x) with respect to Lebesgue’s measure such that

inf
|x|≤R

g (x) > 0, ∀R > 0,

and that there exists a locally bounded function ϕ : Rd → [1,+∞) such that x 7→
E(ϕ(x +ξ1)) is locally bounded on Rd and such that

limsup
|x|→+∞, x∈D

E(ϕ( f (x)+ξ1))

ϕ(x)
= 0. (7.4)

Then Condition (E) is satisfied with ϕ1 =ϕ and ϕ2 positive on D.

Before proving this result, let us illustrate this proposition with three exam-
ples.

Example 9. If there exists α > 0 such that Eeα|ξ1| < +∞ and if |x| − | f (x)| →
+∞ when |x| → +∞, then Proposition 7.2 applies. Indeed, choosing ϕ(x) =
exp(α|x|), we have

Eϕ(| f (x)+ξ1|)
ϕ(x)

≤ eα(| f (x)|−|x|)Eeα|ξ1| −−−−−−→
|x|→+∞

0.

For instance, this covers the case of Gaussian perturbations, as stated in Theo-
rem 1.2 in the introduction.

Example 10. If there exists p > 0 such that E(ξp
1 ) <+∞ and if | f (x)| = o(|x|) when

|x| → +∞, then Proposition 7.2 applies. Indeed, choosing ϕ(x) = (1+ |x|)p , we
have

Eϕ(| f (x)+ξ1|)
ϕ(x)

≤ (1+| f (x)|)p

(1+|x|)p E[(1+|ξ1|)p ] −−−−−−→
|x|→+∞

0.
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Example 11. If E log(1+|ξ1|) <∞ and | f (x)| ≤C |x|ε(x) for some C > 0 and some
ε(x) → 0 when |x| →+∞, then Proposition 7.2 applies. Indeed, choosing ϕ(x) =
log(e +|x|), we have

Eϕ(| f (x)+ξ1|)
ϕ(x)

≤ log(e +C )+ε(x) log(e +|x|)
log(1+|x|) + E log(1+|ξ1|)

log(e +|x|) .

The inequality | f (x)| ≤ C |x|ε(x) is true for example if | f (x)| ≤ C exp
√

log(1+|x|)
for some constant C .

Proof of Proposition 7.2. We first prove Conditions (E2) and (E4) and conclude
the proof with Proposition 3.1.

Step 1. Conditions (E2) and (E4) are satisfied.
Let K1 ⊂ D be a bounded measurable set with positive Lebesgue measure.

Then, for all x ∈ K1, denoting by λd the Lebesgue measure on Rd ,

Px (X1 ∈ K1) =P( f (x)+ξ1 ∈ K1) ≥λd (K1) inf
u∈K1+B(0,supK1

| f |)
g (u) > 0.

Fix θ2 ∈ (0,λd (K1) infu∈K1+B(0,supK1
| f |) g (u) ), we deduce that, for all x ∈ K1,

θ−n
2 inf

x∈K1

Px (Xn ∈ K1) ≥ θ−n
2 inf

x∈K1

Px (X1 ∈ K1, . . . , Xn ∈ K1) −−−−−→
n→+∞ +∞.

Fix 0 < θ1 < θ2, and, using (7.4), consider a bounded subset K ⊂ D containing K1

and such that, for all x ∈ D \ K , P1ϕ(x) ≤ θ1ϕ(x). Since K is bounded, one has

inf
x∈K

Px (X1 ∈ K1) ≥λd (K1) inf
u∈K1+B(0,supK | f |)

g (u) > 0,

so that

θ−n
2 inf

x∈K
Px (Xn ∈ K ) ≥ θ−n

2 λd (K1) inf
u∈K1+B(0,supK | f |)

g (u) inf
x∈K1

Px (Xn−1 ∈ K1)

and thus θ−n
2 infx∈K Px (Xn ∈ K ) converges to +∞ when n → +∞. Lemma 3.2

then entail that Condition (E4) is satisfied and that there exists a function ϕ2 :
D → [0,1] such that P1ϕ2(x) ≥ θ2ϕ2(x) for all x ∈ D and such that infK ϕ2 > 0. In
addition, for all x ∈ D , Px (X1 ∈ K ) ≥λd (K ) infu∈K− f (x) g (u) > 0, so that P11K (x) >
0. Hence, the function ϕ2 of Lemma 3.2 also satisfies that ϕ2(x) > 0 for all x ∈ E .

Setting ϕ1 =ϕ, we deduce that Conditions (E2) and (E4) are satisfied for the
set K .

Step 2. Comparison of transition probabilities.

49



Let us prove that Proposition 3.1 applies with n0 = m0 = 1. For all x ∈ D , we
have

Px (X1 ∈ ·∩K ) ≤ sup
u∈Rd

g (u)λd (·∩K ).

Moreover, for all y ∈ K ,

Py (X1 ∈ ·) ≥P( f (y)+ξ1 ∈ ·∩K )

≥ inf
u∈K+B(0,supK | f |)

g (u)λd (·∩K ).

Hence, for all x ∈ E and all y ∈ K ,

Px (X1 ∈ ·∩K ) ≤ supRd g

infK+B(0,supK | f |) g
Py (X1 ∈ ·).

We deduce from Step 1 and Proposition 3.1 that Condition (E) is satisfied with
the functions ϕ1 and ϕ2, which concludes the proof.

7.2.2 An example with unbounded perturbation with singular density

The last result made strong use of the boundedness of g . Actually, our criteria
also apply to perturbations with singular density. We consider here the following
example: assume that f (x) = Ax +B , where A is an invertible d ×d matrix and
B ∈Rd , and that there exists a > 0 such that the density g of ξn satisfies for some
constant Cg

g (x) ≤Cg

(
1

|x|d−a
∨1

)
∀x ∈Rd . (7.5)

We have the following result.

Proposition 7.3. Let ‖ ·‖ be a norm on Rd and assume that

sup
x∈Rd \{0}

‖Ax‖
‖x‖ < 1. (7.6)

Assume also that Eeα|ξ1| <∞ for some α> 0 and that

inf
|x|≤R

g (x) > 0, ∀R > 0.

Then Condition (E) is satisfied with ϕ1 =ϕ and ϕ2 positive on D.

The proof of Proposition 7.2 made use of Proposition 3.1 with n0 = m0 = 1.
The proof of Proposition 7.3 requires to apply Proposition 3.1 with n0 ≥ 2.
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Proof. The first step of the proof of Proposition 7.2 remains valid taking ϕ(x) =
eα‖x‖ for α > 0 small enough and using (7.6) and the equivalence of the norms
| · | and ‖·‖ (the computation is similar to the one of Example 9). So we only have
to prove that (3.1) is satisfy and apply Proposition 3.1.

We define n0 = dd/ae and we assume without loss of generality (reducing
slightly a if needed) that n0a > d . We observe that

Xn0 = An0 x + An0−1(B +ξ1)+·· ·+B +ξn0 .

Using (7.5) and the fact that supx 6=0
|Ax|
|x| ≤ C 2

‖·‖ where the constant C‖·‖ is such

that C−1
‖·‖ | · | ≤ ‖ ·‖ ≤C‖·‖| · |, the density g2 of Aξ1 +ξ2 satisfies

g2(x) = 1

|detA|
∫
Rd

g (x − y)g (A−1 y)d y

≤
C 2

g

|detA|
∫

{y :|A−1 y |≤1}∩B(x,1)

1

|x − y |d−a

1

|A−1 y |d−a
d y +Cg

(
1+ 1

|detA|
)

≤
C 2

g C‖·‖
|detA|

∫
B(0,C 2

‖·‖)

1

|x − y |d−a

1

|y |d−a
d y +Cg

(
1+ 1

|detA|
)

=
C 2

g C‖·‖
|detA|

1

|x|d−2a

∫
B(0,C 2

‖·‖/|x|)
1∣∣∣ x

|x| −u
∣∣∣d−a

1

|u|d−a
du +Cg

(
1+ 1

|detA|
)

,

(7.7)

where we made the change of variable u = y/|x|.
If 2a > d (i.e. if n0 = 2), we can bound the integral in the right-hand side as

follows:∫
B

(
0,

C 2
‖·‖
|x|

) 1∣∣∣ x
|x| −u

∣∣∣d−a

1

|u|d−a
du ≤C +2d

∫
B

(
0,

C 2
‖·‖
|x|

)
\B(0,2)

1

|u|2d−2a
du

≤C + C

2a −d

1

|x|2a−d
,

where the constant C may change from line to line. Therefore, g2 is bounded if
2a > d .

Otherwise, if 2a < d , the integral in the right-hand side of (7.7) can be boun-
ded by the same integral over Rd and thus it is uniformly bounded with respect
to x, so g2 is also bounded. In this case, we can proceed similarly to bound
the density g3 of A2ξ1 + Aξ2 +ξ3, and prove by induction that the density gn0 of
An0−1ξ1 +·· ·+ξn0 is bounded.
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We deduce that

Px (Xn0 ∈ ·∩K ) ≤ sup
u∈Rd

gn0 (u)λd (·∩K ).

The end of the proof is the same as for Proposition 7.2, using Proposition 3.1
with m0 = n0.

7.2.3 Two examples with bounded perturbation

The case where ξ1 is a bounded random variable is more involved. To avoid
complications, we will focus on the case where ξn is a uniform random variable
on the unit ball B(0,1) of Rd . Extensions to different distributions are possible.

We start with the simpler case of bounded domain D and contracting dy-
namical system f .

Proposition 7.4. Assume that D is a bounded, connected open set of Rd , that f is
continuous and satisfies | f (x)−x| < 1 for all x ∈ D. Then Condition (E) is satisfied.

Proof. Again, the proof makes use of the criterion of Proposition 3.1.

Step 1. Construction and properties of the sets Kε, ε> 0.
For all ε > 0, let K ′

ε be the connected component of {x ∈ D : d(x,∂D) ≥ 2ε}
with larger Lebesgue measure and let

Kε := ⋃
x∈K ′

ε

B(x,ε),

which is a also a connected compact subset of D with distance to Dc larger than
ε. For all δ > 0 and all x, y ∈ Kε, we call a sequence (x0, x1, . . . , xn) ∈ K n+1

ε for
some n ∈N a δ-path linking x to y in Kε if x0 = x, xn = y and |xk −xk−1| < δ for all
1 ≤ k ≤ n. By construction, the set Kε satisfies that, for all δ> 0 and all x, y ∈ Kε,
there exists a δ-path linking x to y in Kε. In addition, since Kε is compact, there
exists an integer nε,δ depending only on ε and δ such that, for all x, y ∈ Kε, there
exists a δ-path in Kε linking x to y with length less than nε,δ. For all x ∈ Kε and
all k ∈ {1, . . . ,nε,δ} let us define

K (k)
ε,δ (x) =

{
y ∈Rd : ∃x1, . . . , xk−1 ∈ Kε, |x`−x`−1| < δ for all 1 ≤ `≤ k

with x0 = x and xk = y
}

.

Note that in general, K (k)
ε,δ is not included in Kε, but it is included in D if δ< ε. It

follows from above that K
(nε,δ)
ε,δ (x) ⊃ Kε for all x ∈ Kε.
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Let us also prove that ∪ε>0Kε = D . Let (xn)n≥1 be a dense sequence in D
and for all n ≥ 1, let rn = d(xn ,∂D)/2. Since D = ∪n≥1B(xn ,rn), there exists
n0 ≥ 1 such that ∪1≤n≤n0 B(xn ,rn) has Lebesgue measure larger than λd (D)/2.
Since D is connected, there exists a continuous path in D linking xi to x j for
all 1 ≤ i , j ≤ n0. Since the distance between this path and ∂D is positive (be-
cause D is open and the path is compact), there exists ε > 0 small enough such
that all the points x1, . . . , xn0 belong to the same connected component of {x ∈
D : d(x,∂D) ≥ 2ε}. We can assume without loss of generality that ε< rn/2 for all
1 ≤ n ≤ n0, so that this connected component actually contains∪1≤n≤n0 B(xn ,rn)
and hence has the largest Lebesgue measure among all the connected compo-
nents of {x ∈ D : d(x,∂D) ≥ 2ε}. In particular, Kε contains B(x1,r1) for all ε small
enough. Now, given any x ∈ D , there exists a path linking x to x1 in D . Since the
distance between this path and ∂D is positive, x belongs to Kε for all ε> 0 small
enough. Hence, we have proved that ∪ε>0Kε = D and that the family (Kε)ε>0 is
non-increasing with respect to ε> 0 when ε is small enough.

Step 2. Proof of Condition (3.1) of Proposition 3.1.
For all ε> 0, since f is continuous,

δε :=
(

1− sup
x∈Kε

| f (x)−x|
)
∧ε> 0.

Hence, for all x ∈ Kε,

Px (X1 ∈ ·∩B(x,δε)) ≥ cdλd (·∩B(x,δε)), (7.8)

for a positive constant cd only depending on the dimension of the space. In
other words, for all x ∈ Kε,

Px (X1 ∈ ·) ≥ cdP(x +U ∈ ·)
where U is a uniform random variable on B(0,δε). Hence, defining the Markov
chain Yn = Y0 +U1 + . . . +Un where Ui are i.i.d. uniform random variable on
B(0,δε), we deduce that

Px (Xk ∈ ·) ≥ ck
dPx (Y1, . . . ,Yk−1 ∈ Kε and Yk ∈ ·), ∀x ∈ Kε, ∀k ∈N. (7.9)

In view of Step 1, the following Lemma 7.5 about the process Y implies that there
exists a constant c ′ > 0 such that

Px (Xnε,δε/3 ∈ ·) ≥ c ′λd (·∩Kε), ∀x ∈ Kε. (7.10)

Since the law of X1 is dominated by the Lebesgue measure independently of
X0, we have proved that, for all ε > 0, (3.1) is satisfied for K = Kε, n0 = 1 and
m0 = nε,δε/3. This concludes Step 2 of the proof.
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Lemma 7.5. For all 1 ≤ k ≤ nε,δε/3, there exists a constant c ′k > 0 such that, for all
x ∈ Kε,

Px (Y1, . . . ,Yk−1 ∈ Kε and Yk ∈ ·) ≥ c ′kλd

(
·∩K (k)

ε,δε/3(x)
)

, (7.11)

where λd is Lebesgue’s measure on Rd .

Step 3. Proof of (E2) and (E4).
Fix ε0 > 0 such that Kε0 is non-empty and (Kε)ε∈(0,ε0] is non-increasing. One

deduces from the definition of Kε that infx∈Kε0
λd (Kε0 ∩B(x,δε0 )) > 0. Fixing

θ2 < 4∧
{

cd inf
x∈Kε0

λd (Kε0 ∩B(x,δε0 ))

}
,

one deduces from (7.8) that

lim
n→+∞θ

−n
2 inf

x∈Kε0

Px (Xn ∈ Kε0 ) =+∞. (7.12)

Since the law of X1 is dominated by the Lebesgue measure and D = ∪0<ε≤ε0 Kε,
there exists ε1 ∈ (0,ε0] small enough such that

sup
x∈D

Px (X1 ∈ D \ Kε1 ) ≤ θ2/4.

Hence, the function

ϕ1 : x ∈ D 7→
{

1 if x ∈ Kε,

4/θ2 if x ∈ D \ Kε1 ,

satisfies P1ϕ1(x) ≤ 2 ≤ (θ2/2)ϕ1(x) for all x ∈ D \ Kε1 . Hence the first and third
lines of Condition (E2) are satisfied with θ1 = θ2/2 and K = Kε1 .

One also deduces from (7.10), (7.12), the fact that Kε0 ⊂ Kε1 and Markov’s
property that

lim
n→+∞θ

−n
2 inf

x∈Kε1

Px (Xn ∈ Kε1 ) =+∞.

Hence, we deduce from Lemma 3.2 that (E4) is satisfied with K = Kε1 and that
there exists a function ϕ2 satisfying the conditions of (E2) with θ2 defined above
and K = Kε1 .

Therefore, the result follows from Step 2 and Proposition 3.1 with K = Kε1 ,
n0 = 1 and m0 = nε1,δε1 /3.
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Proof of Lemma 7.5. We prove this result by induction over k. Since Y1 = x +U1

is uniform in B(x,δε), the case k = 1 is clear since K (1)
ε,δε/3 = B(x,δε/3) ⊂ B(x,δε).

So assume that (7.11) is satisfied for some 1 ≤ k ≤ nε,δε/3 −1 and let us prove
it for k +1. Let A ⊂Rd be measurable. Using (7.11) for k and the fact that Yk+1 is
uniform in B(Yk ,δε) conditionally on Yk , we have

Px (Y1, . . . ,Yk ∈ Kε, Yk+1 ∈ A)

≥Px

(
Y1, . . . ,Yk−1 ∈ Kε, Yk ∈ K (k)

ε,δε/3(x)∩Kε, Yk+1 ∈ A∩B(Yk ,δε)
)

≥ c ′k
λd (B(0,δε))

∫
K (k)
ε,δε/3(x)∩Kε

d y
∫

A∩B(y,δε)
d z

= c ′k
λd (B(0,δε))

∫
A
λd

{
K (k)
ε,δε/3(x)∩Kε∩B(z,δε)

}
d z

≥ c ′k
λd (B(0,δε))

∫
A∩K (k+1)

ε,δε/3(x)
λd

{
K (k)
ε,δε/3(x)∩Kε∩B(z,δε)

}
d z,

where the third equality follows from Fubini’s theorem.
Now, for all z ∈ K (k+1)

ε,δε/3(x), there exists a path x0 = x, x1, . . . , xk ∈ Kε such that
|x` − x`−1| < δε/3 for all 1 ≤ ` ≤ k and |xk − z| < δε/3. By definition of Kε,
there exists y ∈ Kε such that xk−1 ∈ B(y,ε) ⊂ Kε. Let y ′ be the unique point
such that |y ′− xk−1| = δε/6 of the half-line with initial point xk−1 and contain-
ing y . Then B(y ′,δε/6) ⊂ Kε. Since |xk − z| < δε/3 and |xk−1 − xk | < δε/3, we
also have B(y ′,δε/6) ⊂ B(z,δε). In addition, for all y ′′ ∈ B(y ′,δε/6), the path
x0 = x, x1, . . . , xk−1, y ′′ lies in Kε and has distance between consecutive point
smaller than δε/3. Therefore, B(y ′,δε/6) ⊂ K (k)

ε,δε/3(x). We conclude that, for all

z ∈ K (k+1)
ε,δε/3(x),

λd

{
K (k)
ε,δε/3(x)∩Kε∩B(z,δε)

}
≥λd (B(0,δε/6)).

Hence
Px (Y1, . . . ,Yk ∈ Kε, Yk+1 ∈ A) ≥ c ′k+1λd

(
A∩K (k+1)

ε,δε/3(x)
)

for a positive constant c ′k+1.

