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Abstract

This article studies the quasi-stationary behaviour of absorbed one-
dimensional diffusions. We obtain a necessary and sufficient condition
for the exponential convergence to a unique quasi-stationary distribu-
tion in total variation, uniformly with respect to the initial distribution.
Our approach is based on probabilistic and coupling methods, contrary
to the classical approach based on spectral theory results. We provide
several conditions ensuring this criterion, which apply to most practi-
cal cases. As a by-product, we prove that most strict local martingale
diffusions are strict in a stronger sense: their expectation at any given
positive time is actually uniformly bounded with respect to the ini-
tial position. We provide several examples and extensions, including
the sticky Brownian motion and some one-dimensional processes with
jumps. We also give exponential ergodicity results on the Q-process.
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1 Introduction

This article studies the quasi-stationary behaviour of general one-dimensio-
nal diffusion processes in an interval E of R, absorbed at its finite bound-
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aries. When the process is absorbed, it is sent to some cemetary point ∂.
This covers the case of solutions to one-dimensional stochastic differential
equations (SDE), but also of diffusions with singular speed measures, as the
sticky Brownian motion.

We recall that a quasi-stationary distribution for a continuous-time Mar-
kov process (Xt, t ≥ 0) on the state space E ∪ {∂}, is a probability measure
α on E such that

Pα(Xt ∈ · | t < τ∂) = α(·), ∀t ≥ 0,

where Pα denotes the distribution of the process X given that X0 has dis-
tribution α, and

τ∂ := inf{t ≥ 0 : Xt = ∂}.

We refer to [14, 20, 18] for general introductions to the topic.
Our goal is to give conditions ensuring the existence of a quasi-stationary

distribution α on E such that, for all probability measures µ on E and all
t ≥ 0,

‖Pµ(Xt ∈ · | t < τ∂)− α‖TV ≤ Ce
−γt, (1.1)

where ‖ ·‖TV is the total variation norm and C and γ are positive constants.
In particular, α is the unique quasi-stationary distribution. We also study
the long time behavior of absorption probabilities and the exponential er-
godicity in total variation of the Q-process associated to X, defined as the
diffusion X conditioned never to hit ∂.

The usual tools to prove convergence as in (1.1) involve coupling ar-
guments (Doeblin’s condition, Dobrushin coupling constant, see e.g. [15]).
Typically, contraction in total variation norm for the non-conditioned semi-
group can be obtained using standard coupling techniques for one-dimensional
diffusions on R such that −∞ and +∞ are entrance boundaries. However,
a diffusion conditioned not to hit 0 before a given time t > 0 is a time-
inhomogeneous diffusion process with a singular, non-explicit drift for which
these methods fail. For instance, the solution (Xs)s≥0 to the SDE

dXs = b(Xs)ds+ σ(Xs)dBs

with smooth coefficients and conditioned not to hit 0 up to a time t > 0 has

the law of the solution (X
(t)
s )s∈[0,t] to the SDE

dX(t)
s = b(X(t)

s )ds+ σ(X(t)
s )dBs + σ(X(t)

s ) [∇ lnP·(t− s < τ∂)] (X(t)
s )ds.
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Since Px(t − s < τ∂) vanishes when x converges to 0, the drift term in the
above SDE is singular and cannot in general be quantified.

Hence, convergence of conditioned diffusion processes have been obtained
up to now using (sometimes involved) spectral theoretic arguments, which
most often require regularity of the coefficients (see for instance [2, 12, 9, 6]).
Up to our knowledge, only one reference studies general diffusions [16] but
none of the above references provide uniform convergence with respect to
the initial distribution. This is of great importance in applications, since in
general the initial distribution might greatly influence the time needed to
observe stabilisation of the conditional distribution of the process. This diffi-
culty already arises for processes without conditioning and is even more cru-
cial for conditioned processes since the practical interest of a quasi-stationary
distribution requires to compare the typical time of extinction with the typi-
cal time of stabilization of conditional distributions (see the discussion in [14,
Ex. 2]).

More generally, the approaches of the above references all rely on spectral
results specific to the case of one-dimensional diffusions (e.g. Sturm-Liouville
theory in [12, 9]) and cannot extend to other classes of processes. On the
contrary, we rely in this work on recent probabilistic criteria for convergence
of conditioned processes obtained in [4, Theorem 2.1], which are more flexible
and can easily extend for example to one-dimensional processes with jumps.

Our main result is a necessary and sufficient criterion for the uniform
exponential convergence of conditional distributions in total variation. In
the case of a general diffusion on [0,+∞) absorbed at ∂ = 0, this condition
is given by

(B) The diffusion X comes down from infinity (i.e. +∞ is an entrance
boundary) and there exists t, A > 0 such that

Px(τ∂ > t) ≤ As(x), ∀x > 0,

where s is the scale function of the diffusion X.

In the sequel, without loss of generality, we will focus on the case of a
diffusion on natural scale and modify (B) accordingly. We will also focus on
the case E = (0,+∞), but our results easily extend to any other interval.

We also provide an explicit formula relating the speed measure of a
diffusion on natural scale and its quasi-stationary distribution. As a by-
product, we show that, given a probability measure α on (0,∞) satisfying
suitable conditions and a positive constant λ0, there exists a unique diffusion
on natural scale, with explicit speed measure, admitting α as unique quasi-
stationary distribution with associated absorbing rate λ0. We also use this
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explicit formula to compute the quasi-stationary distribution of the sticky
Brownian motion on (−1, 1), absorbed at {−1, 1}.

An important part of our study is devoted to check that Condition (B)
is satisfied in very general situations. First, we show how it can be easily
checked with elementary probabilistic tools, in a large range of practical
situations. Second, more involved arguments actually allow to prove (B)
for all absorbed diffusion processes coming down from infinity, provided the
speed measure satisfies a very weak condition on its oscillation near 0.

We also prove that Condition (B) is equivalent to the fact that some
local martingale (Zt, t ≥ 0) on [0,∞) constructed from X is a strict local
martingale in the following strong sense: there exists t > 0 such that

sup
x>0

Ex(Zt) <∞. (1.2)

We prove that the property (1.2) is true for all t > 0 and for nearly all strict
local martingale diffusions on [0,∞) (with controlled oscillation of the speed
measure near +∞). This new result has its own interest in the theory of
strict local martingales [19]. For instance, it is well-known that the solution
on (0,+∞) to the SDE

dZt = Zαt dBt

is a strict local martingale if and only if α > 1, which means that Ex(Zt) < x
for all x, t > 0. Our result implies that, for all α > 1 and all t > 0, (1.2)
holds true, and hence that Ex(Zt) < x for all x > 0 is actually equivalent to
supx>0 Ex(Zt) <∞. This is also true for example for the SDE

dZt = Zt ln(Zt)
βdBt,

which is a strict local martingale iff β > 1/2.
The paper is organized as follows. In Section 2, we precisely define the

absorbed diffusion processes and recall their construction as time-changed
Brownian motions. Section 3 contains the statements of all our main results:
the exponential convergence (1.1), the asymptotic behavior of absorption
probabilities and the exponential ergodicity of the Q-process are stated in
Subsection 3.1; Subsections 3.2 and 3.3 give explicit sufficient conditions to
check (B) and the link with strict local martingales; in Subsection 3.4, we
provide a sufficient condition on a probability measure α to be the quasi-
stationary distribution of a one-dimensional diffusion on natural scale; fi-
nally, Subsection 3.5 is devoted to the precise comparison of our results
with the existing literature and to the study of examples, including a case
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of one-dimensional processes with jumps. Section 4 contains several results
on strict local martingales, including the criterion ensuring (1.2). Finally,
we give in Section 5 the proofs of the main results of Section 3.

2 Absorbed diffusion processes

Our goal is to construct general diffusion processes (Xt, t ≥ 0) on [0,+∞),
absorbed at ∂ = 0. The typical situation corresponds to stochastic pop-
ulation dynamics of continuous densities with possible extinction. These
processes are standard objects, but for sake of completeness, we recall their
construction from a standard Brownian motion.