The general case of dynamical systems with bounded perturbations raises
several additional difficulties. We illustrate two of them with the next example
in dimension 1. We consider the Markov process in D = (0,+∞) defined as

X0 ∈ (0,+∞), Xn+1 =αXn − 1

1+Xn
+ξn , ∀n ≥ 0
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whereα ∈ (0,1) and ξn are i.i.d. with uniform distribution on [−1,1] and the pro-
cess is immediately sent to the cemetery point ∂ when it leaves D . The first dif-
ficulty comes from the fact that

Px (X1 > 0) = 1−
(

1

1+x
−αx

)
∨0 −−−−→

x→0+ 0,

which means that the probability of immediate absorption converges to 1 when
x approaches the boundary of D . The second difficulty comes from the fact that
| f (x)−x| is unbounded on D (in contrast with Proposition 7.4). This example is
covered by the following general result.

Proposition 7.6. Assume that Xn+1 = f (Xn)+ξn with D = (0,+∞), ξn i.i.d. uni-
form on [−1,1], f continuous and there exists x∗ ∈ D such that

(0, x∗) = {
x ∈ D : | f (x)−x| < 1

}
and [x∗,+∞) = {

x ∈ D : f (x)+1 ≤ x
}

.

Then Condition (E) is satisfied.

Proof. Fix K0 ⊂ (0, x∗) a closed interval with non-empty interior. As in the proof
of Proposition 7.4, using in particular (7.9) and (7.11), there exists n0 ≥ 1 and
c0 > 0 such that, for all x ∈ K0,

Px (Xn0 ∈ ·) ≥ c0λ1(·∩K0).

Hence there exists a constant θ2 ∈ (0,1) such that

θ−n
2 inf

x∈K0

Px (Xn ∈ K0) −−−−−→
n→+∞ +∞. (7.13)

Fix now θ1 < θ2 and K ⊂ (0, x∗) a closed interval such that K0 ⊂ K and

λ1
{
(0, x∗) \ K

}≤ θ1

M
,

where

M := 2(1+e(x∗+2)/θ1 )

θ1
.

As above, there exists n1 ≥ 1 and c1 > 0 such that, for all x ∈ K ,

Px (Xn1 ∈ ·) ≥ c1λ1(·∩K ).

In particular, infx∈K Px (Xn1 ∈ K0) > 0, so that, using Markov property and (7.13),
we deduce that

θ−n
2 inf

x∈K
Px (Xn ∈ K ) −−−−−→

n→+∞ +∞.
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Using Lemma 3.2, we deduce that there exists a function ϕ2 satisfying the con-
ditions of (E2) and that (E4) is satisfied. For all x ∈ D , let

ϕ1(x) =


1 if x ∈ K ,

M if x ∈ (0, x∗) \ K ,

ex/θ1 if x ≥ x∗.

For x ≥ x∗, using the fact that the density of X1 on D with respect to Lebesgue
measure is bounded by 1

21D for all value of X0, we have

P1ϕ1(x) ≤ Ex (e X1/θ11X1≥x∗)+Px (X1 ∈ K )+MPx (X1 ∈ (0, x∗) \ K )

≤ Ex (e X1/θ1 )+ M

2
λ1

{
(0, x∗) \ K

}
≤ϕ1(x)e( f (x)−x)/θ1Ex eξ1/θ1 + θ1

2

≤ϕ1(x)e−θ
−1
1

eθ
−1
1 −e−θ

−1
1

2θ−1
1

+ θ1

2
ϕ1(x) ≤ θ1ϕ1(x).

For x ∈ (0, x∗) \ K , since f (x)+ξ1 ≤ x +2 ≤ x∗+2,

P1ϕ1(x) ≤Px (X1 ∈ K )+e(x∗+2)/θ1Px (X1 ≥ x∗)+MPx (X1 ∈ (0, x∗) \ K )

≤ 1+e(x∗+2)/θ1 + M

2
λ1

{
(0, x∗) \ K

}
≤ M

(
θ1

2
+ θ1

2M

)
≤ θ1ϕ1(x).

Since P1ϕ1(x) is clearly bounded for x ≤ x∗, we have proved (E2).
To conclude, it remains to observe that (3.1) can be deduced for n0 = 1 and

m0 large enough exactly as in the proof of Proposition 7.4. Hence the result fol-
lows from Proposition 3.1.

8 Irreducible processes in discrete state space and discrete
time

The theory of R-positive matrices is a powerful tool to study absorbed Markov
processes in discrete time and space [35]. The goal of Section 8.1 is to show that
our criteria allow to recover the results on convergence to quasi-stationarity of
this theory. We then study in Section 8.2 a class of discrete Markov chains in
discrete time to which criteria based on R-positive matrices do not apply easily.
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8.1 R-positive matrices

We consider a Markov chain (Xn ,n ∈ Z+) in a countable state space E ∪ {∂}with
∂ 6∈ E an absorbing point and with irreducible transition probabilities in E , i.e.
such that for all x, y ∈ E , there exists n = n(x, y) ≥ 1 such that Px (Xn = y) > 0. In
this case, the most general criterion for existence and convergence to a quasi-
stationary distribution is provided in [35]. In this paper, the authors obtain a
convergence result similar to the one of Theorem 2.1 restricted to Dirac initial
distributions, and the pointwise convergence to η as in Theorem 2.5, using the
theory of R-positive matrices. In this section, we show how our criterion allows
to recover these results, providing in addition the several refinements of Sec-
tion 2 (including the characterization of a non-trivial subset of the domain of
attraction, the convergence of (2.4) for unbounded functions f and a stronger
convergence to η).

We denote by P the transition matrix of the chain (Xn ,n ∈ Z+) and we as-
sume that the absorption time τ∂ is almost surely finite. Without loss of gener-
ality, we will assume that the process is aperiodic, meaning that Px (Xn = y) > 0
for all x, y ∈ E provided n is large enough; the extension to general periodic pro-
cesses is routine, as observed in [35].

Proposition 8.1. The assumptions of [35, Theorem 1] imply Assumption (E).

Proof. Since E is finite or countable and because of the irreducibility assump-
tion, it is known [84] that the limit

1

R
:= lim

n→+∞Px (Xn = y)1/n (8.1)

exists with 1 ≤ R <∞, and is independent of x, y ∈ E . Using [35, Lemma 1], the
assumptions of [35, Theorem 1] can be stated as follows: there exist a non-empty
set K ⊂ E and x0 ∈ K such that

(a) there exist ε0 > 0 and a constant C1 such that, for all x ∈ K and all n ≥ 0,

Px (n <σK ∧τ∂) ≤C1(R +ε0)−n ,

where σK is the first return time in K

σK := inf{n ≥ 1, Xn ∈ K }.

(b) there exists a constant C2 such that, for all x ∈ K and n ≥ 0,

Px (n < τ∂) ≤C2Px0 (n < τ∂);
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(c) there exist n0 ≥ 0 and a constant C3 > 0 such that, for all x ∈ K ,

Px (T{x0} ≤ n0) ≥C3,

where we recall that TL := inf{n ∈Z+ : Xn ∈ L} for all L ⊂ E .

Let us first prove (E1). By aperiodicity, there exists m1 ≥ 1 such that, for all
n ≥ m1, Px0 (Xn = x0) > 0. Combining this with (c), the Markov Property entails
that, for all x ∈ K ,

Px (Xn0+m1 = x0) ≥C3 min
m1≤k≤n0+m1

Px0 (Xk = x0).

This is (E1) with ν= δx0 and n1 = n0 +m1.
We now prove (E2) and (E4). Condition (a) implies that(

R + ε0

2

)
sup
y∈K

Ey

[
11<τ∂EX1

((
R + ε0

2

)TK ∧τ∂)]= sup
y∈K

Ey

[(
R + ε0

2

)σK ∧τ∂]<∞.

For all x ∈ E \ K , the irreducibility assumption implies that there exist y ∈ K and
n = n(x, y) ≥ 1 such that Py (Xn = x and n <σK ) > 0. By Markov’s property,

Ey

[(
R + ε0

2

)σK ∧τ∂]≥Py (Xn = x and n <σK )Ex

[(
R + ε0

2

)σK ∧τ∂]
.

Since σK = TK almost surely under Px for x ∈ E \ K , Lemma 3.3 provides a func-
tion ϕ1 satisfying the conditions of (E2), with θ1 := (R + ε0

3 )−1. According to [35,
(1.16)], which holds true under their assumption by [35, Theorem 1], and setting
θ2 =

(
R + ε0

4

)−1, one has

lim
n→+∞θ

−n
2 Px0 (Xn = x0) =+∞.

Using Markov’s property, Condition (c) immediately entails that

lim
n→+∞θ

−n
2 inf

x∈K
Px (Xn ∈ K ) =+∞.

Using Lemma 3.2, we deduce that there exists a functionϕ2 : E → [0,1] satisfying
the conditions of (E2) and that (E4) holds true. This concludes the proof of (E2)
and (E4).

To conclude, Conditions (b) and (E1) imply, for all n ≥ 0,

inf
y∈K

Py (n < τ∂) ≥ inf
y∈K

Py (n + t1 < τ∂) ≥ c1Px0 (n < τ∂) ≥ c1

C2
sup
y∈K

Py (n < τ∂).

This proves (E3) and concludes the proof of Proposition 8.1.
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Remark 16. One can actually prove that, in the particular case of a discrete state
space E and irreducible transition probability on E , Assumption (E) is equiva-
lent to the Conditions (a), (b) and (c) of [35]. Besides the additional properties
provided in Section 2, one of our main contribution in this particular setting is
to provide a more tractable criterion. Indeed, the use of Lyapunov type func-
tions has the advantage to be quite flexible. This is illustrated in the next sub-
section, with an application to population processes, extending to the multi-
dimensional case some models studied in [44]. The direct application of [35]
to this model is more difficult (they are even qualified as “impractical for such
models of biological population extinction” in [44, p. 262]) and do not extend as
easily by domination arguments (as, for example, in Theorem 8.2 below).

8.2 Application to the extinction of biological populations dominated
by Galton-Watson processes

In this section, we show how our criteria can be applied to general population
processes dominated by population-dependent Galton-Watson processes. In
particular, we refine existing results for the classical multi-type Galton-Watson
process.

More precisely, we consider an aperiodic and irreducible Markov population
process (Zn)n∈N on Zd+ = E ∪ {∂} absorbed at ∂= 0 such that, for all n ≥ 0,

‖Zn+1‖ ≤
|Zn |∑
i=1

ξ
(Zn )
i ,n , (8.2)

where ‖ · ‖ is a norm on Rd and |z| = z1 + . . .+ zd for all z ∈ Zd+ and, for all n ≥ 0,
the nonnegative random variables (ξ(Zn )

i ,n ,1 ≤ i ≤ |Zn |) are assumed independent
(but not necessarily identically distributed) given Zn .

We assume that

E

( |z|∑
i=1

ξ(z)
i ,n

)
≤ m‖z‖, ∀z ∈Zd

+ such that |z| ≥ n0, (8.3)

for some m < 1 and n0 ∈N. This means that the population size has a tendency
to decrease (in mean) when it is too large. This also implies that τ∂ <∞ a.s.

In the following theorem, R > 0 is the limiting value defined in (8.1).

Theorem 8.2. Assume that (Zn ,n ∈ Z+) is aperiodic irreducible, that it satisfies

the assumptions (8.2) and (8.3) and that, for some q0 > logR
log(1/m) ∨1,

sup
n≥0, z∈Zd+, 1≤i≤|z|

E[(ξ(z)
i ,n)q0 ] <∞,
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Then Condition (E) holds true with ϕ1(x) = |x|q , for all q ∈
(

logR
log(1/m) ∨1, q0

]
.

Remark 17. This result easily applies if supn≥0, z∈Zd+, 1≤i≤|z|E[(ξ(z)
i ,n)q ] <∞ for all

q > 0. In other cases, one needs a upper bound for R > 0 in order to check the
validity of the assumptions of Theorem 8.2. For instance, one may use the fact
that R ≤ 1/supz∈Zd+

Pz (Z1 = z). One may also use Lyapunov techniques, in the
same spirit as in Section 4.7 for diffusion processes.

Remark 18. A particular case of application of the above theorem is when Z is
obtained from a Galton-Watson multi-type process (see below for a more pre-
cise definition) by adding a population-dependent death rate. For example, one
can assume that additional death events may affect a fraction of the population,
modelling global death events. In this case, compared to the Galton-Watson
case, the independence between the progeny of individuals breaks down. An-
other situation covered by the above result is the case where the domain of ab-
sorption of Z is a larger set than 0, for example the process may be absorbed
when it reaches one edge of Zd+ (i.e. when one type disappears). Another typical
application of Theorem 8.2 is the case of population-dependent Galton-Watson
processes, i.e. of processes such that, given Zn , Zn+1 is the sum of |Zn | indepen-
dent random variables whose law may depend on Zn . In this situation, Theo-
rem 8.2 and its consequences stated in Section 2 generalize the results of [44] to
the multi-type situation and provides finer results on the domain of attraction
of the minimal quasi-stationary distribution. The reducible cases considered
in [44] can also be recovered using the criterion of Theorem 6.1 in Section 6.1.
Of course, the above cases may be combined.

Let us now consider the case of multi-type Galton-Watson processes. A Mar-
kov process (Zn ,n ∈ Z+) evolving in Zd+ = E ∪ {∂} absorbed at ∂ = 0 is called a
Galton-Watson process with d types if, for all n ≥ 0 and all i ∈ {1, . . . ,d},

Z i
n+1 =

d∑
k=1

Z k
n∑

`=1
ζ(n,`)

k,i , (8.4)

where the random variables (ζ(n,`)
k,1 , . . . ,ζ(n,`)

k,d )n,`,k in Z+ are assumed indepen-

dent and such that, for all k ∈ {1, . . . ,d}, (ζ(n,`)
k,1 , . . . ,ζ(n,`)

k,d )n,` is an i.i.d. family. We
define the matrix M = (Mk,i )1≤k,i≤d of mean offspring as

Mk,i = E(ζ(n,`)
k,i ), ∀k, i ∈ {1, . . . ,d},

and assume that Mk,i <+∞ and that there exists n ≥ 1 such that [M n]k,i > 0 for
all k, i ∈ {1, . . . ,d}.
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Using the classical formalism of [46], we consider a positive right eigenvec-
tor v of the matrix M of mean offspring and we denote by ρ(M) its spectral
radius. The sub-critical case corresponds to ρ(M) < 1. It is well-known [51]
(see also [47, 2]) that this implies the existence of a quasi-stationary distribu-
tion whose domain of attraction contains all Dirac measures (a so-called Yaglom
limit or minimal quasi-stationary distribution). The authors also prove that
νQSD (| · |) <∞ if and only if E[|Z1| log(|Z1|) | Z0 = (1, . . . ,1)] <∞. While the follow-
ing result makes the stronger assumption that E[|Z1|q0 | Z0 = (1, . . . ,1)] < ∞ for
some q0 > 1, we obtain the finer results of Section 2, including a stronger form
of convergence (in total variation norm with exponential speed), a non-trivial
subset of the domain of attraction of the minimal quasi-stationary distribution
and stronger moment properties for this quasi-stationary distribution.

Corollary 8.3. If (Zn ,n ≥ 0) is a d-type irreducible, aperiodic sub-critical Galton-
Watson process, and if, for some q0 > 1,

E[|Z1|q0 | Z0 = (1, . . . ,1)] <∞,

then Condition (E) holds true with ϕ1(z) = |z|q for any q ∈ (1, q0]. In particular,
the domain of attraction of νQSD contains all the probability measures such that
µ(| · |q ) <∞ for some q > 1.

This corollary easily derives from Theorem 8.2. Indeed, setting ‖z‖ = 〈v, z〉
and ξ(Zn )

i ,n =∑d
j=1 v jζ

(n,`)
k, j (assuming that i is the `− th individual of type k in the

population), one obtains

‖Zn+1‖ =
|Zn |∑
i=1

ξ
(Zn )
i ,n

and

E

(|Zn |∑
i=1

ξ
(Zn )
i ,n

∣∣∣∣∣ Zn = z

)
=

d∑
k=1

zk∑
`=1

d∑
j=1

v jE
(
ζ(n,`)

k, j

)
= ρ(M)‖z‖,

for all z ∈ Zd+. Since, in the case of multi-type Galton-Watson process, one has
R = 1/ρ(M) (see for instance Theorems 2 and 3 of[51]), Theorem 8.2 applies with
m = ρ(M).

To prove Theorem 8.2, we use the following lemma.

Lemma 8.4. For all q ∈
(

logR
log(1/m) ∨1, q0

]
, there exists a constant Cq such that, for

all z ∈Zd+,

E

[( |z|∑
i=1

ξ(z)
i ,n −E(ξ(z)

i ,n)

)q]
≤Cq |z|1∨q/2.
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Proof. If q ∈ (1,2], this is exactly Lemma 1 of [21]. If q ≥ 2, Burkholder’s inequal-
ity [8] implies that there exists a constant cq such that

E

[( |z|∑
i=1

ξ(z)
i ,n −E(ξ(z)

i ,n)

)q]
≤ cqE

[( |z|∑
i=1

{
ξ(z)

i ,n −E(ξ(z)
i ,n)

}2
)q/2]

= cq |z|q/2E

[(
1

|z|
|z|∑

i=1

{
ξ(z)

i ,n −E(ξ(z)
i ,n)

}2
)q/2]

≤ cq |z|q/2E

[
1

|z|
|z|∑

i=1

∣∣∣ξ(z)
i ,n −E(ξ(z)

i ,n)
∣∣∣q

]

≤ cq |z|q/2E

[
1

|z|
|z|∑

i=1

∣∣∣ξ(z)
i ,n

∣∣∣q +E(ξ(z)
i ,n)q

]
≤ 2cq |z|q/2 sup

n≥0, z∈Zd+, 1≤i≤|z|
E[(ξ(z)

i ,n)q ],

where we used Jensen’s inequality in the third line, that the r.v. ξ(z)
i ,n are nonneg-

ative in the fourth line and Hölder’s inequality in the last inequality.

Proof of Theorem 8.2. We introduce an increasing sequence (Kk ,k ≥ 0) of finite
subsets of Zd+ \ {∂}, where Kk is the smallest set containing {z ∈ Zd+ : 1 ≤ |z| ≤
k} such that the process Z restricted to Kk is irreducible and aperiodic. The
existence of this set follows from the irreducibility assumption and the fact that
Zd+ is countable. We shall choose K = Kk for an appropriate value of k ≥ 0.