The distribution of X given X0 = x ∈ [0,∞) will be denoted Px, and
the semigroup of the process is given by Ptf(x) = Ex[f(Xt)] for all bounded
measurable f : [0,∞)→ R and all x ≥ 0.

A stochastic process (Xt, t ≥ 0) on [0,+∞) is called a diffusion if it has
a.s. continuous paths in [0,∞), satisfies the strong Markov property and
is regular. By regular, we mean that for all x ∈ (0,∞) and y ∈ [0,∞),
Px(Ty < ∞) > 0, where Ty is the first hitting time of y by the process
X. Given such a process, there exists a continuous and strictly increasing
function s on [0,∞), called the scale function, such that (s(Xt∧T0), t ≥ 0)
is a local martingale [5]. The stochastic process (s(Xt), t ≥ 0) is itself a
diffusion process with identity scale function. Since we shall assume that 0
is regular or exit and that T0 <∞ a.s., we necessarily have s(0) > −∞ and
s(∞) = ∞, and we can assume s(0) = 0. Hence, replacing (Xt, t ≥ 0) by
(s(Xt), t ≥ 0), we can assume without loss of generality that s(x) = x. Such
a process is said to be on natural scale and satisfies for all 0 < a < b <∞,

Px(Ta < Tb) =
b− x
b− a

.

To such a process X, one can associate a unique locally finite positive mea-
sure m(dx) on (0,∞), called the speed measure of X, which gives positive
mass to any open subset of (0,+∞) and such that Xt = Bσt for all t ≥ 0
for some standard Brownian motion B, where

σt = inf {s > 0 : As > t} , with As =

∫ ∞
0

Lxs m(dx). (2.1)

and Lx is the local time of B at level x. Conversely, any such time change
of a Brownian motion defines a regular diffusion on [0,∞) [8, Thm. 23.9].
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We will use in the sequel the assumption that∫ ∞
0

ym(dy) <∞. (2.2)

Since the measure m is locally finite on (0,∞), this assumption reduces
to local integrability of ym(dy) near 0 and +∞. These two conditions are
respectively equivalent to Px(τ∂ <∞) = 1 for all x ∈ (0,∞) [8, Thm. 23.12],
where τ∂ := T0 is the first hitting time of ∂ = 0 by the process X, and to
the existence of t > 0 and y > 0 such that

inf
x>y

Px(Ty < t) > 0.

This means that∞ is an entrance boundary for X [8, Thm. 23.12], or equiv-
alently that the process X comes down from infinity [2].

We recall that 0 is absorbing for the process X iff
∫ 1
0 m(dx) = ∞ [8,

Thm. 23.12], which is not necessarily the case under the assumption that∫ 1
0 ym(dy) <∞. Therefore, we modify the definition of X so that ∂ becomes

an absorbing point as follows:

Xt =

{
Bσt if 0 ≤ t < τ∂

∂ if t ≥ τ∂ .
(2.3)

Note that this could be done equivalently by replacing m by m+∞δ0.
With this definition, X is a local martingale. Note that As is strictly

increasing since m gives positive mass to any open interval, and hence σt is
continuous and

στ∂ = TB0 , or, equivalently, τ∂ = ATB0
, (2.4)

where TBx is the first hitting time of x ∈ R by the process (Bt, t ≥ 0). In
particular, Xt = Bσt∧TB0

, ∀t ≥ 0.
Let us recall that, when m is absolutely continuous with respect to

Lebesgue’s measure on [0,∞) with density 1/σ2(x), the diffusion X is the
unique (weak) solution of the stochastic differential equation

dXt = σ(Xt)dWt,

where (Wt, t ≥ 0) is a standard Brownian motion.
Further properties of these processes will be given Section 4.

6



3 Quasi-stationary distribution for one dimensional
diffusions

The key assumption for the results of this section is the following one.

(B) The measure m satisfies ∫ ∞
1

ym(dy) <∞

and there exist two constants t1, A > 0 such that

Px(τ∂ > t1) ≤ Ax, ∀x > 0. (3.1)

Let us recall that the assumption
∫∞
0 ym(dy) < ∞ means that the dif-

fusion process X comes down from infinity and hit 0 a.s. after a finite time.

3.1 Exponential convergence to quasi-stationary distribution

In the following theorem, we establish that Assumption (B) is equivalent to
the exponential convergence to a unique quasi-stationary distribution. This
result is proved in Section 5 and relies on [4, Thm. 2.1].

Theorem 3.1. Assume that X is a one-dimensional diffusion on natu-
ral scale on [0,∞) with speed measure m(dx) such that τ∂ < ∞ a.s., i.e.∫ 1
0 ym(dy) <∞. Then we have equivalence between

(i) Assumption (B).

(ii) There exist a probability measure α on (0,∞) and two constants C, γ > 0
such that, for all initial distribution µ on (0,∞),

‖Pµ(Xt ∈ · | t < τ∂)− α(·)‖TV ≤ Ce
−γt, ∀t ≥ 0. (3.2)

In this case, α is the unique quasi-stationary distribution for the process
and there exists λ0 > 0 such that Pα(t < τ∂) = e−λ0t. Moreover, α is
absolutely continuous with respect to m and

dα

dm
(x) = 2λ0

∫ ∞
0

(x ∧ y)α(dy). (3.3)

In addition, ∫ ∞
0

y α(dy) <∞.
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Remark 1. We deduce from (3.3) that he density of α with respect to m
is positive, bounded, (strictly) increasing on (0,+∞), and differentiable at
each point of (0,+∞).

The next result is a consequence of the equivalence of Theorem 3.1 and
also relies on the results established in [4]

Proposition 3.2. Assume that X is a one-dimensional diffusion on natural
scale with speed measure m(dx) such that τ∂ <∞ a.s. and such that (B) is
satisfied. We define η on [0,+∞) as the normalized right hand side of (3.3):

η(x) =

∫ ∞
0

(x ∧ y)α(dy)∫ ∞
0

∫ ∞
0

(y ∧ z)α(dy)α(dz)

. (3.4)

Then

η(x) = lim
t→∞

Px(t < τ∂)

Pα(t < τ∂)
= lim

t→+∞
eλ0tPx(t < τ∂), (3.5)

where the convergence holds for the uniform norm on [0,+∞). Moreover,
the function η is non-decreasing, bounded, α(η) = 1, η(x) ≤ Cx for all x ≥ 0
for some constant C > 0, and η belongs to the domain of the infinitesimal
generator L of X on the Banach space of bounded measurable functions on
[0,∞) equipped with the L∞ norm and

Lη = −λ0η. (3.6)

Note that it follows from (3.3) and (3.4) that dα is proportional to η dm.
Let us recall another important consequence, established in [4], of the

equivalence of Theorem 3.1. It deals with the so-called Q-processes, defined
as the diffusion process X conditioned never to hit 0.

Theorem 3.3. Assume that X is a one-dimensional diffusion on natural
scale on [0,∞) stopped at 0 with speed measure m(dx) such that

∫ 1
0 ym(dy) <

∞ and satisfying Assumption (B). Then we have the following properties.

(i) Existence of the Q-process. There exists a family (Qx)x>0 of probability
measures on Ω defined by

lim
t→+∞

Px(A | t < τ∂) = Qx(A)

for all Fs-measurable set A, and the process (Ω, (Ft)t≥0, (Xt)t≥0, (Qx)x>0)
is a diffusion process on (0,∞) (which does not hit 0).
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(ii) Transition kernel. The transition kernel of X under (Qx)x>0 is given by

p̃(x; t, dy) = eλ0t
η(y)

η(x)
p(x; t, dy).

In other words, for all bounded measurable ϕ on (0,∞) and all t ≥ 0,

P̃tϕ(x) =
eλ0t

η(x)
Pt(ηϕ)(x) (3.7)

where (P̃t)t≥0 is the semi-group of X under Q.