Fix q ∈
(

logR
log(1/m) ∨1, q0

]
, θ1 ∈ (mq ,1/R), θ2 ∈ (θ1,1/R) and ϕ1(z) = ‖z‖q . Us-

ing Minkowski’s inequality in the first inequality, Lemma 8.4 in the third line and
the equivalence between norms on Rd+,

P1ϕ1(z) = E
(∣∣∣∣∣ |z|∑

i=1
ξ(z)

i ,n

∣∣∣∣∣
q)

≤
E(∣∣∣∣∣ |z|∑

i=1
ξ(z)

i ,n −E(ξ(z)
i ,n)

∣∣∣∣∣
q)1/q

+
|z|∑

i=1
E(ξ(z)

i ,n)

q

≤
[(

Cq Aq |z|1∨q/2)1/q +m‖z‖
]q

= mq‖z‖q
(
1+C ′

q |z|1/(q∧2)−1
)q

≤ mq‖z‖q +C ′′
q |z|q−1+1/(q∧2), (8.5)

for constants C ′
q and C ′′

q only depending on q , Aq and m. Since q−1+1/(q∧2) <
q , there exists k1 ≥ 0 such that, for all z 6∈ Kk1 ,

P1ϕ1(z) ≤ θ1ϕ1(z). (8.6)
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We also deduce that, for all z ∈ Kk1 ,

P1ϕ1(z) ≤ max
x∈Kk1

mq‖x‖q +C ′′
q |x|q−1+1/(q∧2) <+∞.

Setting K = Kk1 , we deduce that the first and third lines of Condition (E2) are
satisfied.

By definition of R, one deduces that θ−n
2 infz∈K Pz (Xn ∈ K ) =+∞ and hence,

using Lemma 3.2, that there exists a function ϕ2 : E → [0,1] such that the sec-
ond and fourth lines of Condition (E2) are satisfied. It also implies that Condi-
tion (E4) holds true.

Since the process is irreducible and aperiodic, (3.1) is clearly satisfied for
n0 = 1 and m0 large enough, so that Theorem 8.2 follows from Proposition 3.1.

9 Proof of Theorem 2.1

In all the proof, the constants C are all positive and finite and may change from
line to line. We first assume from Subsections 9.1 to 9.6 that for all n ≥ 0 and all
x ∈ E , Px (n < τ∂) > 0. The general case will be handle in Subsection 9.7.

9.1 Main steps of the proof

The proof is based on a careful study of the semigroup of the process condi-
tioned to not be absorbed before time T . In this section, we give the main ideas
and steps of the proof and leave the details for the following subsections, where
preliminary results and the following Propositions 9.1, 9.2, 9.3 and Lemma 9.4
are proved.

For any T ∈ Z+, we consider the law of the process X conditioned to not
be absorbed before time T . We introduce the linear operators (ST

m,n)0≤m≤n≤T

defined by

ST
m,n f (x) = E( f (Xn) | Xm = x, T < τ∂) = Pn−m

(
f PT−n1E

)
(x)

PT−m1E (x)
.

It is well-known that (ST
m,n)0≤m≤n≤T forms a time-inhomogeneous semigroup

(i.e. ST
m,nST

n,p = ST
m,p for all m ≤ n ≤ l ≤ T ) and that the process (Xn ,0 ≤ n ≤ T )

under P
ST

0,·
x is a (time-inhomogeneous) Markov process, where we denote by P

ST
0,·

x

the law of the process (Xn ,0 ≤ n ≤ T ) conditionally on T < τ∂ and X0 = x.
Fix θ ∈ (θ1/θ2,1). For any T ≥ 0, we set, for x ∈ E ,

ψT (x) = Ex (θ−TK ∧T | T < τ∂) = EST
0,·

x
(
θ−TK ∧T )

,
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where

TK := inf{n ∈Z+ : Xn ∈ K }

is the first hitting time of K by the process (Xn ,n ∈Z+). Be careful that TK is not
the first hitting time of K by the full process (X t , t ∈ I ), unless I =Z+.

The following proposition provides a Lyapunov-type property for the inho-
mogeneous semigroup S.

Proposition 9.1. There exists a constant C̄ > 0 such that, for all 0 ≤ m < T and
1 ≤ k ≤ T −m,

ST
m,m+kψT−(m+k)(x) ≤ θkψT−m(x)+ C̄ , ∀x ∈ E . (9.1)

The next proposition provides a Dobrushin coefficient-type property for the
inhomogeneous semigroup S.

Proposition 9.2. There exists a constant α0 ∈ (0,1) such that, for all R > 0, there
exists kR ≥ 1 such that, for all T ≥ kR and all x, y ∈ E such thatψT (x)+ψT (y) ≤ R,
we have ∥∥∥δx ST

0,kR
−δy ST

0,kR

∥∥∥
T V

≤ 2(1−α0).

The following property is a consequence of the two previous ones.

Proposition 9.3. There exist constants n0 ≥ 1, C > 0 andα ∈ (0,1) such that, ∀n ≥
1 and all x, y ∈ E,∥∥∥δx Sn0n

0,n0n −δy Sn0n
0,n0n

∥∥∥
T V

≤Cαn(2+ψn0n(x)+ψn0n(y)).

Let us now deduce Theorem 2.1 from this last proposition. We have, for all
x, y ∈ E ,∥∥∥δx Pnn0 −δx Pnn01E δy Sn0n

0,n0n

∥∥∥
T V

≤Cαn (
2δx Pnn01E +Ex

(
θ−TK ∧nn01nn0<τ∂

)+ψn0n(y)δx Pnn01E
)

.

Hence, for any probability measure µ on E , integrating the above inequality over
µ(d x) leads to∥∥∥µPnn0 −µPnn01E δy Sn0n

0,n0n

∥∥∥
T V

≤Cαn (
2µPnn01E +Eµ

(
θ−TK ∧nn01nn0<τ∂

)+ψn0n(y)µPnn01E
)

.

We make use of the following lemma.
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Lemma 9.4. For all θ ∈ (θ1/θ2,1), there exists a constant C such that, for all 0 ≤
m ≤ T and all probability measure µ over E such that µ(ϕ2) > 0,

Eµ
(
θ−TK ∧T

1T<τ∂
)≤C

µ(ϕ1)

µ(ϕ2)
Pµ (T < τ∂) .

This implies that, for all µ such that µ(ϕ2) > 0,∥∥∥µPnn0 −δy Sn0n
0,n0nµPnn01E

∥∥∥
T V

≤Cαn
(
2µPnn01E + µ(ϕ1)

µ(ϕ2)
µPnn01E +ψn0n(y)µPnn01E

)
.

Hence ∥∥∥∥ µPnn0

µPnn01E
−δy Sn0n

0,n0n

∥∥∥∥
T V

≤Cαn
(
2+ µ(ϕ1)

µ(ϕ2)
+ψn0n(y)

)
.

Using the same procedure w.r.t. y , we deduce that, for any probability measures
µ1 and µ2 on E ,∥∥∥∥ µ1Pnn0

µ1Pnn01E
− µ2Pnn0

µ2Pnn01E

∥∥∥∥
T V

≤Cαn
(
µ1(ϕ1)

µ1(ϕ2)
+ µ2(ϕ1)

µ2(ϕ2)

)
,

where we used the fact that µ(ϕ1)/µ(ϕ2) ≥ 1 for all probability measure µ on E .
Because of Lemma 9.6 below, we deduce that, for some constant D1 > 0 and

for all 0 ≤ k < n0,∥∥∥∥ µ1Pnn0+k

µ1Pnn0+k1E
− µ2Pnn0+k

µ2Pnn0+k1E

∥∥∥∥
T V

≤Cαn
(
µ1Pkϕ1

µ1Pkϕ2
+ µ2Pkϕ1

µ2Pkϕ2

)
≤Cαn

(
µ1(ϕ1)

µ1(ϕ2)
∨D1 + µ2(ϕ1)

µ2(ϕ2)
∨D1

)
.

Therefore, up to a change in the constant C and replacing α by α1/n0 , we de-
duce that, for all probability measures µ1 and µ2 on E such that µ1(ϕ2) > 0 and
µ2(ϕ2) > 0 and for all n ≥ 0,∥∥∥∥ µ1Pn

µ1Pn1E
− µ2Pn

µ2Pn1E

∥∥∥∥
T V

≤Cαn
(
µ1(ϕ1)

µ1(ϕ2)
+ µ2(ϕ1)

µ2(ϕ2)

)
. (9.2)

Fix x0 ∈ K . We set µ1 = δx0 and µ2 = µ1P1

µ1P11E
in (9.2). Since µ1ϕ1

µ1ϕ2
<∞, because of

Lemma 9.6 below, we have µ2ϕ1

µ2ϕ2
<∞. We deduce that, for some constant C > 0,∥∥∥∥ δx0 Pn+1

δx0 Pn+11E
− δx0 Pn

δx0 Pn1E

∥∥∥∥
T V

≤Cαn ,
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and hence, using the completeness of the space of probability measures for the
total variation norm, we deduce that there exists a quasi-limiting measure νQSD

(which is hence a quasi-stationary distribution) such that∥∥∥∥ δx0 Pn

δx0 Pn1E
−νQSD

∥∥∥∥
T V

≤ 2C

1−αα
n .

In particular, it follows from Lemma 9.8 below that νQSD (K ) > 0 and hence that

νQSD (ϕ2) > 0. Since Lemma 9.6 implies that Pnϕ1(x0)
Pn1E (x0) is uniformly bounded in

n ≥ 0, we deduce that νQSD (ϕ1 ∧M) is bounded uniformly in M > 0 and hence
νQSD (ϕ1) <∞.

Using (9.2) again (up to another change of the constant C ), we obtain that,
for all probability measure µ on E such that µ(ϕ1)

µ(ϕ2) <∞,∥∥∥∥ µPn

µPn1E
−νQSD

∥∥∥∥
T V

≤Cαn µ(ϕ1)

µ(ϕ2)
.

Moreover, we immediately deduce that there exists a unique quasi-stationary
distribution such that νQSD (ϕ1)/νQSD (ϕ2) <∞.

This ends the proof of Theorem 2.1.

9.2 Preliminary results

We start by proving two basic inequalities which are direct consequences of (E2).

Lemma 9.5. For all x ∈ E \ K and all n ≥ 0,

Px (n < TK ∧τ∂) ≤ Ex [ϕ1(Xn)1n<TK ∧τ∂ ] ≤ θn
1ϕ1(x).

For all x ∈ E and n ≥ 0,

Px (n < τ∂) ≥ Ex [ϕ2(Xn)1n<τ∂ ] ≥ θn
2ϕ2(x).

Proof of Lemma 9.5. These two properties follow easily by induction from (E2).
For example, the first one makes use of the following relation: for all n ≥ 1 and
x ∈ E ,

Ex [ϕ1(Xn)1n<TK ∧τ∂ ] =1x∈E\K P1
[
E·

(
ϕ1(Xn−1)1n−1<TK ∧τ∂

)]
(x).

This and (E2) entail the property at time n = 1 and, by induction, at any time
n ≥ 1.

The next lemma states that the expectation of ϕ1(Xn) is controlled by the
expectation of ϕ2(Xn) uniformly in time.
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Lemma 9.6. For all θ ∈ (θ1/θ2,1], there exists a finite constant Dθ > 0 such that,
for all probability measure µ on E such that µ(ϕ1)/µ(ϕ2) <∞, for all T ∈Z+ and
all x ∈ E,

µPTϕ1

µPTϕ2
≤

(
θT µ(ϕ1)

µ(ϕ2)

)
∨Dθ. (9.3)

Proof of Lemma 9.6. It follows from (E2) that

µPT+1ϕ1 ≤ θ1µPTϕ1 +CµPT1K

and
µPT+1ϕ2 ≥ θ2µPTϕ2.

Hence

µPT+1ϕ1

µPT+1ϕ2
≤ θ1µPTϕ1 +CµPT1K (x)

θ2µPTϕ2

≤ θ1

θ2

µPTϕ1

µPTϕ2
+ C

θ2 infy∈K ϕ2(y)
.

Since θ1/θ2 < θ, these arithmetico-geometric inequalities entail (9.3).

We now give an irreducibility inequality.

Lemma 9.7. For all C ≥ 1, there exists a time n5(C ) ∈N such that

a5(C ) := inf
µ∈M1(E) s.t. µ(ϕ1)≤Cµ(ϕ2)

Pµ(Xn5(C ) ∈ K ) > 0. (9.4)

Proof of Lemma 9.7. It follows from (E4) that there exists a time nν ∈N such that,
for all n ≥ nν, Pν(Xn ∈ K ) > 0, and, using (E1), that for all n ≥ nν+n1,

inf
x∈K

Px (Xn ∈ K ) ≥ c1Pν(Xn−n1 ∈ K ) > 0.

Let C ≥ 1 and µ be such that µ(ϕ1) ≤Cµ(ϕ2). It follows from Lemma 9.5 that, for
all n ≥ 1,

Pµ(TK ∧τ∂ > n) ≤ Eµ
[
ϕ1(Xn)1TK ∧τ∂>n

]≤ θn
1µ(ϕ1) ≤Cθn

1µ(ϕ2).

and

Pµ(n < τ∂) ≥ Eµ[ϕ2(Xn)] ≥ θn
2µ(ϕ2).

Therefore,

Pµ(TK ≤ n < τ∂) ≥ (
θn

2 −Cθn
1

)
µ(ϕ2).
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Choosing n(C ) = d2C /log(θ2/θ1)e, we deduce that

Pµ(TK ≤ n(C ) < τ∂) ≥ θn(C )
2

2
µ(ϕ2) ≥ θn(C )

2

2C
.

Therefore,

Pµ(Xn(C )+nν+n1 ∈ K ) ≥ Eµ
[
1TK ≤n(C )PXTK

(Xn(C )+nν+n1−k ∈ K )
k=TK

]
≥ min

nν+n1≤k≤nν+n1+n(C )
inf
x∈K

Px (Xk ∈ K )
θn(C )

2

2C
.

Hence we have proved Lemma 9.7 with n5(C ) = nν+n1 +n(C ).

The next lemma shows that conditional distributions with initial conditions
in K give to K a mass uniformly bounded from below.

Lemma 9.8. There exists a time n6 ∈N such that

inf
T≥n6

inf
x∈K

Px (XT ∈ K | T < τ∂) > 0.

Proof of Lemma 9.8. Sinceϕ1/ϕ2 is bounded over K , we deduce from Lemma 9.6
that, setting C := D1 + supx∈K

ϕ1(x)
ϕ2(x) , we have for all x ∈ K and all T ≥ n5(C ),

PT−n5(C )ϕ1(x)

PT−n5(C )ϕ2(x)
≤C . (9.5)

Using Lemma 9.7 applied to µ = δx PT−n5(C )

δx PT−n5(C )1E
, we deduce that, for all x ∈ K and

T ≥ n5(C ),

Px (XT ∈ K | T < τ∂) = µPn5(C )1K

µPn5(C )1E
≥µPn5(C )1K ≥ a5(C ).

The next lemma shows that survival probabilities are controlled by the func-
tion ϕ1.

Lemma 9.9. For all θ ∈ (θ1,1), p ∈ [1, logθ1/logθ), x ∈ E and n ≥ 1,

Px (n < TK ∧τ∂) ≤
(

ϕ1(x)

1−θ1/θp

)1/p

θn . (9.6)

There exists a constant C > 0 such that, for all p ∈ [1, logθ1/logθ2), x ∈ E and
n ≥ 1,

Px (n < τ∂) ≤C

(
ϕ1(x)

1−θ1/θp
2

)1/p

inf
y∈K

Py (n < τ∂). (9.7)
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Proof of Lemma 9.9. We first prove (9.6). It follows from Lemma 9.5 that, for all
θ > θ1 and x ∈ E \ K ,

Ex (θ−TK ∧τ∂) ≤ ϕ1(x)

1−θ1/θ
. (9.8)

By Markov’s and Hölder’s inequality, and since θp > θ1 for all p ∈ [1, logθ1/logθ),
for all x ∈ E \ K ,

Px (n < TK ∧τ∂) ≤ Ex (θ−TK ∧τ∂)θn ≤
(

ϕ1(x)

1−θ1/θp

)1/p

θn .

The inequality is trivial if x ∈ K .
We now prove (9.7). Fix p ∈ [1, logθ1/logθ2). Using (9.6), the second inequal-

ity of Lemma 9.5 and (E3), we have for all x ∈ E

Px (n < τ∂) =Px (n < TK ∧τ∂)+Px (TK ∧τ∂ ≤ n < τ∂)

≤ θn
2

(
ϕ1(x)

1−θ1/θp
2

)1/p

+
n∑

k=0
Px (TK ∧τ∂ = k)sup

y∈K
Py (n −k < τ∂)

≤ infz∈K Pz (n < τ∂)

infz∈K ϕ2(z)

(
ϕ1(x)

1−θ1/θp
2

)1/p

+ c3

n∑
k=0

Px (TK ∧τ∂ = k) inf
y∈K

Py (n −k < τ∂)

≤C inf
z∈K

Pz (n < τ∂)

(
ϕ1(x)

1−θ1/θp
2

)1/p

+C inf
z∈K

Pz (n < τ∂)
n∑

k=0
Px (TK ∧τ∂ = k)θ−k

2 ,

(9.9)

where we used the fact that, for some constant C > 0, for all n ≥ k ≥ 0 and all
z ∈ K ,

Pz (n < τ∂) ≥Cθk
2 inf

y∈K
Py (n −k < τ∂). (9.10)

This is proved using the three following equations. For all n ≥ k ≥ n6 and all
z ∈ K , by Lemmata 9.8 and 9.5,

Pz (n < τ∂) ≥Pz (Xk ∈ K | k < τ∂)Pz (k < τ∂) inf
y∈K

Py (n −k < τ∂)

≥Cθk
2ϕ2(z) inf

y∈K
Py (n −k < τ∂)

≥Cθk
2 inf

y∈K
Py (n −k < τ∂).
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Also, for all n ≥ n6 ≥ k,

Pz (n < τ∂) ≥Cθn6
2 inf

y∈K
Py (n −n6 < τ∂)

≥Cθn6
2 inf

y∈K
Py (n −k < τ∂)

≥ (Cθn6
2 )θk

2 inf
y∈K

Py (n −k < τ∂).

Finally, for all k ≤ n < n6,

Pz (n < τ∂) ≥Pz (n6 < τ∂) ≥Cθn6
2 ≥ (Cθn6

2 )θk
2 inf

y∈K
Py (n −k < τ∂),

and (9.10) is proved.
Now it follows from Hölder’s inequality, (9.8) and the inequality θp

2 > θ1 that,
for all x ∈ E \ K ,

Ex (θ−TK ∧τ∂
2 ) ≤

(
ϕ1(x)

1−θ1/θp
2

)1/p

.