(iii) Exponential ergodicity. The probability measure β on (0,∞) defined by

β(dx) = η(x)α(dx).

is the unique invariant distribution of X under Q. Moreover, for any
initial distributions µ1, µ2 on (0,∞),

‖Qµ1(Xt ∈ ·)−Qµ2(Xt ∈ ·)‖TV ≤ (1− c1c2)bt/t0c‖µ1 − µ2‖TV ,

where Qµ =
∫
(0,∞)Qx µ(dx).

3.2 Simple criteria ensuring Condition (B)

We start with some basic properties related to Condition (B). The first one
shows that the converse inequality in (3.1) is always true. The second one
is an (apparently weaker) equivalent condition.

Proposition 3.4. Let X be a diffusion process on natural scale on (0,+∞).

(i) For all t > 0, there exists a constant a > 0 such that

Px(t < τ∂) ≥ ax, ∀x ∈ (0, 1).

(ii) Condition (B) is equivalent to

(B’) X comes down from infinity and there exists x0, t1, A
′ > 0 such

that
Px(t1 < τ∂ ∧ Tx0) ≤ A′x, ∀x ∈ (0, x0).

Proof. For Point (i), we observe that, by the strong Markov property at
time T1,

Px(t < τ∂) ≥ Ex[1T1<τ∂P1(t < τ∂)] = Px(T1 < τ∂)P1(t < τ∂) = xP1(t < τ∂).

Point (ii) is an easy consequence of the fact that Px(τ∂ > Tx0) = x/x0,
since X is on natural scale.
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The next result gives a simple condition implying (B). Its proof is partic-
ularly simple. We give in the next section a slightly more general criterion
which makes use of much more involved results on the density of diffusion
processes (related to spectral theory).

Theorem 3.5. With the previous notation, assume that m satisfies (2.2)
and for all x ∈ (0, 1),

I(x) :=

∫
(0,x)

ym(dy) ≤ Cxρ (3.8)

for some constants C > 0 and ρ > 0. Then, for all t > 0, there exists
At <∞ such that

Px(t < τ∂) ≤ At x, ∀x > 0.

Remark 2. In particular, (3.8) is satisfied if m is absolutely continuous w.r.t.
Lebesgue’s measure Λ on (0,∞) and if

dm

dΛ
(x) ≤ C

xα

in the neighborhood of 0, where α < 2. This corresponds to a diffusion
process solution to the SDE

dXt = σ(Xt)dBt

with σ(x) ≥ cxα/2 in the neighborhood of 0.
Let us also notice that the previous result ensures that Assumption (B) is

satisfied as soon as 0 is a regular point for the diffusion, i.e.
∫
(0,1)m(dx) <∞.

Proof. The proof is based on the following lemma.

Lemma 3.6. For all k ≥ 1 and x ∈ R+, the function Mk(x) = Ex
(
τk∂
)

is
bounded and satisfies

Mk(x) = 2k

∫ ∞
0

x ∧ yMk−1(y)m(dy) <∞. (3.9)

First, notice that we can assume without loss of generality that ρ 6∈ Q.
We prove by induction that there exists a constant Ck > 0 such that for all
x ∈ (0, 1),

Mk(x) ≤ Ckx(kρ)∧1.
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This is trivial for k = 0. Let us assume it is true for k ≥ 0 and let us denote
by αk the constant (kρ) ∧ 1. For all x ∈ (0, 1), by (3.9),

Mk+1(x) ≤ C

(∫
(0,x)

yMk(y)m(dy) + x

∫
[x,1)

Mk(y)m(dy) + x

∫
[1,∞)

Mk(y)m(dy)

)

≤ C

(∫
(0,x)

y1+αk m(dy) + x

∫
[x,1)

yαk m(dy) + x

∫
[1,∞)

m(dy)

)

≤ C

[
xαkI(x) + x

(
I(1) + (1− αk)

∫ 1

x
yαk−2I(y) dy

)
+ x

∫
[1,∞)

m(dy)

]

≤ Cxαk+ρ + Cx+ Cx

∫ 1

x
yαk+ρ−2 dy,

where the constant C > 0 depends on k and may change from line to line,
and the third inequality follows from integration by parts. Since ρ 6∈ Q, we
have ∫ 1

x
yαk+ρ−2 dy ≤

{
1/(αk + ρ− 1) if αk + ρ− 1 > 0,

xαk+ρ−1/(1− αk − ρ) if αk + ρ− 1 < 0.

This concludes the induction.

Proof of Lemma 3.6. Let us define the functions Mk(x) recursively from the
formula (3.9) and M0(x) = 1. An immediate induction procedure and (2.2)
proves that, for all k ≥ 0, the function Mk is bounded.

The Green function of one-dimensional diffusions on natural scale [8,
Lemma 23.10] implies that, for any 0 < a < b <∞,

Ex
(∫ Ta,b

0
Mk−1(Xt) dt

)
= 2

∫
(a,b)

(x ∧ y − a)(b− x ∨ y)

b− a
Mk−1(y)m(dy).

By monotone convergence and since Mk−1 is bounded, we obtain by letting
a→ 0 and b→∞ that

Mk(x) = kEx
(∫ τ∂

0
Mk−1(Xt) dt

)
.

Let us now prove by induction that Mk(x) = E(τk∂ ) for all k ≥ 0. The
property is true for k = 0. Assume that Mk−1(x) = Ex(τk−1∂ ), then

Mk(x) = kEx
(∫ τ∂

0
EXt(τk−1∂ ) dt

)
= kEx

(∫ τ∂

0
(τ∂ − t)k−1 dt

)
= Ex(τk∂ ),

where we used the Markov property.
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3.3 Link between strict local martingales and Condition (B)

The following result gives a necessary and sufficient condition to check Con-
dition (B). It will be obtained as a consequence of Corollary 4.4 in Sec-
tion 4.2.

Theorem 3.7. For any constants A > 0 and t > 0,

Px(t < τ∂) ≤ Ax, ∀x ≥ 0 ⇐⇒ sup
z>0

E(Zt | Z0 = z) ≤ A,

where (Zt, t ≥ 0) is a diffusion on (0,+∞) on natural scale with speed mea-
sure

m̃(dz) =
1

z2
(f ∗m)(dz), (3.10)

where f ∗m is the image measure of m by the application f(x) = 1/x.

Remark 3. In particular, if Condition (B) is satisfied, then (Zt)t≥0 is a strict
local martingale, i.e. a local martingale which is not a martingale.

The notion of strict local martingales is of great importance in the theory
of financial bubbles. We refer the interested reader to Protter [19] and
references therein. Note that under the assumption that PXx (t < τ∂) ≤ Ax
for all x > 0, we obtain a strong form of strict martingale property for Z,
since we prove that its expectation at time t is uniformly bounded.

When restated in terms of the speed measure m̃ (see Theorem 4.1),
the next result gives general conditions ensuring that Z is a strict local
martingale in the strong previous sense. We refer to Section 4.1 for precise
definitions, statements.

The next result gives a sufficient condition for (B), weaker than the one
of Theorem 3.5, but using more involved and specific arguments. It will be
obtained as a corollary of Theorem 4.2 in Section 4.2.

Theorem 3.8. Assume that m satisfies (2.2) and∫ 1

0

1

x
sup
y≤x

(
1

y

∫
(0,y)

z2m(dz)

)
dx <∞. (3.11)

Then, for all t > 0, there exists At <∞ such that

Px(t < τ∂) ≤ At x, ∀x > 0.
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Remark 4. Note that, as noticed in [13], in the case where m has a density
with respect to Lebesgue’s measure Λ on (0,∞), the condition (3.11) covers
almost all the practical situations where (2.2) is satisfied. For example, it is
true if

dm

dΛ
(x) ≤ C

x2 log 1
x · · · logk−1

1
x

(
logk

1
x

)1+ε ,
for all x in a neighbourhood of 0 and for some ε > 0 and k ≥ 1, where
logk(x) = logk−1(log x) (see [13, Ex. 2]).

The last theorem is based on abstract but powerful general analytical
results on the density of diffusion processes, which are hard to extend to
more general settings. Our condition (B) is simple enough to be check un-
der stronger assumptions using elementary probability tools, as we did in
Theorem 3.5, and to apply to many other settings (processes with jumps or
piecewise deterministic paths...). We give in Subsection 3.5.4 a simple exam-
ple of a one-dimensional process with jumps where exponential convergence
to the quasi-stationary distribution can be proved by an easy extension of
our method.

3.4 Consequences of the expression of α as a function of m

In Theorem 3.1, we proved that, under Assmuption (B), α is absolutely
continuous with respect to m and, more precisely, that

dα

dm
(x) = 2λ0

∫ ∞
0

(x ∧ y)α(dy), ∀x ∈ (0,+∞). (3.12)

Our goal here is to provide a converse property, i.e. to give a necessary
and sufficient condition on a given positive measure α, such that it is the
unique quasi-stationary distribution of a diffusion process on natural scale
on [0,+∞) with exponential convergence of the conditional laws.

We will say (with a slight abuse of notation) that a positive measure
m on (0,∞) satisfies (B) if it is locally finite, gives positive mass on each
open subset of (0,∞), satisfies

∫ 1
0 ym(dy) < ∞ and the diffusion process

on [0,∞) on natural scale with speed measure m and stopped at 0 satisfies
Condition (B).

Theorem 3.9. Fix λ0 > 0 and a probability measure α on (0,+∞) such that
the measure ( 1x ∨ 1)α(dx) satisfies (B). Then, there exists a unique (in law)
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diffusion process (Xt)t≥0 on [0,+∞) on natural scale almost surely absorbed
at 0 satisfying

‖Px(Xt ∈ · | t < τ∂)− α‖TV ≤ Ce
−γt, ∀x ∈ (0,+∞),

for some positive constants C, γ and such that

Pα(t < τ∂) = e−λ0t, ∀t ≥ 0.

In addition, the speed measure of the process X is given by

m(dx) =
α(dx)

2λ0
∫∞
0 (x ∧ y)α(dy)

, ∀x ∈ (0,∞).

Conversely, if the speed measure satisfies (B), then the corresponding quasi-
stationary distribution α is such that ( 1x ∨ 1)α(dx) satisfies (B).

Because of the relation (3.12) and the equivalence between (B) and uni-
form exponential convergence to a quasi-stationary distribution, this result
follows from the next lemma.

Lemma 3.10. Let α be a probability measure on (0,+∞). Define the mea-
sure m on (0,+∞) as

m(dx) =
α(dx)∫∞

0 (x ∧ y)α(dy)
, ∀x ∈ (0,∞). (3.13)

Then the measure ( 1x ∨ 1)α(dx) satisfies (B) if and only if the measure m
satisfies (B).

Proof. Note that, if m1,m2 are two measures on (0,+∞) such that m1 ≤ m2

and such that m2 satisfies (B), then m1 also satisfies (B). This is a direct
consequence of the construction of diffusion processes given in Section 2 and
of (2.1).

Therefore, it is enough to check that there exist two constant c1, c2 > 0
such that

c1(
1

x
∨ 1) ≤ dm

dα
(x) ≤ c2(

1

x
∨ 1),

or equivalently that there exist two constants c′1, c
′
2 > 0 such that

c′1(x ∧ 1) ≤
∫ ∞
0

(x ∧ y)α(dy) ≤ c′2(x ∧ 1). (3.14)

14



To prove this, we will make use of the property∫ ∞
0

(1 ∨ y)α(dy) <∞. (3.15)

It is clearly true if the measure ( 1x ∨ 1)α(dx) satisfies (B). Conversely, if
m satisfies (B), Theorem 3.1 implies that α is the unique quasi-stationary
distribution associated to m with λ0 = 1/2 and that (3.15) holds true.

We have∫ ∞
0

(x ∧ y)α(dy) ≤
(
x

∫ ∞
0

α(dy)

)
∧
(∫ ∞

0
y α(dy)

)
.

Hence (3.15) implies the existence of c′2 <∞ in (3.14).
In addition,∫ ∞

0
(x ∧ y)α(dy) ≥

{
x
∫∞
1 α(dy), if x ≤ 1,∫∞

1 α(dy), if x > 1.

This ends the proof of the lemma.

3.5 Examples

3.5.1 On general diffusions

Let us first recall that our results also cover the case of general diffusion
processes (Yt, t ≥ 0) on [0,∞) absorbed at 0, which hit 0 in a.s. finite time.
Under these assumptions, there exists a scale function s : [0,∞)→ [0,∞) of
the process Y such that s(0) = 0 and s(∞) = ∞, and our results apply to
the process Xt = s(Yt) on natural scale. Expressed in terms of the process
Y , the necessary and sufficient Condition (B) becomes: the process Y comes
down from infinity, hits 0 a.s. in finite time and there exist t1, A > 0 such
that

P(t1 < τ∂ | Y0 = y) ≤ As(y).

Let us also mention that, as will appear clearly in the proof, our methods
can be easily extended to diffusion processes on a bounded interval, where
one of the boundary point is an entrance boundary and the other is exit
or regular, and also to cases where both boundary points are either exit or
regular.

To illustrate the generality of the processes that are covered by our cri-
teria, we give two simple examples where the speed measure m is singular
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with respect to Lebesgue’s measure Λ. The case of speed measures abso-
lutely continuous w.r.t. Lebesgue’s measure (i.e. of SDEs) will be discussed
in the next subsection. Our results also cover the case of a speed measure
with discontinuous density with respect to Lebesgue’s measure. Such dif-
fusion are naturally obtained as rescaled solution of SDEs driven by their
local times, including skew Brownian motions (see for instance [11]).

Example 1 We recall that a diffusion process on R with speed measure
Λ + δ0 is called a sticky Brownian motion [7, 1]. We consider a diffusion
process on [0,∞) which comes down from infinity (

∫∞
1 ym(dy) < ∞) and

which is a sticky Brownian motion on [0, 1], “sticked” at the points a1, a2, . . .,
where (ai)i≥1 is decreasing, converges to 0 and a1 < 1, i.e.

m (0,1) = Λ (0,1) +
∑
i≥1

δai .

Assuming that there exist constants C, ρ > 0 such that for all j ≥ 1,∑
i≥j

ai ≤ Caρj , (3.16)

then for all x ∈ (0, 1), defining i0 := inf{j ≥ 1 : aj < x},∫
(0,x)

ym(dy) =
x2

2
+
∑
i≥i0

ai ≤
x2

2
+ Caρi0 ≤

x2

2
+ Cxρ,

and we can apply Theorem 3.5.

For example, the choice ai = i
− 1

1−ρ , for all i ≥ 1, satisfies (3.16).

Example 2 Let X be a sticky Brownian motion stopped at −1 and 1. This
means that X is a diffusion on natural scale with speed measure m(dx) =
Λ(dx) + δ0(dx) on (−1, 1), absorbed at −1 and 1. It is straightforward to
adapt our results to processes on [−1, 1]. For the process of this example, the
corresponding Assumption (B) is clearly fulfilled since both boundaries −1
and 1 are regular for X (see Remark 2). Then the unique quasi-stationary
distribution α of X is

α(dx) =
γ∗

2
sin (γ∗(1 + x) ∧ (1− x))m(dx),

where γ∗ is the unique solution in (0, π] of cotan γ = γ/2.
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Indeed, it satisfies the following adaptation of formula (3.3)

dα

dm
(x) = λ0

∫ 1

−1
(x ∧ y + 1)(1− x ∨ y)α(dy), ∀x ∈ (−1, 1). (3.17)

In particular, the measure α is absolutely continuous with respect to Lebesgue’s
measure Λ on (−1, 1) \ {0} and satisfies(

dα

dΛ

)′′
(x) = −2λ0

dα

dΛ
(x), ∀x 6= 0.