Since the inequality is trivial for x ∈ K , plugging this inequality in (9.9) ends the
proof of Lemma 9.9.

9.3 Proof of Proposition 9.1

Markov’s property implies that, for all x ∈ E \ K and T,m ≥ 1,

ST
0,1ψT−1(x) = ST+m

m,m+1ψT−1(x) = θψT (x). (9.11)

Indeed,

θψT (x) = Ex (θ1−TK ∧T
1T<τ∂)

Px (T < τ∂)

= Ex
[
11<τ∂EX1 (θ−TK ∧(T−1) | T −1 < τ∂)PX1 (T −1 < τ∂)

]
Px (T < τ∂)

= ST
0,1ψT−1(x).

Similarly, for all x ∈K,

ST
0,1ψT−1(x) = ST+m

m,m+1ψT−1(x) = θEST
0,·

x (θ−σK ∧T ), (9.12)

where

σK := min{n ≥ 1, Xn ∈ K }
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is the first return time in K . Setting

C := sup
T≥0

sup
x∈K

E
ST

0,·
x (θ−σK ∧T ),

which is finite (see Lemma 9.10), we can apply recursively (9.11) and (9.12) to
obtain

ST
m,m+kψT−(m+k) = ST

m,m+k−1

(
1E\K ST

m+k−1,m+k (ψT−(m+k))
)

+ST
m,m+k−1

(
1K ST

m+k−1,m+k (ψT−(m+k))
)

≤ θST
m,m+k−1ψT−(m+k−1) +Cθ

≤ . . . ≤ θkψT−m(x)+C
k∑
`=1

θ`.

Hence Proposition 9.1 follows from the next lemma.

Lemma 9.10. For all θ ∈ (θ1/θ2,1),

sup
T≥0

sup
x∈K

E
ST

0,·
x (θ−σK ∧T ) <∞.

Proof of Lemma 9.10. Fix x ∈ K . On the one hand, by Lemma 9.9 (with p = 1),
we have for any 1 ≤ n < T ,

Px (n <σK and T < τ∂) = Ex (1n<σK ∧τ∂PXn (T −n < τ∂))

≤C inf
y∈K

Py (T −n < τ∂)Ex (1n<σK ∧τ∂ϕ1(Xn)).

Using (E2) and Markov’s property as in the proof of Lemma 9.5, we deduce

Px (n <σK and T < τ∂) ≤C inf
y∈K

Py (T −n < τ∂)θn−1
1 P1ϕ1(x) (9.13)

≤C inf
y∈K

Py (T −n < τ∂)θn
1 . (9.14)

On the other hand, Lemma 9.8 implies the existence of a constant C > 0 such
that, for all x ∈ K and all n ≥ n6,

Px (Xn ∈ K ) ≥CPx (n < τ∂).

We deduce from Markov’s property and Lemma 9.5 that

Px (T < τ∂) ≥Px (Xn ∈ K ) inf
y∈K

Py (T −n < τ∂)

≥CPx (n < τ∂) inf
y∈K

Py (T −n < τ∂)

≥Cθn
2 inf

y∈K
Py (T −n < τ∂).
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Combining this with (9.13), we finally deduce that there exists a constant C > 0
such that, for all x ∈ K and all T ≥ n ≥ n6,

Px (n <σK | T < τ∂) ≤C

(
θ1

θ2

)n

. (9.15)

The conclusion follows.

9.4 Proof of Proposition 9.2

We start by stating a lemma proved at the end of this subsection.

Lemma 9.11. For all x ∈ K and n1 +n6 ≤ n ≤ T ,

Px (Xn ∈ · | T < τ∂) ≥ c ′1ν, (9.16)

where the measure ν and the integer n1 are the one of Condition (E1), the integer
n6 is from Lemma 9.7 and c ′1 > 0 is independent of x,n and T .

Fix θ ∈ (θ1/θ2,1) and set kR = dlog(2R)/ log(1/θ)e+n1+n6 and fix T ≥ kR . For
all x ∈ E such that ψT (x) ≤ R, Markov’s inequality implies that

Px (TK > kR −n1 −n6 | T < τ∂) =PST
0,·

x (TK > kR −n1 −n6) ≤ R

θ−kR+n1+n6
≤ 1

2
.

It follows from Lemma 9.11 that, for all measurable A ⊂ E ,

P
ST

0,·
x

(
XkR ∈ A

)≥ Ex

[∑kR−n1−n6

k=1 1TK =kPXk (XkR−k ∈ A, T −k < τ∂)
]

Px (T < τ∂)

≥ c ′1ν(A)
Ex

[∑kR−n1−n6

k=1 1TK =kPXk (T −k < τ∂)
]

Px (T < τ∂)

= c ′1ν(A)Px (TK ≤ kR −n1 −n6 | T < τ∂)

≥ 1

2
c ′1ν(A).

This concludes the proof of Proposition 9.2 with α0 = c ′1/2.

Proof of Lemma 9.11. For all measurable set A ⊂ K , we deduce from Markov’s
property that, for all x ∈ K and all T ≥ n ≥ n1 +n6,

Px (Xn ∈ A, T < τ∂) ≥ Ex

[
1Xn−n1∈K EXn−n1

(
1Xn1∈APXn1

(T −n < τ∂)
)]

≥ Ex

[
1Xn−n1∈K PXn−n1

(Xn1 ∈ A)
]

inf
y∈K

Py (T −n < τ∂)

≥ c1ν(A)Px
(
Xn−n1 ∈ K

)
inf
y∈K

Py (T −n < τ∂), (9.17)
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where we used (E1). Now, using Lemma 9.9, we deduce that there exists a con-
stant c > 0 such that

Px (T < τ∂) ≤Px (T −n1 < τ∂) = Ex

(
1n−n1<τ∂PXn−n1

(T −n < τ∂)
)

≤ cEx
(
1n−n1<τ∂ϕ1(Xn−n1 )

)
inf
y∈K

Py (T −n < τ∂).

Since ϕ1(x)/ϕ2(x) is uniformly bounded over x ∈ K , Lemma 9.6 implies that
there exists a constant c ′ > 0 such that, for all x ∈ K ,

Ex
[
1n−n1<τ∂ϕ1(Xn−n1 )

]≤ c ′Ex
[
1n−n1<τ∂ϕ2(Xn−n1 )

]≤ c ′Px (n −n1 < τ∂) .

But n−n1 ≥ n6, hence Lemma 9.8 entails that there exists a constant c ′′ > 0 such
that, for all x ∈ K ,

Px (n −n1 < τ∂) ≤ c ′′Px (Xn−n1 ∈ K ).

Hence we obtain

Px (T < τ∂) ≤ cc ′c ′′Px
(
Xn−n1 ∈ K

)
inf
y∈K

Py (T −n < τ∂).

Combining this with (9.17), we obtain

Px (Xn ∈ A | T < τ∂) ≥ c1

cc ′c ′′
ν(A).

This ends the proof of Lemma 9.11.

9.5 Proof of Proposition 9.3

We transpose the ideas of [45] to the time-inhomogeneous setting. We fix the
constants R = 4C̄ /(1− θ) and β = α0/2C̄ , where C̄ is the constant of Proposi-
tion 9.1. For all T ≥ 0 and all ϕ : E →R, we set

∣∣∣∣∣∣ϕ∣∣∣∣∣∣
T = sup

x,y∈E

|ϕ(x)−ϕ(y)|
2+βψT (x)+βψT (y)

.

Fix n and T ≥ 0 such that (n +1)kR ≤ T and let ϕ be such that
∣∣∣∣∣∣ϕ∣∣∣∣∣∣

T−(n+1)kR
≤ 1.

Then, replacing ϕ by ϕ+ c for some appropriate constant c, one has |ϕ| ≤ 1+
βψT−(n+1)kR (see Lemma 3.8 p.14 in [45]).
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If ψT−nkR (x)+ψT−nkR (y) > R, then, using Proposition 9.1,∣∣∣ST
nkR ,(n+1)kR

ϕ(x)−ST
nkR ,(n+1)kR

ϕ(y)
∣∣∣

≤ 2+θβψT−nkR (x)+θβψT−nkR (y)+2βC̄

≤ 2+ (θ+ (1−θ)/2)(βψT−nkR (x)+βψT−nkR (y))

− (Rβ)(1−θ)/2+2βC̄

≤ (1−α1)(2+βψT−nkR (x)+βψT−nkR (x)),

where α1 ∈ (0,1) is such that 2+ (θ+ (1−θ)/2) y ≤ (1−α1)(2+ y) for all y ≥βR.

If ψT−nkR (x)+ψT−nkR (y) ≤ R, then, considering

ϕ=ϕ′+ϕ′′,

with |ϕ′| ≤ 1 and |ϕ′′| ≤βψT−(n+1)kR , Propositions 9.1 and 9.2 entail∣∣∣ST
nkR ,(n+1)kR

ϕ(x)−ST
nkR ,(n+1)kR

ϕ(y)
∣∣∣

≤ 2(1−α0)+βθψT−nkR (x)+βθψT−nkR (y)+2βC̄ .

Our choice β=α0/2C̄ implies that∣∣∣ST
nkR ,(n+1)kR

ϕ(x)−ST
nkR ,(n+1)kR

ϕ(y)
∣∣∣≤ (1−α2)(2+βψT−nkR (x)+βψT−nkR (y)).

for the constant α2 = α0
2 ∧ (1−θ) > 0.

Hence, we obtained∣∣∣∣∣∣∣∣∣ST
nkR ,(n+1)kR

ϕ
∣∣∣∣∣∣∣∣∣

T−nkR

≤ (1−α1 ∧α2)
∣∣∣∣∣∣ϕ∣∣∣∣∣∣

T−(n+1)kR
,

which implies by iteration that∣∣∣∣∣∣∣∣∣SnkR

0,nkR
ϕ

∣∣∣∣∣∣∣∣∣
nkR

≤ (1−α1 ∧α2)n
∣∣∣∣∣∣ϕ∣∣∣∣∣∣

0 ≤ (1−α1 ∧α2)n‖ϕ‖∞2/(2+2β).

This concludes the proof of Proposition 9.3.

9.6 Proof of Lemma 9.4

This lemma in a generalization of Lemma 9.10. Its proof is based on similar
computations. We give the details for sake of completeness.
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For all probability measure µ on E , for any 0 ≤ n < T , using Lemma 9.9 for
the second inequality and Lemma 9.5 for the third inequality, we have

Pµ(n < TK and T < τ∂) ≤ Eµ(1n<TKPXn (T −n < τ∂))

≤C inf
y∈K

Py (T −n < τ∂)Eµ(1n<TKϕ1(Xn))

≤C inf
y∈K

Py (T −n < τ∂)θn
1µ(ϕ1). (9.18)

For all integer n ≥ nµ, where

nµ :=
ÈÌÌÌn5(Dθ)+

log µ(ϕ1)
Dθµ(ϕ2)

log(1/θ)

ÉÍÍÍ ,

it follows from Lemma 9.6 that

µPn−n5(Dθ)ϕ1

µPn−n5(Dθ)ϕ2
≤ Dθ

and from Lemma 9.7 that

µPn1K

µPn1E
≥ a5(Dθ) > 0.

Therefore, we obtain from the Markov property and Lemma 9.5 that

Pµ(T < τ∂) ≥Pµ(Xn ∈ K ) inf
y∈K

Py (T −n < τ∂)

≥ a5(Dθ)Pµ(n < τ∂) inf
y∈K

Py (T −n < τ∂)

≥ a5(Dθ)θn
2µ(ϕ2) inf

y∈K
Py (T −n < τ∂).

Combining this with (9.18), we obtain

Pµ(n < TK and T < τ∂) ≤ C

a5(Dθ)

(
θ1

θ2

)n µ(ϕ1)

µ(ϕ2)
Pµ(T < τ∂).

Hence

Eµ
(
θ−TK ∧T

1TK ≥nµ, T<τ∂
)≤C

µ(ϕ1)

µ(ϕ2)
Pµ (T < τ∂) .

We deduce that

Eµ
(
θ−TK ∧T

1T<τ∂
)≤ (

C
µ(ϕ1)

µ(ϕ2)
+θ−nµ

)
Pµ (T < τ∂) .

Since θ−nµ ≤ θ−(n5(Dθ )+1)µ(ϕ1)
Dθµ(ϕ2) , we have proved Lemma 9.4.
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9.7 The case where Px(n < τ∂) = 0 for some x ∈ E and n ≥ 1

In this section, we assume that X satisfies assumption (E), but we do not assume
anymore that Px (n < τ∂) > 0 for all x ∈ E and all n ≥ 1. In order to recover the
result in this case, let ∂0 ∉ E ∪ {∂}, set Ē = E ∪ {∂0} and define the sub-Markovian
semigroup (P̄n)n∈Z+ acting on measurable functions f : Ē →R+ as

P̄1 f (x) =
{

P1 f (x)+θ11P11E (x)=0 f (∂0) if x ∈ E ,

θ1 f (∂0) if x = ∂0,

where P1 f := P1 f E . Let (X̄n)n∈Z+ be a discrete time Markov process evolving
in Ē ∪ {∂} with absorption in ∂ and whose sub-Markovian semigroup is P̄ , with
associated law (P̄x )x∈Ē∪{∂}.

Note that, for all x ∈ Ē , P̄x (X̄1 6= ∂) > 0 and hence, for all x ∈ Ē and all n ∈Z+,
P̄x (n < τ∂) > 0. We prove in Step 1 that X̄ satisfies condition (E) with the same set
K and constants θ1,θ2. Then, using the results of the previous sections applied
to X̄ , we show in Step 2 that the conclusions of Theorem 2.1 apply to X .

Step 1. X̄ satisfies condition (E).
Conditions (E1) and (E4) for X̄ are immediate consequences of (E1) and (E4)

for X . We set

ϕ̄1(x) =
{
ϕ1(x) if x ∈ E

1 if x = ∂0
and ϕ̄2(x) =

{
ϕ2(x) if x ∈ E

0 if x = ∂0.

For all x ∈ E , one has

P̄1ϕ̄1(x) = P1ϕ̄1(x)+θ11P11E (x)=0ϕ̄1(∂0)

=
{

P1ϕ1(x) if P11E (x) > 0

θ1 if P11E (x) = 0

≤
{
θ1ϕ1(x)+ c21K (x) if P11E (x) > 0

θ1ϕ1(x) if P11E (x) = 0

≤ θ1ϕ̄1(x)+ c21K (x).

Since P̄ ϕ̄1(∂0) = θ1ϕ̄1(∂0), one deduces that the first and third lines of (E2) are
satisfied by X̄ . Moreover, for all x ∈ E ,

P̄1ϕ̄2(x) = P1ϕ̄2(x) = P1ϕ2(x) ≥ θ2ϕ2(x) = θ2ϕ̄2(x).

Since P̄1ϕ̄2(∂0) = θ1ϕ̄2(∂0) = 0 ≥ θ2ϕ̄2(∂0), one deduces that the second and
fourth lines of condition (E2) are satisfied by X̄ .
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Finally, using Lemma 9.8 (whose proof does not make use of (E3)) for X̄ , one
deduces that there exist two constants n6 ∈Z+ and c6 > 0 such that, for all y ∈ K
and all n ≥ n6, P̄y (n < τ∂) ≤ c6P̄y (X̄n ∈ K ). Since, for all y ∈ E , P̄y (X̄n ∈ K ) =
Py (Xn ∈ K ), one deduces that, for all n ≥ n6 and all y ∈ K ,

P̄y (n < τ∂) ≤ c6Py (Xn ∈ K ) ≤ c6 c3 inf
z∈K

Pz (Xn ∈ E) ≤ c6 c3 inf
z∈K

P̄z (n < τ∂),

where we used condition (E3) for X . We deduce that

sup
n≥n6

supy∈K P̄y (n < τ∂)

infy∈K P̄y (n < τ∂)
<+∞.

Now, (E2) for X̄ entails that inf0≤n≤n6 infy∈K P̄y (n < τ∂) ≥ θn6
2 infK ϕ̄2, so that

sup
0≤n≤n6

supy∈K P̄y (n < τ∂)

infy∈K P̄y (n < τ∂)
≤ 1

θ
n6
2 infK ϕ̄2

<+∞.

The last two equations entail (E3) for X̄ , which concludes the first step of the
proof.

Step 2. Conclusion of the proof.
One deduces from the previous subsections and from Step 1 that Theorem 2.1

applies to X̄ : there exist a probability measure ν̄QSD on Ē and some constants
C > 0 andα ∈ [0,1) such that for all n ≥ 1 and for any probability measure µ on Ē
satisfying µ(ϕ̄1) <+∞ and µ(ϕ̄2) > 0,∥∥P̄µ(X̄n ∈ · | n < τ∂)− ν̄QSD

∥∥
T V ≤C

µ(ϕ̄1)

µ(ϕ̄2)
αn . (9.19)

Since ν̄QSD (E) ≥ ν̄QSD (K ) > 0, one can define the probability measure νQSD on
E by νQSD (·) = ν̄QSD (·)/ν̄QSD (E). We have, for any probability measure µ on E
(extended to Ē by µ(∂0) = 0) such that µ(ϕ1) < +∞ and µ(ϕ2) > 0, and for all
measurable set A ⊂ E ,∣∣∣∣Pµ(Xn ∈ A)

Pµ(n < τ∂)
−νQSD (A)

∣∣∣∣=
∣∣∣∣∣ P̄µ(X̄n ∈ A)

P̄µ(X̄n ∈ E)
− ν̄QSD (A)

ν̄QSD (E)

∣∣∣∣∣
= P̄µ(n < τ∂)

P̄µ(X̄n ∈ E)ν̄QSD (E)

× ∣∣P̄µ(X̄n ∈ A | n < τ∂)ν̄QSD (E)− P̄µ(X̄n ∈ E | n < τ∂)ν̄QSD (A)
∣∣

≤ P̄µ(n < τ∂)

P̄µ(X̄n ∈ E)ν̄QSD (E)
(ν̄QSD (E)+ ν̄QSD (A))C

µ(ϕ̄1)

µ(ϕ̄2)
αn

≤ P̄µ(n < τ∂)

P̄µ(X̄n ∈ E)
2C

µ(ϕ1)

µ(ϕ2)
αn .
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On the one hand, using (9.19), one deduces that, for all n ∈ Z+ large enough so
that C µ(ϕ̄1)

µ(ϕ̄2) α
n ≤ ν̄QSD (E)/2, we have

P̄µ(n < τ∂)

P̄µ(X̄n ∈ E)
≤ 2

ν̄QSD (E)
,

so that ∣∣∣∣Pµ(Xn ∈ A)

Pµ(n < τ∂)
−νQSD (A)

∣∣∣∣≤ 4C

ν̄QSD (E)

µ(ϕ1)

µ(ϕ2)
αn .