Using the symmetry of the problem and the 0 boundary conditions, we
deduce that there exist constants a, b ∈ R such that

α(dx) = aδ0(dx) + b sin (γ(1 + x) ∧ (1− x)) Λ(dx),

where γ =
√

2λ0. Note that this implies that γ ∈ (0, π]. In addition,
equality (3.17) at x = 0 entails

a = λ0

(
2b

∫ 1

0
(1− y) sin(γ(1− y))dy + a

)
and hence

(1− γ2/2)a = b (sin γ − γ cos γ) . (3.18)

In addition, dα/dm(x) is continuous at 0, hence

a = b sin γ. (3.19)

Finally, α is a probability measure, so that

a+
2b

γ
(1− cos γ) = 1. (3.20)

Now, dividing (3.18) by (3.19), we obtain γ = γ∗. Equality (3.20) becomes

1 = a− b sin γ +
2b

γ
.

By (3.19), we deduce that b = γ/2 and finally that a = γ sin γ
2 .
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3.5.2 On processes solutions of stochastic differential equations

In the case where the speed measure m is absolutely continuous w.r.t. the
Lebesgue measure on (0,∞), our diffusion processes on natural scale are
solutions to SDEs of the form

dXt = σ(Xt)dBt, (3.21)

where σ is a measurable function from (0,∞) to itself such that the speed
measure m(dx) = 1

σ2(x)
dx is locally finite on (0,∞). Following the scale

function trick of Section 3.5.1, our results actually covers all SDEs of the
form

dYt = σ(Yt)dBt + b(Yt)dt

such that b/σ2 ∈ L1
loc((0,∞)) (see Chapter 23 of [8]).

A major part of the literature [2, 12, 9] on the subject considers a less
general class of diffusion processes (Yt, t ≥ 0) on [0,∞) which are solution
of a SDE of the form

dYt = dBt − q(Yt)dt. (3.22)

This form is more suited to Sturm-Liouville theory, which is the basis of all
the previously cited works, but is not used her. Let us recall that the scale
function of the process (Yt, t ≥ 0) solution to (3.22) is given by

s(x) =

∫ x

0
exp

(
2

∫ y

1
q(z) dz

)
dy,

and that Xt = s(Yt) is solution to the SDE

dXt = exp

(
2

∫ s−1(Xt)

1
q(z) dz

)
dBt. (3.23)

We see in particular that the diffusion (3.23) obtained from (3.22) is far from
being as general as (3.21). In particular, the diffusion coefficient in (3.23)
is C1 since q is assumed at least continuous in all the references previously
cited.

3.5.3 Comparison of our results with the literature

As said in the introduction, our result is the first one to prove uniform speed
of convergence to the quasi-stationary distribution, independently of the ini-
tial distribution. This is of great importance because, in applications, the
initial distribution is often only known approximately and, without uniform

18



speed of convergence, one cannot be sure that the quasi-stationary distri-
bution can be observed empirically (see [14]). We also emphasize that our
main result gives a necessary and sufficient condition for these properties.

In fact, the only reference proving that non-compactly supported ini-
tial distributions belong to the domain of attraction of the quasi-stationary
distribution is [2, Thm. 7.3]. However, this result is proved for SDEs of
the form (3.22) with q ∈ C1((0,∞)), and additional assumptions are re-
quired. We can make the link with Theorem 3.5, considering the case where
q(x) = α

2(2−α)
1
x for all x ∈ (0, 1) (we leave aside the assumptions on q

in the neighborhood of +∞). This corresponds to a diffusion coefficient
σ(x) = xα/2 in (3.23), as in Remark 2. As explained in [2, Rk. 4.6], the
case covered by their result corresponds to α < 3/2. Our Theorem 3.5 only
requires α < 2.

The questions of existence and uniqueness of a quasi-stationary distri-
bution are much better understood. Still, our results improve the existing
ones in several aspects. The article [16] is the only one which considers
general diffusions. It is based on results from spectral theory [13], which
are exactly the same we used to prove Theorem 3.8, so their result assumes
the same conditions on the speed measure in the neighborhood of 0. How-
ever, they also need to assume similar conditions as in Theorem 4.1 in the
neighborhood of +∞, which are not needed here.

All the other cited references [2, 12, 9] consider SDEs of the form (3.22),
with q ∈ C0((0,∞)) (hence the speed measure m with C1 density) in [9],
or q ∈ C1((0,∞)) (hence the speed measure m with C2 density) in [2, 12].
When we restrict our results to these speed measures, the only existence
and uniqueness result that does not enter in our setting is the one of [12],
where it is only assumed that

∫ 1
0 ym(dy) < ∞ without requiring bounds

like those in Remark 4. The question whether Assumption (B) is satisfied
in these limit cases remains open.

We also obtain uniform convergence results to the eigenvalue η (Prop. 3.2)
and uniform exponential ergodicity results on the Q-process (Theorem 3.3,
see below) that are not studied in the previously cited works, except in [2]
for existence and simple ergodicity of the Q-process. In addition, our prob-
abilistic approach is particularly adapted to the case of absorbed diffusions
with killing [3] and can be easily extended to cases where spectral methods
do not apply easily, e.g. for processes with jumps, as the following example
shows.
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3.5.4 A simple example with jumps

The following simple example shows how our method can be easily extended
to processes with jumps.

We consider a diffusion process (Xt, t ≥ 0) on [0,∞) with speed measure
m satisfying Assumption (B). Let us denote by L the infinitesimal gener-
ator of X. We consider the Markov process (X̃t, t ≥ 0) with infinitesimal
generator

L̃f(x) = Lf(x) + (f(x+ 1)− f(x))1x≥1,

for all f in the domain of L. In other words, we consider a càdlàg process
following a diffusion process with speed measure m between jump times,
which occur at the jump times of an independent Poisson process (Nt, t ≥ 0)
of rate 1, with jump size +1 if the process is above 1, and 0 otherwise. We
denote by τ̃∂ its first hitting time of 0.

The proof of the following proposition is postponed to Subsection 5.4.

Proposition 3.11. Under the previous assumptions, there exist a unique
probability measure α on (0,∞) and two constants C, γ > 0 such that, for
all initial distribution µ on (0,∞),∥∥∥Pµ(X̃t ∈ · | t < τ̃∂)− α(·)

∥∥∥
TV
≤ Ce−γt, ∀t ≥ 0. (3.24)

In particular, the probability measure α is the unique quasi-stationary dis-
tribution of the process.

4 Strict local martingales

We give in this section a general condition ensuring that a strict local mar-
tingale diffusion satisfies the strong strict local martingale property (1.2).
We then make the link with condition (B) and prove Theorems 3.7 and 3.8.

4.1 Strict local martingales in a strong sense

The next result gives a sufficient criterion for a diffusion process Z on [0,∞)
on natural scale to satisfy supz>0 Ez(Zt) <∞.

Theorem 4.1. Let m̃ be a locally finite measure on (0,∞) giving positive
mass to any open subset of (0,∞), and let Z be a diffusion process on [0,∞)
stopped at 0 on natural scale with speed measure m̃. Then, if∫ ∞

1
y m̃(dy) <∞ (4.1)
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and ∫ ∞
1

1

x
sup
y≥x

(
y

∫ ∞
y

m̃(dz)

)
dx <∞. (4.2)

Then, for all t > 0, there exists At <∞ such that

Ez(Zt) ≤ At, ∀z > 0.

Recall that (4.1) means that +∞ is an entrance boundary for Z, which
is equivalent to the fact that Z is a strict local martingale [10]. Similarly as
in Remark 4, Condition (4.2) is true in most situations where (4.1) is true.
It could fail only when m̃ has strong oscillations close to +∞.

Proof. Since (Zt, t ≥ 0) is a positive local martingale, hence a supermartin-
gale, we have for all z ≥ 1 and t > 0,

Ez(Zt) = Ez(Zt1t<TZ1 ) + Ez(Zt1TZ1 <t)

≤ Ez(Zt∧TZ1 1t<TZ1 ) + Ez[1TZ1 <tE1(Zt−TZ1
)]

≤ Ez(Zt∧TZ1 ) + 1,

where TZ1 is the first hitting time of 1 by Z. Hence, we only need to prove
that supz≥1 Ez(Z

T1
t ) < ∞, where ZT1 is the diffusion process Z stopped at

time TZ1 .
Since ZT1 is a diffusion process on [1,∞), stopped at 1, on natural scale

and with speed measure ν(·) = m̃(· ∩ (1,∞)) satisfying

ν([1, 2]) <∞,

we can apply the result of [13, Thm. 4.1, Ex. 2]. This result ensures that,
under conditions (4.1) and (4.2), the probability density function of ZT1t
with respect to ν, denoted by p(x, y, t), is well defined for all t > 0 and there
exists a constant A′t > 0 such that

sup
1≤x,y<+∞

p(x, y, t) ≤ A′t, ∀t > 0.

As a consequence, for all t > 0,

Ez(ZT1t ) =

∫ ∞
1

y p(z, y, t) dν(y) ≤ A′t
∫ ∞
1

y dm̃(y).
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4.2 Links between strict local martingales and quasi-stationary
distributions

In this section, we make the link between absorbed diffusion processes and
strict local martingales. We also prove Theorems 3.7 and 3.8.

The next result does not require that m satisfies (2.2).

Theorem 4.2. Let X be a diffusion process on [0,+∞) on natural scale
stopped at 0 with speed measure m on (0,+∞), and let Px denote its law
when X0 = x, defined on the canonical space of continuous functions from
R+ to itself, equipped with its canonical filtration. For all x > 0, we define
the following h-transform of Px:

dQ̃x
Fτ =

Xτ

x
dPx Fτ ,

for all stopping time τ such that (Xt∧τ , t ≥ 0) is a uniformly integrable
martingale. Then, under (Q̃x)x>0, the process Zt := 1/Xt is a diffusion
process stopped at 0 on natural scale with speed measure

m̃(dz) =
1

z2
(f ∗m)(dz), (4.3)

where f ∗m is the image measure of m by the application f(x) = 1/x.

In particular, if the measure m(dx) is absolutely continuous w.r.t. Lebes-
gue’s measure Λ on (0,+∞), then m̃(dz) is absolutely continuous w.r.t. Λ
and

dm̃

dΛ
(z) =

1

z4
dm

dΛ

(
1

z

)
, ∀z > 0. (4.4)

Combining this with Theorem 4.1 implies Theorem 3.8. In particular, (3.11)
is obtained from (4.2) by a change of variable.

Remark 5. Note that the family of probability measures (Qx)x>0 of Theo-
rem 3.3 is different from the family (Q̃x)x>0. Under both measures, Qx(τ∂ =
∞) = Q̃x(τ∂ = ∞) = 1 (for Q̃x, this is a consequence of [17, Cor. 2.6]), but
the first one is obtained by conditioning X on late extinction, whereas the
second one is obtained by conditioning X on hitting large values before hit-
ting 0. More precisely, for all a > x > 0, Q̃x FTa = Px(· | Ta < T0) FTa

[17,

Thm. 2.2]. Among the noticeable differences, the process X is ergodic under
Qx by Theorem 3.3, whereas limt→∞Xt =∞ a.s. under Q̃x [17, Cor. 2.6].

Proof of Theorem 4.2. The fact that Q̃x, x > 0, are probability measures
and that the process Z = 1/X is a diffusion on [0,∞) stopped at 0 on
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natural scale under (Q̃x)x>0 are proved in [17] (see Lemma 2.5 for the last
point). Hence, we only have to compute its speed measure, i.e. the unique
locally finite measure m̃ on (0,∞), giving positive mass to any open subset
of (0,∞), such that for all 0 < a < z < b < +∞ and for all bounded
measurable function g : (0,∞)→ R,

EQ̃1/z

[∫ TZa,b

0
g(Zt) dt

]
= 2

∫ b

a

(z ∧ y − a)(b− z ∨ y)

b− a
g(y) m̃(dy), (4.5)

where TZa,b := inf{t ≥ 0 : Zt ∈ {a, b}}. Let us check that the measure m̃
defined in (4.3) satisfies this relation: the change of variable formula entails

2

∫
[a,b]

(z ∧ y − a)(b− z ∨ y)

b− a
g(y)

y2
(f ∗m)(dy)

= 2

∫
[1/b,1/a]

(z ∧ 1
x − a)(b− z ∨ 1

x)

b− a
x2g(1/x)m(dx)

= 2z

∫ 1/a

1/b

( 1a −
1
z ∨ x)(x ∧ 1

z −
1
b )

1
a −

1
b

xg(1/x)m(dx)

= zE1/z

[∫ T1/b,1/a

0
Xtg(1/Xt) dt

]
,

where the last equality comes from the fact that X is a diffusion on natural
scale with speed measure m under (Px)x≥0. Since (Xt∧T1/b,1/a , t ≥ 0) is a

bounded martingale under P1/z, we obtain by definition of (Q̃x)x>0

EQ̃1/z

[∫ TZa,b

0
g(Zt) dt

]
= EQ̃1/z

[∫ T1/b,1/a

0
g(1/Xt) dt

]
= zE1/z

[
XT1/b,1/a

∫ T1/b,1/a

0
g(1/Xt) dt

]
.

Now, Itô’s formula implies that, a.s. for all t ≥ 0,

Xt

∫ t

0
g(1/Xs) ds =

∫ t

0

(∫ s

0
g(1/Xu) du

)
dXs +

∫ t

0
Xsg(1/Xs) ds.

Since (Xt∧T1/b,1/a , t ≥ 0) is a bounded martingale under P1/z, for all n ≥ 1,

E1/z

[
Xn∧T1/b,1/a

∫ n∧T1/b,1/a

0
g(1/Xs) ds

]
= E1/z

[∫ n∧T1/b,1/a

0
Xsg(1/Xs) ds

]
.

Since E1/z[T1/b,1/a] <∞ (this is a general property of diffusions), Lebesgue’s
theorem implies (4.5), which ends the proof of Theorem 4.2.
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The next result can be deduced from Theorem 4.2 by a simple change
of variable.

Corollary 4.3. With the previous notation,∫ 1

0
ym(dy) <∞ ⇐⇒

∫ ∞
1

y m̃(dy) <∞

and ∫ ∞
1

ym(dy) <∞ ⇐⇒
∫ 1

0
y m̃(dy) <∞.

The next corollary gives an important relationship between the absorp-
tion probability of X under Px and the expectation of Z under Q̃x. It also
proves Theorem 3.7.

Corollary 4.4. With the previous notation, for all t > 0 and x > 0, we
have

PXx (t < τ∂)

x
= EZ1/x(Zt),

where PXx and PZz are the respective distributions of the diffusion processes
X such that X0 = x and Z such that Z0 = z, both on natural scale and with
respective speed measures m and m̃.

In particular,

(Zt)t≥0 is a martingale ⇐⇒
∫ 1

0
ym(dy) =∞.

Moreover, for any constant A > 0,

sup
z>0

EZz (Zt) ≤ A ⇐⇒ PXx (t < τ∂) ≤ Ax, ∀x ≥ 0.

If one of these conditions happens for some A > 0, then
∫ 1
0 ym(dy) < ∞

and (Zt)t≥0 is a strict local martingale.

Proof of Corollary 4.4. We have, for all x > 0 and all t > 0,

EZ1/x(Zt) = EQ̃x
(

1

Xt

)
=

1

x
Px(Xt > 0).
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5 Proof of the results of Section 3

The main part of Theorem 3.1, Proposition 3.2 and Theorem 3.3 directly
follow from the results on general Markov processes of [4]. More precisely,
the following condition (A) is equivalent to Condition (ii) of Theorem 3.1
([4, Thm. 2.1]), and implies properties (3.5) and (3.6) of Proposition 3.2 ([4,
Prop. 2.3]) and the whole Theorem 3.3 ([4, Thm. 3.1]).