On the other hand, for all n ∈ Z+ small enough so that C µ(ϕ̄1)
µ(ϕ̄2) α

n > ν̄QSD (E)/2,
we have ∣∣∣∣Pµ(Xn ∈ A)

Pµ(n < τ∂)
−νQSD (A)

∣∣∣∣≤ 2 < 4C

ν̄QSD (E)

µ(ϕ1)

µ(ϕ2)
αn .

This concludes the proof of Theorem 2.1.

10 Proof of the other results of Section 2

We begin with the proof of Theorem 2.5 in Section 10.1, which will then be used
to prove Theorem 2.4 in Section 10.2 and Corollary 2.6 in Section 10.3. The proof
of Theorem 2.7 is given in Section 10.4.

10.1 Proof of Theorem 2.5

The inequality θ2 ≤ θ0 follows from Lemma 9.5 since, for all n ≥ 1,

θn
0 =PνQSD (n < τ∂) ≥ νQSD (K ) inf

y∈K
Py (n < τ∂) ≥ νQSD (K )θn

2 inf
y∈K

ϕ2(y).

For all n ≥ 0 and x ∈ E ∪ {∂}, let us denote

ηn(x) = θ−n
0 Px (n < τ∂) = Px (n < τ∂)

PνQSD (n < τ∂)
.

By (E3), for all x ∈ K ,

ηn(x) ≤ θ−n
0 sup

y∈K
Py (n < τ∂) ≤ c3θ

−n
0 inf

y∈K
Py (n < τ∂)

≤ c3

νQSD (K )
θ−n

0 PνQSD (n < τ∂) = c3

νQSD (K )
. (10.1)
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This implies that the sequence (ηn)n≥0 is uniformly bounded on K .
For all x ∈ K and n,m ≥ 0, by Markov’s property,

ηn+m(x) = ηn(x)Ex
[
θ−m

0 PXn (m < τ∂) | n < τ∂
]

.

Hence, by Theorem 2.1, for all x ∈ K ,

|ηn+m(x)−ηn(x)| = ηn(x)
∣∣Sn

0,nηm(x)−1
∣∣

= ηn(x)
∣∣Sn

0,nηm(x)−νQSD (ηm)
∣∣

≤Cηn(x)αn‖ηm‖∞,

where C = supy∈K
ϕ1(y)
ϕ2(y) <∞. In particular, defining ‖ f ‖L∞(A) := supx∈A | f (x)| for

all measurable A ⊂ E and all bounded measurable function f on A, we deduce
from (10.1) that for all n ≥ 0,

‖ηn −ηn+1‖L∞(K ) ≤C‖ηn‖L∞(K )α
n‖η1‖L∞(E) ≤

Cθ−1
0 c3

νQSD (K )
αn . (10.2)

Hence the sequence ηn is Cauchy in L∞(K ) and converges to some η.
We set η(∂) = 0 and we define for all x ∈ E \ K

η(x) := Ex

(
η(XTK ∧τ∂)θ−TK ∧τ∂

0

)
.

Note that, since η is bounded on K ∪ {∂} and since θ0 ≥ θ2 > θ1, (9.8) implies that
η(x) <∞ for all x ∈ E .

We fix p ∈ [1, logθ1/logθ0) and choose a constant θ ∈ (θ1/p
1 ∨ (θ0α),θ0). This

is possible since θp
0 > θ1 and α< 1. For all x ∈ E \ K , we have

|ηn(x)−η(x)| ≤ ∣∣ηn(x)−θ−n
0 Px (TK ∧τ∂ ≤ n < τ∂)

∣∣
+

∣∣∣θ−n
0 Px (TK ∧τ∂ ≤ n < τ∂)−Ex

(
1TK ∧τ∂≤nη(XTK ∧τ∂)θ−TK ∧τ∂

0

)∣∣∣
+

∣∣∣Ex

(
1TK ∧τ∂≤nη(XTK ∧τ∂)θ−TK ∧τ∂

0

)
−η(x)

∣∣∣ .

We shall control each term of the right hand side. For the first one, we deduce
from Lemma 9.9 and θp > θ1 that, for some constant C > 0,

ηn(x)−θ−n
0 Px (TK ∧τ∂ ≤ n < τ∂) = θ−n

0 Px (n < TK ∧τ∂) ≤C
θn

θn
0

ϕ1(x)1/p .

For the second one, Markov’s property implies that

Px (TK ∧τ∂ ≤ n < τ∂) = Ex

(
n∑

k=1
1TK ∧τ∂=kPXk (n −k ≤ τ∂)

)
.
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Now, (10.2) entails that, for all x ∈ K and k ≤ n,

|Px (k < τ∂)−η(x)θk
0 | ≤C (θ0α)k ≤Cθk

Therefore,∣∣∣θ−n
0 Px (TK ∧τ∂ ≤ n < τ∂)−Ex

(
1TK ∧τ∂≤nη(XTK ∧τ∂)θ−TK ∧τ∂

0

)∣∣∣
≤Cθ−n

0 Ex
(
1TK ∧τ∂≤nθ

n−TK ∧τ∂)≤C

(
θ

θ0

)n

Ex
(
θ−TK ∧τ∂)≤C

(
θ

θ0

)n

ϕ1(x)1/p ,

where we used (9.8) in the last inequality.
For the third term, using the a.s. inequality 1TK ∧τ∂>n ≤ (θ/θ0)n−TK ∧τ∂ , we

have

η(x)−Ex

(
1TK ∧τ∂≤nη(XTK ∧τ∂)θ−TK ∧τ∂

0

)
= Ex

(
1TK ∧τ∂>nη(XTK ∧τ∂)θ−TK ∧τ∂

0

)
≤ c3

νQSD (K )
Ex

(
1TK ∧τ∂>nθ

−TK ∧τ∂
0

)
≤ c3

νQSD (K )
Ex

((
θ

θ0

)−TK ∧τ∂
θ
−TK ∧τ∂
0

)(
θ

θ0

)n

≤C

(
θ

θ0

)n

ϕ1(x)1/p ,

since θ > θ1/p
1 ≥ θ1 and where we used again (9.8) in the last inequality.

Thus, for all x ∈ E \ K ,

|ηn(x)−η(x)| ≤C

(
θ

θ0

)n

ϕ1(x)1/p , (10.3)

which concludes the proof of the convergence of ηn to η in L∞(ϕ1/p
1 ).

It remains to prove that K ⊂ E ′, E ′ = {x ∈ E : η(x) > 0}, νQSD (η) = 1 and P1η=
θ0η. By definition of E ′, if x 6∈ E ′, TK =∞ a.s. underPx . Therefore, by Lemma 9.5,

Px (n < τ∂) =Px (n < TK ∧τ∂) ≤ θn
1ϕ1(x).

Hence,

ηn(x) ≤
(
θ1

θ0

)n

ϕ1(x),

and η(x) = 0 for all x 6∈ E ′.
The fact that νQSD (η) = 1 follows from the dominated convergence theorem

since νQSD (ηn) = 1 for all n ≥ 0, the sequence (ηn)n≥0 is uniformly bounded in
L∞(ϕ1) and νQSD (ϕ1) <∞. Similarly, since P1ϕ1(x) <∞ for all x ∈ E ,

P1η(x) = lim
n→+∞P1ηn(x) = lim

n→+∞θ
−n
0 Px (n +1 < τ∂) = θ0 lim

n→+∞ηn+1(x) = θ0η(x).

(10.4)
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SinceνQSD (η) = 1, there exists x0 ∈ E ′ such thatη(x0) > 0. Then, by Lemma 9.9
with p = 1, letting n → +∞ in (9.7), we obtain η(x0) ≤ Cϕ1(x0) infy∈K η(y) and
hence K ⊂ {x ∈ E : η(x) > 0} and infy∈K η(y) > 0.

For all x ∈ E ′, there exists k ≥ 0 such that Pk1K (x) > 0. Hence,

ηk+`(x) = θ−k+`
0 Pk+`1E (x) ≥ θ−k

0 Pk1K (x) inf
y∈K

η`(y).

Since ηn converges to η in L∞(K ) and infy∈K η(y) > 0, we deduce that

η(x) = lim
`→+∞

ηk+`(x) ≥ θ−k
0 Pk1K (x) liminf

`→+∞
inf
y∈K

η`(y) > 0,

hence E ′ = {x ∈ E : η(x) > 0}. This ends the proof of Theorem 2.5.

10.2 Proof of Theorem 2.4

By Remark 1, it is enough to prove Theorem 2.4 for p = 1.
For all n ≥ 1, we introduce the linear operator, defined on the set of functions

f ∈ L∞(ϕ1) as

Rn f (x) = Ex ( f (Xn)1TK ≤n<τ∂), ∀x ∈ E . (10.5)

Note that this operator is well-defined since |Rn f (x)| ≤ ‖ f /ϕ1‖∞ Pnϕ1(x) <∞.
We first give some properties of Rn , which can be seen as a bounded approxima-
tion of Pn in L∞(ϕ1).

Lemma 10.1. We have

R̄ := sup
n≥1

sup
x∈E

Rnϕ1(x) <∞,

and for all n ≥ 1 and x ∈ E,

0 ≤ Pnϕ1(x)−Rnϕ1(x) ≤ θn
1ϕ1(x).

Proof. Using Markov’s property,

Rnϕ1(x) = ∑
k≤n

Ex [1TK =k Pn−kϕ1(Xk )]

≤ sup
y∈K , k≥0

Pkϕ1(y)Px (TK ≤ n)

≤ sup
y∈K , k≥0

Pkϕ1(y) ≤ D1 ∨ sup
y∈K

ϕ1(y)

ϕ2(y)
<+∞
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by Lemma 9.6. This proves the first inequality. For the second one, we observe
that for all x ∈ E ,

Pnϕ1(x)−Rnϕ1(x) = Ex (ϕ1(Xn)1n<TK ) ≤ θn
1ϕ1(x)

by Lemma 9.5.

We fix 1 ≤ k ≤ n, f such that | f | ≤ ϕ1 and µ such that µ(ϕ1)/µ(ϕ2) < ∞.
Theorem 2.1 and Lemma 10.1 entail∣∣∣∣µPn−k Rk f

µPn−k1E
−νQSD (Rk f )

∣∣∣∣≤Cαn−k µ(ϕ1)

µ(ϕ2)
sup
x∈E

|Rk f (x)| ≤C R̄αn−k µ(ϕ1)

µ(ϕ2)
.

The second inequality of Lemma 10.1 implies

|νQSD [(Pk −Rk ) f ]| ≤ θk
1νQSD (ϕ1)

and

µPn−k (Pk −Rk ) f

µPn−k1E
≤ θk

1
µPn−kϕ1

µPn−kϕ2
≤ θk

1

(
D1 ∨ µ(ϕ1)

µ(ϕ2)

)
by Lemma 9.6.

Combining the last three inequalities and recalling thatνQSD Pk f = θk
0νQSD ( f )

and µ(ϕ1)/µ(ϕ2) ≥ 1, we obtain∣∣∣∣∣ µPn f

θk
0µPn−k1E

−νQSD ( f )

∣∣∣∣∣≤ θ−k
0

{
C R̄αn−k µ(ϕ1)

µ(ϕ2)
+θk

1νQSD (ϕ1)+θk
1

(
D1 + µ(ϕ1)

µ(ϕ2)

)}
≤C

µ(ϕ1)

µ(ϕ2)

[
αn−kθ−k

0 + (θ1/θ0)k
]

.

We now recall (10.3) for p = 1: there exists θ < 1 such that |ηn(x)−η(x)| ≤
Cθnϕ1(x) for all x ∈ E , where ηn(x) = θ−n

0 Px (n < τ∂). In particular,

|ηn(x)−ηn−k (x)| ≤Cθn−kϕ1(x).

We deduce that∣∣∣∣∣ µPn f

θk
0µPn−k1E

− µPn f

µPn1E

∣∣∣∣∣≤ θn−k
0

µPn−k1E

µPn | f |
µPn1E

µ|ηn −ηn−k |

≤Cθn−k 1

µ(ηn−k )

µPnϕ1

µPnϕ2
µ(ϕ1)

≤ Cθn−k

inf`≥0µ(η`)

(
D1 ∨ µ(ϕ1)

µ(ϕ2)

)
µ(ϕ1),
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where inf`≥0µ(η`) > 0 since µ(η`) →µ(η) > 0 when `→+∞ and µ(η`) > 0 for all
`≥ 0 (since µ(ϕ2) > 0). Hence,∣∣∣∣ µPn f

µPn1E
−νQSD ( f )

∣∣∣∣≤C
µ(ϕ1)

µ(ϕ2)

[
αn−kθ−k

0 + (θ1/θ0)k +θn−k
]

.

Choosing k = dεne for some fixed ε> 0 small enough, all the terms in the right-
hand side converge to 0 geometrically as a function of n. This concludes the
proof of Theorem 2.4.

10.3 Proof of Corollary 2.6

If f ∈ L∞(1{∂} +ϕ1) is an eigenfunction for P̂1 for the eigenvalue θ, for all x ∈
E ∪ {∂} and n ≥ 0,

Ex [ f (Xn)] = P̂n f (x) = θn f (x).

We first assume f (∂) 6= 0 and that Px (τ∂ < ∞) = 1 for all x ∈ E . Taking x =
∂ implies that θ = 1. For all x ∈ E ′, let k ≥ 0 be such that Pkϕ2(x) > 0. Then
Lemma 9.6 implies that

Pn+kϕ1(x)

Pn+k1E (x)
≤ Pn+kϕ1(x)

Pn+kϕ2(x)
≤ Pkϕ1(x)

Pkϕ2(x)
∨D1 <∞.

Therefore,∣∣Ex f (Xn+k )− f (∂)
∣∣≤CEx

[
1n+k<τ∂

(| f (∂)|+ϕ1(Xn+k )
)]

=CPx (n +k < τ∂)

(
| f (∂)|+ Pn+kϕ1(x)

Pn+k1E (x)

)
−−−−−→
n→+∞ 0.

For all x 6∈ E ′, we have τ∂ = TK ∧τ∂ a.s. and hence, by Lemma 9.5,

|Ex f (Xn)− f (∂)| ≤CEx [1n<τ∂∧TK (| f (∂)|+ϕ1(Xn))]

≤CPx (n < τ∂)+Cθn
1ϕ1(x) −−−−−→

n→+∞ 0.

Since Ex [ f (Xn)] = f (x), we deduce from these two inequalities that f (x) = f (∂)
for all x ∈ E and hence Point 1. of Corollary 2.6 is proved.

We now assume f (∂) = 0 (and do not assume anymore that Px (τ∂ <∞) = 1
for all x ∈ E) and that f (x0) 6= 0 for some x0 ∈ E ′. In this case, Theorem 2.4 implies
that, for all x ∈ E ′, there exists a constant Cx such that, for all n ≥ 1,∣∣∣∣( θθ0

)n f (x)

ηn(x)
−νQSD ( f )

∣∣∣∣= ∣∣∣∣ Pn f (x)

Pn1E (x)
−νQSD ( f )

∣∣∣∣≤Cxα
n
1 . (10.6)
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Assume νQSD ( f ) 6= 0. The last inequality for x = x0 and Theorem 2.5 imply that
θ = θ0 and hence that f (x) = νQSD ( f )η(x) for all x ∈ E ′.

Now, for all x ∈ E \E ′, TK =∞Px -almost surely, and hence, Lemma 9.5 entails
(even in the case θ 6= θ0), for all x ∈ E \ E ′,

|θ|n | f (x)| = |Pn f (x)| ≤C Pnϕ1(x) ≤Cθn
1ϕ1(x). (10.7)

This implies that, in any case when |θ| > θ1, f (x) = 0 for all x ∈ E \ E ′. We deduce
that, if f (∂) = 0, f (x0) 6= 0 for some x0 ∈ E ′ and νQSD ( f ) 6= 0, then f = νQSD ( f )η.
This concludes the proof of Point 2. of Corollary 2.6.

We now assume f (∂) = 0, f (x0) 6= 0 for some x0 ∈ E ′ and νQSD ( f ) = 0. Apply-
ing (10.6) for x = x0, we deduce that |θ| ≤ θ0α1. This is Point 3. of Corollary 2.6.

In the case where f (∂) = 0 and f (x) = 0 for all x ∈ E ′, we deduce from (10.6)
applied to any x ∈ E ′ that νQSD ( f ) = 0 and we deduce from (10.7) that |θ| ≤ θ1.

It only remains to prove (2.6). Because of (10.7), we only need to check that

| f (x)| ≤Cϕ1(x)log |θ|/logθ1 , ∀x ∈ E ′.

To prove this, we use the operator Rn introduced in (10.5). By Lemma 10.1, for
all x ∈ E ′,

| f (x)| = |θ|−n |Pn f (x)| ≤C |θ|−n [
Rnϕ1(x)+ (Pn −Rn)ϕ1(x))

]
≤C R̄|θ|−n +C

(
θ1

|θ|
)n

ϕ1(x).

Applying this inequality for n = b− logϕ1(x)/ logθ1c, we deduce

| f (x)| ≤C exp

(
logϕ1(x)

logθ1
log |θ|

)
≤Cϕ1(x)log |θ|/logθ1 .

We have proved (2.6).

10.4 Proof of Theorem 2.7

We start with Point (i). We introduce Γn = 1n<τ∂ and define for all x ∈ E ′ and
n ≥ 0 the probability measure

QΓ,x
n = Γn

Ex (Γn)
Px ,

so that the Q-process exists if and only if QΓ,x
n admits a proper limit when n →∞.

For all 0 ≤ k ≤ n, we have by the Markov property

Ex (Γn |Fk )

Ex (Γn)
= 1k<τ∂PXk (n −k < τ∂)

Px (n < τ∂)
.
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By Theorem 2.5, this converges almost surely as n →+∞ to

Mk :=1k<τ∂θ
−k
0
η(Xk )

η(x)
= θ−k

0
η(Xk )

η(x)
,

and Ex (Mk ) = θ−k
0

Pkη(x)
η(x) = 1. These two properties allow to apply the penal-

ization’s theorem of Roynette, Vallois and Yor [76, Theorem 2.1], which implies
that M is a martingale under Px and that QΓ,x

n (A) converges to Ex (Mk1A) for all
A ∈Fk when n →∞. This means thatQx is well defined and

dQx

dPx Fk

= Mk .

Note that the fact thatη(x) = 0 for all x ∈ E\E ′ implies that (Xn ,n ≥ 0) is E ′-valued
Qx -almost surely for all x ∈ E ′. The fact that X is Markov under (Qx )x∈E ′′ and
Point (ii) can be easily deduced from the last formula (see e.g. [15, Section 6.1]).

It remains to prove Point (iii). Because of Remark 1, it is enough to prove it
for p = 1 only.