Assumption (A) There exists a probability measure ν on (0,∞) such
that

(A1) there exists t0, c1 > 0 such that for all x > 0,

Px(Xt0 ∈ · | t0 < τ∂) ≥ c1ν(·);

(A2) there exists c2 > 0 such that for all x > 0 and t ≥ 0,

Pν(t < τ∂) ≥ c2Px(t < τ∂).

Hence, we need first to prove that (B) is equivalent to (A) (in Subsec-
tion 5.1), second, to prove (3.4) and that η(x) ≤ Cx (in Subsection 5.2),
and third to prove (3.3) and that

∫
y α(dy) < ∞ (in Subsection 5.3). We

next give in Subsection 5.4 the proof of Proposition 3.11 on processes with
jumps.

5.1 Proof of the equivalence between (A) and (B)

Note that [4, Thm. 2.1] also assumes that

Px(t < τ∂) > 0, ∀x > 0, ∀t > 0, (5.1)

so we need first to check that this is true for our diffusion processes. This
follows easily from the strong Markov and the regularity properties of X
(it is for example enough to use that Px(Tx/2 < +∞) > 0 and Px/2(Tx <
+∞) > 0).

We actually prove below that (A1) and (B) are equivalent and that
these properties imply (A2). In other words, for one-dimensional diffusion
processes, (3.2) is actually equivalent to (A1) alone.

We first prove that (A1) implies (B). If (A1) holds true, there exist
0 < a < b such that

inf
x>0

Px(Xt1 ∈ [a, b] | t1 < τ∂) = c > 0. (5.2)
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Now, for all x > b,

Px(Tb < t1)

Pb(t1 < τ∂)
≥ Px(Xt1 ∈ [a, b])

Pb(t1 < τ∂)
≥ Px(Xt1 ∈ [a, b] | t1 < τ∂).

Since we proved above that Pb(t1 < τ∂) > 0, we deduce that infx>b Px(Tb <
t1) > 0, i.e. that ∞ is an entrance boundary for X. Equation (5.2) also
implies that, for all x < a,

Px(t1 < τ∂) ≤ Px(Xt1 ∈ [a, b])

c

≤ Ex(Xt1∧Ta)

ac
=

x

ac
.

Hence (i) is proved.
The difficult part of the proof is the implication (B)⇒(A).

Step 1: the conditioned process escapes a neighborhood of 0 in finite time.
The goal of this step is to prove that there exists ε, c > 0 such that

Px(Xt1 ≥ ε | t1 < τ∂) ≥ c, ∀x > 0. (5.3)

To prove this, we first observe that, since X is a local martingale, for all
x ∈ (0, 1),

x = Ex(Xt1∧T1) = Px(t1 < τ∂)Ex(Xt1∧T1 | t1 < τ∂) + Px(T1 < τ∂ ≤ t1).

By the Markov property,

Px(T1 < τ∂ ≤ t1) ≤ Ex [1T1<τ∂∧t1P1(τ∂ ≤ t1)]
≤ Px(T1 < τ∂)P1(τ∂ ≤ t1)
= xP1(τ∂ ≤ t1).

Hence (3.1) entails

Ex(1−Xt1∧T1 | t1 < τ∂) ≤ 1− 1

A′
,

where A′ := A/P1(t1 < τ∂). Note that, necessarily, A′ > 1. Markov’s
inequality then implies that, for all x ∈ (0, 1),

Px(Xt1∧T1 ≤
1

2A′ − 1
| t1 < τ∂) ≤ 1− 1/A′

1− 1/(2A′ − 1)
= 1− 1

2A′
. (5.4)
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Since P1/(2A′−1)(t1 < τ∂) > 0, there exists ε ∈ (0, 1/(2A′ − 1)) such that

P1/(2A′−1)(t1 < Tε) > 0. (5.5)

Hence, for all x ∈ (0, 1),

Px(Xt1 ≥ ε) ≥ Px(T1/(2A′−1) < t1)P1/(2A′−1)(Tε > t1)

≥ Px(Xt1∧T1 ≥ 1/(2A′ − 1))P1/(2A′−1)(Tε > t1)

≥ Px(t1 < τ∂)

2A′
P1/(2A′−1)(Tε > t1)

by (5.4). This ends the proof of (5.3) for x < 1. For x ≥ 1 > 1/(2A′−1) > ε,
the continuity and the strong Markov property for X entail

Px(Xt1 > ε | t1 < τ∂) ≥ Px(Xt1 > ε) ≥ Px(Tε > t1) ≥ P1/(2A′−1)(Tε > t1) > 0.

Hence (5.3) is proved.

Step 2: Construction of coupling measures for the unconditioned process.
Our goal is to prove that there exist two constants t2, c1 > 0 such that, for
all x ≥ ε,

Px(Xt2 ∈ ·) ≥ c1ν, (5.6)

where
ν = Pε(Xt2 ∈ · | t2 < τ∂).

This kind of relations can be obtained with classical coupling arguments,
which we detail here for completeness. Fix x ≥ ε and construct two inde-
pendent diffusions Xε and Xx with speed measure m(dx), and initial value
ε and x respectively. Let θ = inf{t ≥ 0 : Xε

t = Xx
t }. By the strong Markov

property, the process

Y x
t =

{
Xx
t if t ≤ θ,

Xε
t if t > θ

has the same law as Xx. Since θ ≤ τx∂ := inf{t ≥ 0 : Xx
t = 0}, for all t > 0,

P(θ < t) ≥ P(τx∂ < t). Since ∞ is an entrance boundary and 0 is accessible
for X, there exists t2 > 0 such that

inf
y>0

Py(τ∂ < t2) = c′1 > 0.

Hence

Px(Xt2 ∈ ·) = P(Y x
t2 ∈ ·) ≥ P(Xε

t2 ∈ ·, τ
x
∂ < t2) ≥ c′1Pε(Xt2 ∈ ·).
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Therefore, (5.6) is proved with c1 = c′1Pε(t2 < τ∂).

Step 3: Proof of (A1).
Using successively the Markov property, Step 2 and Step 1, we have for all
x > 0

Px(Xt1+t2 ∈ · | t1 + t2 < τ∂) ≥ Px(Xt1+t2 ∈ · | t1 < τ∂)

≥
∫ ∞
ε

Py(Xt2 ∈ ·)Px(Xt1 ∈ dy | t1 < τ∂)

≥ c1
∫ ∞
ε

ν(·)Px(Xt1 ∈ dy | t1 < τ∂)

= c1ν(·)Px(Xt1 ≥ ε | t1 < τ∂) ≥ c1cν(·).

This entails (A1) with t0 = t1 + t2. Hence we have proved the equivalence
between (A1) and (B).

Step 4: Proof of (A2).
The general idea of the proof is close to the case of birth and death processes
in [4].

For all 0 < a < b <∞, we have

Ex(Ta ∧ Tb) = 2

∫ b

a

(x ∧ y − a)(b− x ∨ y)

b− a
m(dy), ∀a < x < b.

Hence,

Ex(Ta ∧ Tb) ≤ 2

∫ b

a
(x ∧ y − a)m(dy) ≤ 2

∫ ∞
a

ym(dy).

Since the process is non-explosive, the left hand side converges to Ex(Ta)
when b → ∞. But

∫∞
0 ym(dy) < ∞ by assumption, so that, for all ε > 0,

there exists aε > 0 such that

sup
x≥aε

Ex(Taε) ≤ ε.

Therefore, supx≥aε Px(Taε ≥ 1) ≤ ε and, applying recursively the Markov
property, supx≥aε Px(Taε ≥ k) ≤ εk. Then, for all λ > 0, there exists yλ ≥ 1
such that

sup
x≥yλ

Ex(eλTyλ ) < +∞. (5.7)

The proof of the following lemma is postponed to the end of this section.
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Lemma 5.1. There exists a > 0 such that ν([a,+∞[) > 0 and, for all
k ∈ N,

Pa(Xkt0 ≥ a) ≥ e−ρkt0 ,

with ρ > 0.