We define the function ψ = ϕ1/η on E ′. Note that, since η ∈ L∞(ϕ1), ψ is
uniformly lower bounded. Moreover, for all x ∈ E ′,

P̃1ψ(x) = θ−1
0

η(x)
P1ϕ1(x) ≤ θ1

θ0
ψ(x)+C1K (x), (10.8)

where we used that infK η > 0. Using a similar inequality as in Lemma 9.5, we
deduce that, for all x ∈ E ′ \ K and all θ ∈ (θ1/θ0,1),

EQx

(
θ−TK

)≤ψ(x)/ inf
y∈E ′ψ(y) <∞. (10.9)

Now, we deduce from Lemma 9.11 that for all x ∈ K and n ≥ n1 +n6,

Qx (Xn ∈ ·) ≥ c ′1ν. (10.10)

Fix R > 0 and fix x ∈ E ′ such that ψ(x) < R. By (10.9) and Markov’s inequality,
there exists kR ≥ n1 +n6 such that

Qx (TK > kR −n1 −n6) ≤ 1

2
.

It then follows from (10.10) and from Markov’s property that, for all measurable
A ⊂ E ,

Qx
(
XkR ∈ A

)≥Qx
(
TK ≤ kR −n1 −n6, XkR ∈ A

)
≥ 1

2
c ′1ν(A).
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This implies that, for all x, y ∈ E ′ such that ψ(x)+ψ(y) < R,∥∥δx PkR −δy PkR

∥∥
T V ≤ α̃,

for some α̃ ∈ (0,1) independent of R.
By [45, Thm 3.9], together with (10.8), the last assertion implies that there

exist constants C > 0 and α̃1 ∈ (0,1) such that, for all real function h on E ′ such
that |||h||| <∞, ∣∣∣∣∣∣P̃nh

∣∣∣∣∣∣≤C α̃n
1 |||h|||,

where

|||h||| = sup
x,y∈E ′

|h(x)−h(y)|
2+ψ(x)+ψ(y)

.

Following the same argument as for Theorem 2.1, this implies (2.8). In particu-
lar, for all x ∈ E ′,

‖δx P̃n −β‖T V −−−−−→
n→+∞ 0.

Hence, (2.9) is a consequence of Lebesgue’s dominated convergence theorem.
This ends the proof of Theorem 2.7.

11 Proof of the results of Section 3

In this section are proved Proposition 3.1 in Subsection 11.1, Lemma 3.2 in Sub-
section 11.2, Lemma 3.3 in Subsection 11.3, Lemma 3.4 in Subsection 11.4. Then
we prove Theorem 3.5 in Subsection 11.5, Lemma 3.6 in Subsection 11.6. Finally,
we prove Proposition 3.8 in Subsection 11.7.

11.1 Proof of Proposition 3.1

Condition (E4) implies that there exists x0 ∈ E such that Px0 (Xn0 ∈ K ) > 0. One
immediately deduces from our assumption that Condition (E1) is satisfied with
the probability measure ν on K defined by

ν(·) = Px0 (Xn0 ∈ ·∩K )

Px0 (Xn0 ∈ K )

and the constants c1 =Px0 (Xn0 ∈ K )/C > 0 and n1 = m0.
Let us now check Condition (E3) and the last part of Proposition 3.1. We

define T (n0)
K = inf{n ≥ n0 s.t. Xn ∈ K }. Lemma 9.5 (which only makes use of Con-

dition (E2)) implies that, for all x ∈ E , Px (n < TK ∧τ∂) ≤ θn
1ϕ1(x). Hence, for all
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x ∈ E and all n ≥ n0,

Px (n < τ∂∧T (n0)
K ) = Ex

(
1n0<τ∂PXn0

(n −n0 < τ∂∧TK )
)

≤ θn−n0
1 Ex

(
1n0<τ∂ϕ1(Xn0 )

)
≤ (θ1 + c2)n0θ

n−n0
1 ϕ1(x). (11.1)

Therefore, for some constant C > 0,

Px (n < τ∂) ≤Px (n < τ∂∧T (n0)
K )+Px (T (n0)

K ≤ n < τ∂)

≤C ϕ1(x)θn
1 +

n∑
k=n0

Ex

(
1

T
(n0)
K =k

PXk (n −k < τ∂)
)

. (11.2)

Now, for all x ∈ E , all y ∈ K and all k ∈ {n0, . . . ,n}, (3.1) and (11.1) entail

Ex

(
1

T
(n0)
K =k

PXk (n −k < τ∂)
)
≤ Ex

(
1

k−n0<T
(n0)
K ∧τ∂EXk−n0

(
1Xn0∈K PXn0

(n −k < τ∂)
))

≤ Ex

(
1

k−n0<T
(n0)
K ∧τ∂C Py (n +m0 −k < τ∂)

)
≤ θk−n0

1 ϕ1(x)C Py (n −k < τ∂),

where the constant C may change from line to line. Using Lemma 9.8, which
only makes use of (E1), (E2) and (E4), there exists n6 ∈Z+ such that, for all y ∈ K
and for all n,k ∈Z+ such that n −k ≥ n6,

Py (n < τ∂) ≥Py (Xn−k ∈ K ) inf
z∈K

Pz (k < τ∂)

≥Py (n −k < τ∂) inf
T≥n6

inf
z∈K

Pz (XT ∈ K | T < τ∂) inf
z∈K

Pkϕ2(z)

≥C ′′θk
2 Py (n −k < τ∂),

where C ′′ := infT≥n6 infz∈K Pz (XT ∈ K | T < τ∂) infz∈K ϕ2(z) > 0. Hence,

Ex

(
1

T
(n0)
K =k

PXk (n −k < τ∂)
)
≤ϕ1(x)

(
θ1

θ2

)k θ
−n0
1 C

C ′′ Py (n < τ∂).

Now, we deduce from (11.2) and (11.1) that, for all x ∈ E and all y ∈ K ,

Px (n < τ∂) ≤C ϕ1(x)

[
θn

1 +Py (n < τ∂)
n−n6∑
k=1

(
θ1

θ2

)k
]
+Px (T (n0)

K ∧τ∂ ≥ n −n6)

≤C ϕ1(x)
[
θn

1 +Py (n < τ∂)+θn−n6
1

]
≤C ϕ1(x)Py (n < τ∂)

since Py (n < τ∂) ≥ θn
2 infK ϕ2. This implies the last part of Proposition 3.1 and,

since supK ϕ1 <∞, that Condition (E3) is satisfied.
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11.2 Proof of Lemma 3.2

The functionϕ2 defined in the statement satisfies, for all x ∈ E ,ϕ2(x) ∈ [0,1] and,

for all x ∈ K , ϕ2(x) ≥ θ−1
2 −1

θ−`2 −1
> 0. Moreover, we have, for all x ∈ E ,

P1ϕ2(x) = θ2ϕ2(x)− θ−1
2 −1

θ−`2 −1

(
θ21K (x)−θ−`+1

2 P`1K (x)
)
≥ θ2ϕ2(x)

since ` is chosen such that θ−`+1
2 P`1K (x) ≥ θ21K (x) for all x ∈ E

Our assumption also implies that there exists n0 such that, for all n ≥ n0,
θ−n

2 infx∈K Px (Xn ∈ K ) ≥ 1. Choosing n4(x) = n0 for all x ∈ K entails (E4), which
concludes the proof of Lemma 3.2.

11.3 Proof of Lemma 3.3

Assume that

Ex

(
θ
−TK ∧τ∂
1

)
<+∞ ∀x ∈ E and sup

y∈K
Ey

(
EX1

(
θ
−TK ∧τ∂
1

)
11<τ∂

)
<+∞

and set ϕ1(x) = Ex

(
θ
−TK ∧dτ∂e
1

)
for all x ∈ E . Then, for all x ∈ E \ K , using Markov’s

property at time 1,

P1ϕ1(x) = Ex

(
EX1

(
θ
−TK ∧dτ∂e
1

))
= Ex

(
θ
−(TK ∧dτ∂e−1)
1

)
= θ1ϕ1(x).

Moreover, for all x ∈ K , P1ϕ1(x) ≤ θ−1
1 supy∈K Ey

(
EX1

(
θ
−TK ∧τ∂
1

)
11<τ∂

)
, and hence

the first part of the lemma is proved.
Assume now that there exist two constants C > 0, θ1 > 0 and a function ϕ1 :

E → [1,+∞) such that supK ϕ1 <+∞ and P1ϕ1 ≤ θ1ϕ1 +C1K . Then, for all n ≥ 1
and all x ∈ E \ K ,

Ex
(
ϕ1(Xn)1n<TK ∧τ∂

)≤ θn
1ϕ1(x).

Thus, using the fact that ϕ1 ≥ 1, we deduce that, for all x ∈ E (the inequality
being trivial for x ∈ K ),

Px (n < TK ∧τ∂) ≤ θn
1ϕ1(x).

In particular, one deduces that, for all θ > θ1 and all x ∈ E \ K ,

Ex
(
θ−TK ∧τ∂)≤ 1

θ−θ1
ϕ1(x) <+∞

and the inequality is trivial for all x ∈ K . One also deduces that

sup
x∈K

Ex
(
EX1

(
θ−TK ∧τ∂))≤ 1

θ−θ1
sup
x∈K

P1ϕ1(x) <+∞.

This concludes the proof of Lemma 3.3.
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11.4 Proof of Lemma 3.4

Combining (10.2) and the fact that infK η> 0, we deduce that

liminf
n→+∞ inf

x∈K
θ−n

0 Px (n < τ∂) > 0.

Let θ′2 < θ0. Using Lemma 9.8,

lim
n→+∞ inf

x∈K
(θ′2)−nPx (Xn ∈ K ) =+∞.

Hence the result follows from Lemma 3.2.

11.5 Proof of Theorem 3.5

We assume that Assumption (F) is satisfied. In Subsection 11.5.1, we prove that
Assumption (E) holds true for the sub-Markovian semigroup (Pn)n≥0 of the ab-
sorbed Markov process (Xnt2 ,n ∈ Z+). In Subsection 11.5.2, we prove the exis-
tence of a quasi-stationary distribution for (X t )t∈I with the claimed properties
and in Subsection 11.5.3, we prove the convergence of eλ0tPx (t < τ∂) to η(x) for
t ∈ I , t →+∞.

11.5.1 Proof of (E)

We fix θ1 ∈ (γt2
1 ,γt2

2 ) and set θ2 = γt2
2 . Let us first remark that the last line of Con-

dition (F2) implies that γ−t
2 Pν(X t ∈ L) →+∞ when t →+∞. Hence, using Con-

dition (F1), we deduce that

inf
x∈L

γ−t
2 Px (X t ∈ L) −−−−→

t→+∞ +∞. (11.3)

We consider a number n0 ∈ N∗ large enough so that infx∈L γ
−t
2 Px (X t ∈ L) ≥ 1∨

c2

θ1−γt2
1

, for all t ≥ (n0 −1)t2 and we set

ϕ1 =ψ1 and ϕ2 =
γ
−t2
2 −1

γ
−n0t2
2 −1

n0−1∑
k=0

γ
−kt2
2 Pk1L .

Step 1. Proof of (E2), (E4) and (E1) for (Pn)n∈Z+ .
For all x ∈ E \ L, it follows from (F0) and the second line of (F2) that

P1ψ1(x) = Ex
(
ψ1(X t2 )1t2<τL∧τ∂

)+Ex

(
1τL≤t2EXτL

(1t2−s<τ∂ψ1(X t2−s))
s=τL

)
≤ γt2

1 ψ1(x)+Px (τL ≤ t2)c2.
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We define K = {
y ∈ E , Py (τL ≤ t2)/ψ1(y) ≥ (θ1 −γt2

1 )/c2
}
. The second line of

(F2) at time t = 0 and the fact that θ1 −γt2
1 < 1 imply that L ⊂ K . Moreover, we

have, for all x ∉ K ,

P1ψ1(x) ≤ θ1ψ1(x). (11.4)

Hence, for all x ∈ E ,
P1ψ1(x) ≤ θ1ψ1(x)+ c21K (x). (11.5)

Note that it immediately follows from the definition of K that supx∈K ψ1(x) <∞.
In particular, the first and third lines of (E2) are proved.

Moreover, using the Markov property provided by (F0) and the definition of
n0, we deduce that, for all t ≥ n0t2,

inf
x∈K

γ−t
2 Px (X t ∈ L) ≥ inf

x∈K
Px (τL ≤ t2) inf

s∈[0,t2]
inf
y∈L

γ−t
2 Py (X t−s ∈ L) ≥ 1, (11.6)

where we used the fact that, for all x ∈ K , Px (τL ≤ t2) ≥ θ1−γt2
1

c2
. In particular,

P1ϕ2 = γt2
2 ϕ2 +

γ
−t2
2 −1

γ
−n0t2
2 −1

(
γ
−(n0−1)t2
2 Pn01L −γt2

2 1L

)
≥ γt2

2 ϕ2 = θ2ϕ2.

In addition, for all x ∈ K ,

ϕ2(x) ≥ γ
−t2
2 −1

γ
−n0t2
2 −1

γ
−(n0−1)t2
2 Px (Xn0t2 ∈ L) ≥ γ

−t2
2 −1

γ
−n0t2
2 −1

.

Hence (E2) is proved. Moreover, (11.6) also entails that (E4) holds true.
Fix n1 ≥ 1 such that n1t2 − t1 ≥ n0t2. Condition (F1) and then (11.6) imply

that, for all x ∈ K ,

Px (Xn1t2 ∈ ·∩K ) ≥Px (Xn1t2−t1 ∈ L)c1ν(·∩L) ≥ γn1t2−t1
2 c1ν(·∩L).

Extending ν as a probability measure on K , we obtain (E1).

Step 3. Estimation of the survival probability.
Our goal here is to prove a version of Lemma 9.9, where (9.7) is replaced by

Px (nt2 < τ∂) ≤C
ϕ1(x)

1−θ1/θ2
inf
y∈L

Py (nt2 < τ∂), ∀x ∈ E ,∀n ∈N. (11.7)

Since the proof is similar, we only highlight the main differences. First, Lemma 9.8
only uses (E1), (E2) and (E4), so that there exist n6 ≥ 1 and ζ1 > 0 such that, for
all x ∈ K and all n ≥ n6,

δx Pn1K ≥ ζ1δx Pn1E .
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Hence, for all x ∈ K and all N ≥ n0 +n6, using (11.6),

δx PN1L ≥ γn0t2
2 δx PN−n01K ≥ ζ1γ

n0t2
2 δx PN−n01E ≥ ζ1γ

n0t2
2 δx PN1E .

Hence,
inf

N≥n0+n6

inf
x∈K

Px (XN t2 ∈ L | N t2 < τ∂) > 0. (11.8)

Third, it follows from (F2) that, for all x ∈ E \ L,

Px (nt2 < τL ∧τ∂) ≤ γnt2
1 ψ1(x) = θn

1ϕ1(x). (11.9)

and from (E2) that, for all x ∈ E ,

Px (nt2 < τ∂) ≥ γnt2
2 ϕ2(x). (11.10)

Therefore, following the same lines as in (9.9) (replacing K with L), we deduce
from (11.9) and (11.10) that, for all x ∈ E

Px (nt2 < τ∂) ≤ θn
1ϕ1(x)+ c3

∫ nt2

0
inf
y∈L

Py ((n −ds/t2e) t2 < τ∂) Px (τL ∧τ∂ ∈ d s)

≤C inf
z∈L

Pz (nt2 < τ∂)ϕ1(x)+ c3γ
−t2
2

c
inf
z∈L

Pz (nt2 < τ∂)Ex
(
γ
−τL∧τ∂
2

)
,

which entails (11.7), where we used in the second inequality the fact that

Px (nt2 < τ∂) ≥ cγkt2
2 inf

y∈L
Py ((n −k)t2 < τ∂) , ∀x ∈ L,

which is deduced from (11.8) exactly as in Lemma 9.9.

Step 4. Proof of (E3).
Using (11.7) and the fact that supx∈K ϕ1(x) <+∞, we deduce that there exists

a constant C > 0 such that, for all n ∈N,

sup
x∈K

Px (nt2 < τ∂) ≤C inf
y∈L

Py (nt2 < τ∂).

Moreover, using the Markov property at time n0t2 and (11.6), we deduce that,
for all t ≥ 0,

inf
x∈K

Px (t < τ∂) ≥ inf
x∈K

Px (t +n0t2 < τ∂) ≥ γn0t2
2 inf

y∈L
Py (t < τ∂).

These inequalities imply (E3).
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11.5.2 Existence of a quasi-stationary distribution for (X t )t∈I

Subsection 11.5.1 and Theorem 2.1 imply that there exists a probability measure
νQSD on E such that

PνQSD (Xnt2 ∈ · | nt2 < τ∂) = νQSD , ∀n ∈Z+,

such that νQSD (ϕ1) < ∞ and νQSD (ϕ2) > 0, which is equivalent to νQSD (L) > 0
because of the quasi-stationarity and the form of ϕ2. For all t ∈ [0, t2], let us
define the probability measure νt on E by

νt =PνQSD (X t ∈ · | t < τ∂).

For all n ∈ Z+, we have, using the Markov property and the fact that νQSD is a
quasi-stationary distribution for (Xnt2 )n≥0,

Pνt (Xnt2 ∈ · | nt2 < τ∂) = EνQSD (PXnt2
(X t ∈ · | t < τ∂) | nt2 < τ∂) =PνQSD (X t ∈ · | t < τ∂),

hence νt is a quasi-stationary distribution for (Pn)n≥0. Moreover, the third line
of (F2) and the quasi-stationarity of νt imply that νt (L) is positive.

Fix ρ1 ∈ (θ1/t2
1 ,γ2). It follows from (11.9) that there exists a constant C > 0

such that, for all x ∈ E ,

ϕ′
1(x) := Ex

(
ρ
−τL∧τ∂
1

)≤C ϕ1(x).

In addition, for all x ∈ E \ L,

Ex
(
1t2<τL∧τ∂ϕ

′
1(X t2 )

)= ρt2
1 Ex

(
1t2<τL∧τ∂ρ

−τL∧τ∂
1

)
≤ ρt2

1 ϕ
′
1(x) (11.11)

and the inequality is trivial for x ∈ L. In addition, for all t ∈ [0, t2] and all x ∈
L, Ex

(
ϕ′

1(X t )1t<τ∂
) ≤ CEx

(
ψ1(X t )1t<τ∂

) ≤ C c2. Hence Condition (F) is satisfied
replacing γ1 with ρ1 and ψ1 with ϕ′

1. Therefore, we can apply Step 1 to prove
that (E) is satisfied with ϕ′

1 and ϕ′
2 where

ϕ′
2 =

γ
−t2
2 −1

γ
−n′

0t2

2 −1

n′
0−1∑

k=0
γ
−kt2
2 Pk1L

for an integer n′
0 that can be chosen larger than n0. We also deduce as in the be-

ginning of Step 2 that νQSD is the unique quasi-stationary distribution of (Pn)n≥0

such that νQSD (ϕ′
1) <∞ and νQSD (L) > 0.
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Moreover, by Markov property, we have for all x ∈ E and t ≥ 0,

ϕ′
1(x) = Ex

[
1t<τL∧τ∂ρ1

−τL∧τ∂]+Ex
[
1t≥τL∧τ∂ρ1

−τL∧τ∂]
≤ ρ1

−tEx
[
1t<τL∧τ∂ϕ

′
1(X t )

]+ρ1
−tPx (t ≥ τL ∧τ∂)

≤ ρ1
−t (

Ex [1t<τ∂ϕ
′
1(X t )]+1

)
(11.12)

so that, for all t ∈ [0, t2],

νt (ϕ′
1) ≤ ρ1

−(t2−t ) [EνQSD

(
1t2<τ∂ϕ

′
1(X t2 )

)
/PνQSD (t < τ∂)+1

]
≤ ρ1

−(t2−t ) [EνQSD

(
1t2<τ∂ϕ

′
1(X t2 )

)
/PνQSD (t2 < τ∂)+1

]
= ρ1

−(t2−t ) (νQSD (ϕ′
1)+1

)<∞.

Since we observed that νt (L) > 0, we deduce that νt = νQSD for all t ∈ I ∩ [0, t2].
Using the Markov property, we deduce that νt = νQSD for all t ∈ I and hence

that νQSD is a quasi-stationary distribution for (X t )t∈I . Since any quasi-statio-
nary distribution for (X t )t∈I is also a quasi-stationary distribution for (Pn)n≥0,
we deduce that νQSD is the unique quasi-stationary distribution for (X t )t∈I such
that νQSD (ϕ1) < +∞ and νQSD (L) > 0. By the quasi-stationarity property of
νQSD , it is also the unique one satisfying νQSD (ϕ1) < +∞ and PνQSD (X t ∈ L) > 0
for some t ∈ I .

Let t ≥ t2 be fixed and define k ∈N such that 0 ≤ t −kt2 < t2. It follows from
the fact that P1ϕ

′
1 ≤ C̄ϕ′

1 and from (11.12) that

Ex [1t<τ∂ϕ
′
1(X t )] ≤ C̄ kEx

[
1t−kt2<τ∂ϕ

′
1(X t−kt2 )

]
≤ C̄ kρ1

−(k+1)t2+tEx
[
1t2<τ∂ϕ

′
1(X t2 )+1t−kt2<τ∂

]
≤CC̄ kρ1

−(k+1)t2+tEx
[
1t2<τ∂ϕ1(X t2 )+1

]
≤CC̄ kρ1

−(k+1)t2+t (θ1 + c2 +1)ϕ1(x). (11.13)

Now, let µ be a probability measure such that µ(ϕ1) < ∞ and µ(ϕ2) > 0.
Then, for all t ≥ n0t2, it follows from (11.6) that, for all k ≥ 0,

Pµ(X t+kt2 ∈ L) ≥Pµ(Xkt2 ∈ L) inf
y∈L

Py (X t ∈ L) ≥ γt
2Pµ(Xkt2 ∈ L).

Therefore, for all t ∈ [n0t2, (n0 +1)t2],

Eµ(ϕ2(X t )) = γ
−t2
2 −1

γ
−n0t2
2 −1

n0−1∑
k=0

γ
kt2
2 Pµ(X t+kt2 ∈ L)

≥ γ
−t2
2 −1

γ
−n0t2
2 −1

γ
(n0+1)t2
2

n0−1∑
k=0

γ
kt2
2 Pµ(Xkt2 ∈ L) = γ(n0+1)t2

2 µ(ϕ2).
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This and inequality (11.13) imply that (using that n′
0 ≥ n0), for all t ∈ [n0t2, (n0 +

1)t2] and for a constant C > 0 that may change from line to line,

µt (ϕ′
1)

µt (ϕ′
2)

≤C
µt (ϕ′

1)

µt (ϕ2)
≤C

µ(ϕ1)

µ(ϕ2)
,

where µt := Pµ(X t ∈ · | t < τ∂). It then follows the fact that (E) is satisfied by
(Pn ,n ≥ 0) with the functions ϕ′

1 and ϕ′
2 that there exist constants α < 1 and

C > 0 such that, for all t ∈ [n0t2, (n0 +1)t2],∥∥∥∥ µt Pn

µt Pn1E
−νQSD

∥∥∥∥
T V

≤Cαn µ(ϕ1)

µ(ϕ2)
,

Using Markov property, we deduce that

∥∥Pµ(Xnt2+t ∈ · | nt2 + t < τ∂)−νQSD
∥∥

T V ≤Cαn µ(ϕ1)

µ(ϕ2)
.

This ends the proof of (3.3).

11.5.3 Convergence to η

Our goal is to prove (3.4), where the convergence is exponential in L∞(ψ1/p
1 ).

Because of Remark 1, it is enough to prove this for p = 1. Since we proved that (E)
holds true for the semigroup (Pn)n≥0 and for the functions ϕ′

1 and ϕ2, it follows
from Theorem 2.5 that there exist constants λ0 ∈ [0, log(1/γ2)], α ∈ (0,1) and C >
0 such that, for all y ∈ E ,∣∣∣eλ0nt2Py (nt2 < τ∂)−η(y)

∣∣∣≤Cαnϕ′
1(y).

For any t ∈ [t2,2t2], integrating this inequality with respect toPx (X t ∈ d y ; t < τ∂),
we deduce from (11.13) that∣∣∣eλ0nt2Px (nt2 + t < τ∂)−Ex (η(X t )1t<τ∂)

∣∣∣≤Cαnϕ1(x)

for a constant C independent of t ∈ [t2,2t2]. Setting ηt (x) = Ex
[
eλ0tη(X t )1t<τ∂

]
,

we obtain for all t ∈ [t2,2t2]∣∣∣eλ0(nt2+t )Px (nt2 + t < τ∂)−ηt (x)
∣∣∣≤Ce2λ0t2αnϕ1(x).

Proceeding as in (10.4), we deduce, letting n →+∞, that P1ηt = e−λ0t2ηt . There-
fore, the uniqueness result in Point 2. of Corollary 2.6 implies that ηt = η. This
ends the proof of Theorem 3.5.
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11.6 Proof of Lemma 3.6

Proceeding as in (11.11) and (11.12), we have that, for all x ∈ E and t ∈ I ,

Ex
(
ψ1(X t2 )1t2<τL∧τ∂

)≤ γt2
1 ψ1(x) and ψ1(x) ≤ γ−t

1

(
Ex

[
1t<τ∂ψ1(X t )

]+1
)

.

Therefore, for all t ≤ t2 and all x ∈ L,

Ex
[
1t<τ∂ψ1(X t )

]≤ γ−(t2−t )
1 Ex

{[
EX t

(
1t2−t<τ∂ψ1(X t2−t )

)+1
]
1t<τ∂

}
≤ γ−(t2−t )

1

[
Ex

(
1t2<τ∂ψ1(X t2 )

)+1
]

≤ c2 := γ−t2
1

[
sup
y∈L

Ey
(
1t2<τ∂ψ1(X t2 )

)+1

]
.

This concludes the proof of Lemma 3.6.

11.7 Proof of Proposition 3.8

Let us first assume that (E) is satisfied with ϕ1 bounded and (3.7) and prove
that (3.6) holds true. Corollary 2.2 entails that, for all n ≥ n′

4,∥∥∥∥ µPn

µPn1E
−νQSD

∥∥∥∥
T V

≤αn−n′
4

‖ϕ1‖∞
infx∈K ϕ2(x)

µPn′
4
1E

µPn′
4
1K

≤αn−n′
4

‖ϕ1‖∞
c infx∈K ϕ2(x)

.

Hence the convergence is uniform.
Let us now assume that (3.6) holds true. It was proved in [15] that this is

equivalent to the following condition.

Condition (A). There exist positive constants c1,c2, a positive integer k0 and a
probability measure ν on E such that

(A1) (Conditional Dobrushin coefficient) For all x ∈ E ,

Px (Xk0 ∈ · | k0 < τ∂) ≥ c1ν.

(A2) (Global Harnack inequality) We have

sup
k∈Z+

supy∈E Py (k < τ∂)

Pν(k < τ∂)
≤ c2.
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Several consequences of Condition (A) were deduced in [15], among which
the fact that the convergence (2.5) in Theorem 2.5 holds true with respect to the
L∞ norm on E with η(x) > 0 for all x ∈ E . In particular, η is bounded, P1η= θ0η

and there exists a constant C ′ such that, for all n ≥ 0,

sup
x∈E

Px (n < τ∂) ≤C ′θn
0 . (11.14)

We fix ε ∈ (0,1/(4C ′)). Since η is positive on E , there exists δ > 0 such that the
set K := {x ∈ E : η(x) ≥ δ} satisfies νQSD (K ) ≥ 1− ε and ν(K ) > 0. Setting ϕ2 =
η/‖η‖∞, the part of (E2) dealing about ϕ2 is satisfied. Since the convergence in
Theorem 2.5 holds true with respect to the L∞ norm, we deduce from the choice
of K that there exists k ≥ k0 such that

c := inf
x∈K

Px (k0 < τ∂) ≥ inf
x∈K

Px (k < τ∂) > 0.

It follows from (A1) and (A2) that, for all n ≥ 0,

inf
x∈K

Px (n < τ∂) ≥ inf
x∈K

Px (n +k0 < τ∂) ≥ c1cPν(n < τ∂) ≥ c1c

c2
sup
y∈E

Py (n < τ∂).

This implies (E3) and that infx∈K Px (k0 < τ∂) > 0. Hence, (E1) follows from (A1)
with the probability measure ν(·∩K )

ν(K ) . Moreover, for any n large enough to have
Cαn ≤ 1/2 where the constants C and α are those of (3.6), we have Px (Xn ∈ K |
t < τ∂) ≥ νQSD (K )−Cαn ≥ 1/2−ε> 0 and hence (E4) is satisfied. The last com-
putation also entails (3.7) with n′

4 = n.
It remains to construct a function ϕ1 satisfying (E2). For all x ∈ E ,

Px (Xn ∈ E \ K | n < τ∂) ≤ νQSD (E \ K )+Cαn ≤ ε+Cαn .

Using (11.14), we deduce that

Px (Xn ∈ E \ K ) ≤C ′(ε+Cαn)θn
0 ,

so that there exists n0 large enough such that

Px (n0 < TK ∧τ∂) ≤ 1

3
θ

n0
0 =

(
θ0

31/n0

)n0

.

From this follows that, for all k ∈N and all x ∈ E ,

Px (kn0 < TK ∧τ∂) ≤
(
θ0

31/n0

)kn0

.
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In particular, for θ1 := θ0/21/n0 ,

ϕ1(x) := Ex

(
θ
−TK ∧dτ∂e
1

)
, ∀x ∈ E ,

is a bounded function on E and Lemma 3.3 implies that, for all x ∈ E ,

P1ϕ1(x) ≤ θ1ϕ1(x)+‖ϕ1‖∞1K (x).

Since θ1 < θ0, (E2) is proved.

12 Proof of the results of Section 4.1

In order to prove Theorem 4.1, we check Condition (F). The goal of Subsec-
tion 12.1 is to give the construction of the process X and to check (F0) with
L = Kk for some k ≥ 1. In Subsection 12.2, we explain how (F3) can be deduced
from general Harnack inequalities. Finally, Subsection 12.3 completes the proof
of Theorem 4.1. The proof of Corollary 4.2 is then given in Subsection 12.4.

12.1 Construction of the diffusion process X and Markov property

The goal of this section is to construct a weak solution X to the SDE (4.1) with
absorption out of D , and prove that it is Markov and satisfies a strong Markov
property at appropriate stopping times, enough to entail Condition (F0) for L =
Kk for some k ≥ 1. We introduce the natural path space for the process X as

D :=
{

w :R+ → D ∪ {∂} : ∀k ≥ 1, w is continuous on [0,τk (w)]

and w(t ) = ∂, ∀t ≥ sup
k≥1

τk (w)

}
,

where τk (w) := inf{t ≥ 0 : wt ∈ D \ Kk }. Note that D contains functions which are
not càdlàg since they may not have a left limit at τ∂− and, indeed, it is easy to
construct examples where X is not càdlàg P-a.s.2 Note also that this definition
means that we are looking for a process X such that

τ∂ := sup
k≥1

τD\Kk ,

2For example, one may consider D the open disc of radius 1 centered at 0 in R2, σ = Id and
b(x) = (−x2β(|x|), x1β(|x|)) where x = (x1, x2) ∈ D . Decomposing the process in polar coordinates

(Rt ,θt ) := (|Xt |,arctan(X (1)
t /X (2)

t )), the radius Rt is a 2-dimensional Bessel process, and Xt is sent

to ∂when Rt hits 1 (in a.s. finite time). The angle θt is solution to dθt = R−1
t dWt −β(Rt )d t before

τ∂, for some Brownian motion W . Hence, if β(r ) converges sufficiently fast to +∞ when r → 1, θt
a.s. converges to −∞ when t → τ∂−, so X does not admit a left limit at time τ∂.
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which is the natural definition of τ∂ when the left limit of X at time τ∂ does not
exist.

We endow the path space D with its natural filtration

Ft =σ(ws , s ≤ t ) = ∨
n≥1,0≤t1<t2<...<tn≤t

σ(wt1 , wt2 , . . . , wtn )

and we follow the usual method which consists in constructing for all x ∈ D a
probability measurePx on D and a stochastic process (Bt , t ≥ 0) on D×C (R+,Rr ),
such that B is a standard r -dimensional Brownian motion under Px ⊗Wr , where
Wr is the r -dimensional Wiener measure and such that w0 = x Px ⊗Wr -almost
surely and the canonical process (wt , t ≥ 0) solves the SDE (4.1) for this Brown-
ian motion B on the time interval [0,supk τk (w)) 3.

For this construction, we use the fact that b and σ can be extended out of Kk

to Rd as globally Hölder and bounded functions bk and σk and such that σk is
uniformly elliptic on Rd . Hence (see e.g. [53, Rk. 5.4.30]) the martingale problem
is well-posed for the SDE

d X k
t = bk (X k

t )d t +σk (X k
t )dBt .

Let us denote by Pk
x the solution to this martingale problem for the initial condi-

tion x ∈ Rd . This is a probability measure on C := C (R+,Rd ), equipped with its
canonical filtration (Gt )t≥0.

For all k ≥ 1, we define τ′k (w) = inf{t ≥ 0, wt 6∈ int(Kk )}, where int(Kk ) is
the interior of Kk . Since the paths w ∈ D or C are continuous at time τ′k and

Rd \ int(Kk ) is closed, it is standard to prove that τ′k is a stopping time for the
canonical filtration (Ft )t≥0 on D and for the canonical filtration (Gt )t≥0 on C .
We define as usual the stopped σ-fields Fτ′k

and Gτ′k
, and we define for all x ∈

int(Kk ) the restriction of Px to Fτ′k
as the restriction of Pk

x to Gτ′k
, where we

can identify the events of the two filtrations since they both concern continu-
ous parts of the paths. This construction is consistent for k and k +1 (meaning
that if x ∈ Kk , they give the same probability to events of Fτk ) by uniqueness of
the solutions Pk

x and Pk+1
x to the above martingale problems. Hence there exists

a unique extension Px of the above measures to
∨

k≥1 Fτ′k
. Note that, because of

the specific structure of the path space D, we have∨
k≥1

Fτ′k
=F∞. (12.1)

3Since σ(x) is non-degenerate for all x ∈ D , the space C (R+,Rr ) equipped with the Wiener
measure Wr is only used to construct the Brownian path Bt after time supk τk (w) and could be
omitted for our purpose since we only need to construct the process B up to time supk τk (w).
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To check this, it suffices to observe that, for all t ≥ 0 and all measurable A ⊂
D ∪ {∂},

{wt ∈ A} = {t < τ∂, wt ∈ A∩D}∪ {τ∂ ≤ t , ∂ ∈ A}

=
( ⋃

k≥1
{t < τ′k , wt ∈ A∩D}

)
∪

( ⋂
k≥1

{τ′k ≤ t ,∂ ∈ A}

)
, (12.2)

hence {wt ∈ A} ∈ ∨
k≥1 Fτ′k

, and, proceeding similarly, the same property holds
for events of the form {wt1 ∈ A1, . . . , wtn ∈ An}.

We recall (see [53, Section 5.4]) that (Pk
x )x∈Rd forms a strong Markov family

on the canonical space C . Our goal is now to prove that the family of probability
measures (Px )x∈D∪{∂}, where P∂ is defined as the Dirac measure on the constant
path equal to ∂, forms a Markov kernel of probability measures, for which the
strong Markov property applies at well-chosen stopping times.

We first need to prove that (Px )x∈D defines a kernel of probability measures,
i.e. that x 7→Px (Γ) is measurable for all events Γ of F∞. We prove it for an event
of the form {wt ∈ A}, the extension to events of the form {wt1 ∈ A1, . . . , wtn ∈ An},
and hence to all events of F∞, being easy. This follows from (12.2):

Px (wt ∈ A) = lim
k→+∞

Px (t < τ′k , wt ∈ A∩D)+1∂∈A lim
k→+∞

Px (τ′k ≤ t )

= lim
k→+∞

Pk+1
x (t < τ′k , wt ∈ A∩D)+1∂∈A lim

k→+∞
Pk+1

x (τ′k ≤ t ).

Since all the probabilities in the right-hand side are measurable functions of x,
so is x 7→Px (wt ∈ A).

Now, let us prove that (X t , t ≥ 0) is Markov. It is well-known that this is im-
plied by the following property: for all n ≥ 1 and 0 ≤ t1 ≤ . . . ≤ tn+1 and A1, . . . , An+1

measurable subsets of D ∪ {∂},

Px (wt1 ∈ A1, . . . , wtn+1 ∈ An+1) = Ex

[
1wt1∈A1,...,wtn ∈AnPwtn

(wtn+1−tn ∈ An+1)
]

.

We prove this property only for n = 1. It is easy to extend the proof to all values
of n ≥ 1. We have

Px (wt1 ∈ A1, wt2 ∈ A2) =Px (wt1 ∈ A1, wt2 ∈ A2,τ∂ > t2)

+Px (wt1 ∈ A1, t1 < τ∂ ≤ t2)1∂∈A2 +Px (τ∂ ≤ t1)1∂∈A1∩A2 .
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Now, using that (Pk
x )x∈Rd is a Markov family for all k ≥ 1,

Px (wt1 ∈ A1, wt2 ∈ A2,τ∂ > t2)

= lim
k→∞

Px (wt1 ∈ A1, wt2 ∈ A2,τk > t2)

= lim
k→∞

Pk
x (wt1 ∈ A1, wt2 ∈ A2,τk > t2)

= lim
k→∞

Ek
x

[
1wt1∈A1,t1<τkP

k
wt1

(wt2−t1 ∈ A2,τk > t2 − t1)
]

= lim
k→∞

Ex

[
1wt1∈A1,t1<τkPwt1

(wt2−t1 ∈ A2,τk > t2 − t1)
]

= Ex

[
1wt1∈A1,t1<τ∂Pwt1

(wt2−t1 ∈ A2,τ∂ > t2 − t1)
]

and similarly

Px (wt1 ∈ A1, t1 < τ∂ ≤ t2)1∂∈A2 = Ex

[
1wt1∈A1,t1<τ∂Pwt1

(τ∂ ≤ t2 − t1)
]
1∂∈A2

= Ex

[
1wt1∈A1,t1<τ∂Pwt1

(τ∂ ≤ t2 − t1, wt2−t1 ∈ A2)
]

.

Since

Px (τ∂ ≤ t1)1∂∈A1∩A2 = Ex

[
1wt1∈A1,τ∂≤t1Pwt1

(wt2−t1 ∈ A2)
]

,

we have proved that Px (wt1 ∈ A1, wt2 ∈ A2) = Ex

[
1wt1∈A1Pwt1

(wt2−t1 ∈ A2)
]

. This

ends the proof of the Markov property.
To conclude this subsection, let us prove that the strong Markov property

holds for all stopping times τF where F ⊂ D is closed in D . Note that τF is indeed
a stopping time for the filtration Ft since τF = supk τF∧τ′k = supk τ(F∪Dc )∪int(Kk )c ,

where the complement is understood inRd , (F ∪Dc )∪int(Kk )c is a closed subset
of Rd and all w ∈ D is continuous at time τ(F∪Dc )∪int(Kk )c . Let x ∈ D , t1, t2, s ≥ 0
and A,B ⊂ D be measurable sets. We proceed as above: first, observe that

{wt1 ∈ A, t1 < τF ≤ t2, wτF+s ∈ B}

= ⋃
`≥1

{wt1 ∈ A, t1 < τF ≤ t2, wτF+s ∈ B , wr ∈ K` ∀r ∈ [0,τF + s]}

= ⋃
`≥1

{wt1 ∈ A, t1 < τF ∧τ′` ≤ t2, wτF∧τ′`+s ∈ B , τ′` > τF + s}.

Since τF ∧τ′
`

is a Gt -stopping time on C (R+,Rd ) and using the strong Markov
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property under P`, we deduce that

Px (wt1 ∈ A, t1 < τF ≤ t2, wτF+s ∈ B)

= lim
`→+∞

P`x (wt1 ∈ A, t1 < τF ∧τ′` ≤ t2, wτF∧τ′`+s ∈ B , τ′` > τF + s)

= lim
`→+∞

E`x

[
1wt1∈A, t1<τF∧τ′`≤t2

P`wτF ∧τ′
`

(ws ∈ B , s < τ′`)

]
= lim
`→+∞

E`x

[
1wt1∈A, t1<τF≤τ′`∧t2

P`wτF
(ws ∈ B , s < τ′`)

]
= Ex

[
1wt1∈A, t1<τF≤τ∂∧t2PwτF

(ws ∈ B , s < τ∂)
]

.

Similarly,

Px (wt1 ∈ A, t1 < τF ≤ t2, wτF+s = ∂)

= lim
`→+∞

P`x (wt1 ∈ A, t1 < τF ≤ t2 ∧τ′`, τ′` ≤ τF + s)

= Ex

[
1wt1∈A, t1<τF≤t2∧τ∂PwτF

(ws = ∂)
]

and thus

Px (wt1 ∈ A, t1 < τF ≤ t2, wτF+s ∈ B) = Ex

[
1wt1∈A, t1<τF≤t2∧τ∂PwτF

(ws ∈ B)
]

for all A,B ⊂ D ∪ {∂} measurable. The previous computation extends without
difficulty to prove

Px
(
wt1 ∈ A1, . . . , wtn ∈ An , tn < τF ≤ tn+1, wτF+s1 ∈ B1, . . . , wτF+sm ∈ Bm

)
= Ex

[
1wt1∈A1,...,wtn ∈An , tn<τF≤tn+1PwτF

(ws1 ∈ B1, . . . , wsm ∈ Bm)
]

(12.3)

for all n,m ≥ 1, 0 ≤ t1 ≤ . . . ≤ tn+1, 0 ≤ s1 ≤ . . . ≤ sm and A1, . . . , An ,B1, . . . ,Bm ⊂
D ∪ {∂} measurable. This implies the strong Markov property at time τF , in the
sense that, for all k ≥ 1, all x ∈ E and all Γ ∈F∞,

Px
(
wτF ∈ Γ |HτF

)=PwτF
(Γ), Px -almost surely,

where wτF = (wτF+s , s ≥ 0) and

HτF =σ
({

wt1 ∈ A1, . . . , wtn ∈ An , tn < τF ≤ tn+1
}

,

0 ≤ t1 ≤ . . . ≤ tn+1, A1, . . . , An ∈ D measurable
)
.

This form of strong Markov property at time τF is enough for our purpose, since
it entails (F0) for L = Kk for all k ≥ 1. It will be also needed in the next section.
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12.2 Harnack inequalities

Our goal here is to check Conditions (F1) and (F3) for the diffusion process con-
structed above. We will make use of general Harnack inequalities of Krylov and
Safonov [59].

Proposition 12.1. There exist a probability measure ν on D and a constant tν > 0
such that, for all k ≥ 1, there exists a constant bk > 0 such that

Px (X tν ∈ ·) ≥ bkν(·), ∀x ∈ Kk . (12.4)

Moreover, for all k ≥ 1 such that Kk is non-empty,

inf
t≥0

infx∈Kk Px (t < τ∂)

supx∈Kk
Px (t < τ∂)

> 0. (12.5)

Proof. Consider a bounded measurable function f : D → R with ‖ f ‖∞ ≤ 1 and
define the application u : (t , x) ∈ R+ ×E 7→ Ex [1t<τ∂ f (X t )]. It is proved in [18]
using [59] that, for all k ≥ 1, there exist two constants Nk > 0 and δk > 0, which
do not depend on f (provided ‖ f ‖∞ ≤ 1), such that

u(δk +δ2
k , x) ≤ Nk u(δk +2δ2

k , y), for all x, y ∈ Kk such that |x − y | ≤ δk . (12.6)

Note that the proof given in [18] makes use of the following strong Markov prop-
erty: for all open ball B such that B ⊂ Kk for some k ≥ 1, all x ∈ B , t ≥ 0 and all
measurable f : D ∪ {∂} →R+,

Ex
[

f (X t )1τD\B≤t
]= Ex

[
1τD\B≤tEXτD\B

[
f (X t−u)

]
u=τD\B

]
.

This property follows from (12.3).

Step 1 : Proof of (12.4)
Fix x1 ∈ D and k1 ≥ 1 such that x1 ∈ int(Kk1 ). Let ν denote the conditional law

Px1 (Xδk1+δ2
k1
∈ · | δk1 +δ2

k1
< τ∂). Then, for all measurable A ⊂ D ∪ {∂}, Harnack’s

inequality (12.6) with f = 1A entails that, for all x ∈ D such that |x − x1| < δk1 ∧
d(x1,D \ Kk1 ),

Px (Xδk1+2δ2
k1
∈ A) ≥

Px1 (δk1 +δ2
k1

< τ∂)

Nk1

ν(A).

Since the diffusion is locally elliptic and D is connected, for all k ≥ 1, there exists
a constant dk > 0 such that

inf
x∈Kk

Px (X1 ∈ B(x1,δk1 ∧d(x1,D \ Kk1 )) ≥ dk .
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This and Markov’s property entail that, for all x ∈ Kk ,

Px (X1+δk1+2δ2
k1
∈ ·) ≥ dk

Px1 (δk1 +δ2
k1

< τ∂)

Nk1

ν.

This implies the first part of Proposition 12.1.

Step 2 : Proof of (12.5)
Fix k ≥ 1 such that Kk is non-empty and consider ` > k such that Kk is in-

cluded in one connected component of int(K`). For all t ≥ δ`+2δ2
`

, the inequal-
ity (12.6) applied to f (x) = Px (t −δ`−2δ2

`
< τ∂) and the Markov property entail

that

Px (t −δ2
` < τ∂) ≤ N`Py (t < τ∂), for all x, y ∈ K` such that |x − y | ≤ δ`.

Since s 7→Px (s < τ∂) is non-increasing, we deduce that

Px (t < τ∂) ≤ N`Py (t < τ∂), for all x, y ∈ K` such that |x − y | ≤ δ`.

Since Kk has a finite diameter and is included in a connected component of
K`, we deduce that there exists N ′

k equal to some power of N` such that, for all
t ≥ δ`+2δ2

`
,

Px (t < τ∂) ≤ N ′
kPy (t < τ∂), for all x, y ∈ Kk .

Now, for t ≤ δ`+2δ2
`

, we simply use the fact that x 7→ Px (δ`+2δ2
`
< τ∂) is uni-

formly bounded from below on Kk by a constant 1/N ′′
k > 0. In particular,

Px (t < τ∂) ≤ 1 ≤ N ′′
kPy (δ`+2δ2

` < τ∂) ≤ N ′′
kPy (t < τ∂), for all x, y ∈ Kk .

This concludes the proof of Proposition 12.1.

12.3 Proof of Theorem 4.1

Our aim is to prove that Condition (F) holds true with L = Kk for some k ≥ 1. We
have already proved (F0), (F1) and (F3) with L = Kk for any k ≥ 1. Hence we only
have to check (F2). Fix ρ1 ∈ (λ0,λ1), ρ2 ∈ (λ0,ρ1) and p ∈ (1,λ1/ρ1) and define

ψ1(x) =ϕ(x)1/p , ∀x ∈ D.

Fix ρ′
1 ∈ (ρ1,λ1/p) and

t2 ≥ 2s1(C +λ1)

λ1 −pρ′
1

∨ log2

ρ′
1 −ρ1

,

104



where the constant C comes from (4.5). Set L = Kk0 with k0 large enough so that
ν(Kk0 ) > 0 and, using (4.6),

Px (s1 < τKk0
∧τ∂) ≤ e−(ρ′

1+C /p)t2

for all x ∈ D0.
From the definition of λ0 and applying the same argument as in Step 2 of

the proof of Proposition 12.1 with f (x) = Px (X t−δ`−2δ2
`
∈ L) with ` large enough

to have Kk0 included in one connected component of K`, we deduce that

liminf
t→+∞ eρ2t inf

x∈L
Px (X t ∈ L) =+∞,

and hence the last line of (F2) is proved with γ2 = e−ρ2 .
Let us now check that the first line of Assumption (F2) holds true for all x ∈

D0 and then for all x ∈ D \ D0. For all x ∈ D0, we have ψ1(x) ≤ supx∈D0

var phi 1/p (x) <+∞, and hence, for all t ∈ [s1, t2], using Hölder’s inequality and
the definition of k0,

Ex
(
ψ1(X t )1t<τL∧τ∂

)≤ Ex
(
1t<τ∂ϕ(X t )

)1/p
Px (t < τL ∧τ∂)

p−1
p

≤ϕ(x)1/p eC t2/pPx (s1 < τL ∧τ∂)
p−1

p (12.7)

≤ e−ρ
′
1t2 ≤ e−ρ1t2ψ1(x).

To prove (12.7), we used the fact that Lϕ ≤ C ≤ Cϕ and Itô’s formula to obtain
Ptϕ ≤ eC tϕ. Since this argument is used repeatedly in the sequel, we give it in
details for sake of completeness. It follows from Itô’s formula that, for all k ≥ 1,
Px -almost surely,

e
−C

(
t∧τK c

k

)
ϕ

(
X t∧τK c

k

)
=ϕ(x)+

∫ t

0
1s≤τK c

k
e−C s (

Lϕ(Xs)−Cϕ(Xs)
)

d s

+
∫ t

0
1s≤τK c

k
e−C s∇ϕ(Xs)∗σ(Xs)dBs .

Since ∇ϕ(x) and σ(x) are uniformly bounded on Kk , the last term has zero ex-
pectation, and thus

Ex

[
e
−C

(
t∧τK c

k

)
ϕ

(
X t∧τK c

k

)]
≤ϕ(x).

Letting k →+∞, we deduce form Fatou’s lemma that

Ex
[
e−C t

1t<τ∂ϕ(X t )
]≤ϕ(x) (12.8)
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as claimed.
This proves the second line of (F2) for all x ∈ D0 and γ1 = e−ρ1 .
Now, for all x ∈ D \ D0, since D0 is closed in D , it follows from the strong

Markov property (12.3) at time τD0 that

Ex
(
ψ1(X t2 )1t2<τL∧τ∂

)= Ex

(
1t2−s1<τL∧τ∂∧τD0

EX t2−s1

(
ψ1(Xs1 )1s1<τL∧τ∂

))
+Ex

(
1τD0≤t2−s1EXτD0

(
ψ1(X t2−u)1t2−u<τ∂∧τL

)
u=τD0

)
. (12.9)

Using Hölder’s inequality and (12.8), we deduce that, for all y ∈ D ,

Ey
(
ψ1(Xs1 )1s1<τL∧τ∂

)≤ Ey
(
ϕ(Xs1 )1s1<τ∂

)1/p ≤ e
s1C

p ϕ(y)1/p = e
s1C

p ψ1(y).

Hence, the first term in the right-hand side of (12.9) satisfies

Ex

(
1t2−s1<τL∧τ∂∧τD0

EX t2−s1

(
ψ1(Xs1 )1s1<τL∧τ∂

))≤ e
s1C

p Ex

(
1t2−s1<τL∧τ∂∧τD0

ψ1(X t2−s1 )
)

.

As a consequence, using again Hölder’s inequality and applying as above Itô’s
formula using that Lϕ(x) ≤−λ1ϕ(x) for all x ∉ D0, one has

Ex

(
1t2−s1<τL∧τ∂∧τD0

EX t2−s1

(
ψ1(Xs1 )1s1<τL∧τ∂

))≤ e−λ1
t2−s1

p e
s1C

p ϕ(x)1/p

≤ e−t2
ρ′1+λ1/p

2 ψ1(x),

where we used in the last inequality that t2 ≥ 2s1(C+λ1)
λ1−pρ′

1
. Moreover, using (12.7),

we obtain that the second term in the right-hand side of (12.9) satisfies

Ex

(
1τD0≤t2−s1EXτD0

(
ψ1(X t2−u)1t2−u<τ∂∧τL

)
u=τD0

)
≤ e−ρ

′
1t2Px (τD0 ≤ t2 − s1) ≤ e−ρ

′
1t2ψ1(x).

We finally deduce from (12.9) and from the definition of L = Kk0 that

Ex
(
ψ1(X t2 )1t2<τL∧τ∂

)≤ 2e−ρ
′
1t2ψ1(x) ≤ e−ρ1t2ψ1(x),

where we used that t2 ≥ log2/(ρ′
1−ρ1). This concludes the proof that the second

line of (F2) holds true.
Since ϕ is locally bounded, supLϕ < ∞, and hence, using again (12.8), we

deduce that, for all t ≥ 0,

sup
x∈L

Ex (ψ1(X t )1t<τ∂) ≤ sup
x∈L

Ex (ϕ(X t )1t<τ∂) ≤ eC t sup
x∈L

ϕ(x) <∞,

which implies the third line of Assumption (F2).
In addition, because of the local uniform ellipticity of the diffusion X , for all

n0 ≥ 1, ψ2 := ∑n0

k=0 Pk1L is uniformly bounded away from zero on all compact
subsets of D . This and Theorem 3.5 concludes the proof of Theorem 4.1.
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12.4 Proof of Corollary 4.2

Using Theorem 3.5, there exists λ′
0 such that, for all x ∈ D ,

η(x) = lim
t→+∞eλ

′
0tPx (t < τ∂).

We choose in the definition of λ0 a ball B such that νQSD (B) > 0 (recall that λ0 is
independent of the choice of B). Given x ∈ D such that η(x) > 0,

lim
t→+∞eλ

′
0tPx (X t ∈ B) = η(x)νQSD (B) ∈ (0,+∞).

Hence, λ0 = λ′
0 and the infimum in the definition of λ0 is a minimum. The rest

of the properties stated in Corollary 4.2 are direct consequences of Theorem 3.5.
Let us now prove that η is C 2. First, it follows from [79, Theorem 7.2.4] that

eλ0tPx (t < τ∂) is continuous for all t ≥ 0 (see [18] for a detailed proof). Hence
the uniform convergence in Theorem 2.5 implies that η is continuous on D .

Now, let B be any non-empty open ball such that B ⊂ D . We consider the
following initial-boundary value problem (in the terminology of [39]) associated
to the differential operator L defined in (4.3)

∂t u(t , x)−L u(t , x)−λ0u(t , x) = 0 for all (t , x) ∈ (0,T ]×B ,

u(0, x) = η(x) for all x ∈ B ,

u(t , x) = η(x) for all (t , x) ∈ (0,T ]×∂B.

Since the coefficients of L are Hölder and uniformly elliptic in B and since η is
continuous, we can apply Corollary 1 of Chapter 3 of [39] to obtain the existence
and uniqueness of a solution u to the above problem, continuous on [0,T ]×B
and C 1,2((0,T ]×B). Now, we can apply Itô’s formula to eλ0su(T − s, Xs): for all
s ≤ τB c ∧T and all x ∈ B , Px -almost surely,

eλ0su(T − s, Xs) = u(T, x)+
∫ s

0
eλ0r

(
−∂u

∂t
+L u +λ0u

)
(T − r, Xr )dr

+
∫ s

0
eλ0r∇u(T − r, Xr )σ(Xr )dBr .

Since u is bounded and continuous on [0,T ]×B and ∇u(t , x) is locally bounded
in (0,T ]×B , it follows from standard localization arguments that

u(T, x) = Ex

[
eλ0(T∧τBc )u(T − (T ∧τB c ), XT∧τBc )

]
= Ex

[
eλ0(T∧τBc )η(XT∧τBc )

]
.
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Now, the Markov property and the fact that Ptη= e−λ0tη entail that eλ0tη(X t ) is
a martingale on (D, (Ft )t≥0,Px ), hence

η(x) = Ex

[
eλ0(T∧τBc )η(XT∧τBc )

]
= u(T, x).

Therefore, η ∈C 2(D) and L η(x) =−λ0η(x) for all x ∈ D .
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