Take a as in the previous lemma. From (5.7), one can choose b > a large
enough so that

sup
x≥b

Ex
(
eρTb

)
<∞. (5.8)

We are also going to make use of two inequalities. Since

Pa(t < τ∂) ≥ Pa(Tb < s0)Pb(t < τ∂)

for all s0 ≥ 0, we obtain the first inequality: ∀t ≥ 0,

sup
x∈[a,b]

Px(t < τ∂) = Pb(t < τ∂) ≤ CPa(t < τ∂) = C inf
x∈[a,b]

Px(t < τ∂), (5.9)

where C is a positive constant. We recall that the regularity assumption
ensures that Pa(Tb < s0) > 0 for s0 large enough. The second inequality is
an immediate consequence of the Markov property: ∀s < t,

Pa(Xds/t0et0 ≥ a)Pa(t− s < τ∂) = Pa(Xds/t0et0 ≥ a) inf
x∈[a,∞)

Px(t− s < τ∂)

≤ Pa(t < τ∂). (5.10)

In the following computation, we use successively (5.8), (5.9) and (5.10).
For all x ≥ b, with a constant C > 0 that may change from line to line,

Px(t < τ∂) ≤ Px(t < Tb) +

∫ t

0
Pb(t− s < τ∂)Px(Tb ∈ ds)

≤ Ce−ρt + C

∫ t

0
Pa(t− s < τ∂)Px(Tb ∈ ds)

≤ Ce−ρ(dt/t0e−1)t0 + CPa(t < τ∂)

∫ t

0

1

Pa(Xds/t0et0 ≥ a)
Px(Tb ∈ ds)

≤ CPa(t < τ∂) + CPa(t < τ∂)

∫ t

0
eρ(s+t0) Px(Tb ∈ ds),

where we used twice Lemma 5.1 in the last line. We deduce form (5.8) that,
for all t ≥ 0,

sup
x≥b

Px(t < τ∂) ≤ CPa(t < τ∂).

Since ν([a,+∞[) > 0, this ends the proof of (A2).

29



Proof of Lemma 5.1. Fix a > 0 such that ν([a,+∞[) > 0. Step 3 of the
previous proof and (5.1) entail

Pa(Xt0 ≥ a) ≥ c1ν([a,+∞[)Pa(t0 < τ∂)
def
= e−ρt0 > 0.

Now, using Markov property,

Pa(Xkt0 ≥ a) ≥
(

inf
x≥a

Px(Xt0 ≥ a)

)k
.

Since infx≥a Px(Xt0 ≥ a) = Pa(Xt0 ≥ a) by coupling arguments, the proof
is completed.

5.2 Proof of Proposition 3.2

Since (A) is equivalent to (B), the convergence in (3.5) for the uniform
norm and (3.6) are direct consequences of Proposition [4, Prop 2.3]. This
proposition also entails that η is bounded, positive on (0,+∞) and vanishes
on 0, and that α(f) = 1. The fact that η is non-decreasing comes from (3.5)
and from the fact that Px(t < τ∂) is non-decreasing in x ≥ 0 by standard
comparison arguments. The fact that η(x) ≤ Cx follows from assumption
(B) since

Pt1η(x) ≤ ‖η‖∞Px(t1 ≤ τ∂) ≤ ‖η‖∞Ax, ∀x ≥ 0.

It only remains to prove (3.4). For all measurable f ≥ 0 and all 0 ≤ a <
x < b ≤ ∞,

Ex
(∫ Ta∧Tb

0
f(Xt) dt

)
= 2

∫ b

a

(x ∧ y − a)(b− x ∨ y)

b− a
f(y)m(dy). (5.11)

For a = 0 and b =∞, we obtain

Ex
(∫ τ∂

0
f(Xt) dt

)
= 2

∫ ∞
0

(x ∧ y) f(y)m(dy). (5.12)

For f = η, we deduce that∫ ∞
0

Ex (η(Xt)1t<τ∂ ) dt = 2

∫ ∞
0

(x ∧ y) η(y)m(dy).

Since η(0) = 0 and Lη = −λ0η, we have Ex (η(Xt)1t<τ∂ ) = Ptη(x) =
e−λ0tη(x). Then

η(x)

λ0
= 2

∫ ∞
0

(x ∧ y) η(y)m(dy).
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This entails (3.4) provided we prove that α(dx) is proportional to η(x)m(dx)
(observe that the normalizing constant is determined by the condition α(η) =
1). This will be done in the next Subsection.

5.3 Proof of (3.3) and that
∫
y α(dy) <∞

Integrating (5.12) with respect to α(dx), we obtain∫ ∞
0

Eα (f(Xt)1t<τ∂ ) dt = 2

∫ ∞
0

∫ ∞
0

(x ∧ y) f(y)m(dy)α(dx).

Since Eα (f(Xt)1t<τ∂ ) = α(f) e−λ0t, we deduce that

α(f)

λ0
= 2

∫ ∞
0

∫ ∞
0

(x ∧ y) f(y)m(dy)α(dx).

This entails (3.3). We now prove that α(dx) is proportional to η(x)m(dx).
The following reversibility result for diffusions on natural scale is more or

less classical but we need a version with precise bounds on the test functions
in the case of a diffusion coming down from infinity and hitting 0 a.s. in finite
time. The proof is given at the end of the subsection for sake of completeness.

Lemma 5.2. Let X be a diffusion on [0,∞) in natural scale with speed
measure m satisfying (2.2). Then it is reversible with respect to m in the
sense that, for all bounded non-negative measurable functions f on (0,+∞)
and all nonnegative measurable function g on (0,+∞) such that g(x) ≤ Cx
for some C > 0,∫ ∞

0
f(x)Ptg(x)m(dx) =

∫ ∞
0

g(x)Ptf(x)m(dx), ∀t ≥ 0, (5.13)

where both sides are finite.

Applying this lemma for g = η, we obtain that, for all bounded measur-
able non-negative f ,∫ ∞

0
f(x)η(x)m(dx) = eλ0t

∫ ∞
0

η(x)Ptf(x)m(dx)

Now, it follows from (3.2) and (3.5) that

eλ0tPtf(x) = eλ0tPx(t < τ∂)Ex(f(Xt) | t < τ∂)→ η(x)α(f)
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when t → +∞, where the convergence is uniform in x. Since
∫
η dm < ∞,

Lebesgue’s theorem entails that

α(f)

∫ ∞
0

η2(x)m(dx) =

∫ ∞
0

f(x)η(x)m(dx)

for all bounded measurable f . Hence α ∝ η dm. Note also that f = η gives∫∞
0 η dm =

∫∞
0 η2 dm.

It only remains to prove that
∫
y α(dy) <∞. Since η is bounded and

η(x) ∝
∫ ∞
0

(x ∧ y)α(dy),

this follows from the monotone convergence theorem.

Proof of Lemma 5.2. We start by proving that both sides of (5.13) are finite.
This is obvious for the r.h.s. because of (2.2). For the l.h.s., since the
positive local martingale (Xt, t ≥ 0) is a supermartingale, we have Ptg(x) =
Ex[g(Xt)1t<τ∂ ] ≤ CEx[Xt] ≤ Cx, which allows to conclude.

By Lebesgue’s theorem, it is enough to prove (5.13) for a f, g in a dense
subset of the set of continuous functions on (0,+∞) with compact support.
Note that a function g with compact support in (0,+∞) satisfies g(x) ≤ Cx
for some C > 0. For all s ∈ [0, t], we define

ψ(s) =

∫ ∞
0

Psf(x)Pt−sg(x)m(dx).

We use the characterization of the infinitesimal generator of diffusion
processes of [5, Thm. 2.81]: let D be the set of functions f bounded con-
tinuous on [0,∞), such that the right derivative f+ of f exists, is finite,
continuous from the right and of bounded variation on all compact intervals
of (0,∞), and such that df+ = h dm, where df+ denotes the measure on
(0,∞) such that

f+(y)− f+(x) = df+(x, y]

and h is some bounded continuous function on [0,∞) with h(0) = 0. Then,
for all f ∈ D,

Lf(x) := lim
t→0

Ptf(x)− f(x)

t
=
df+

dm
(x), ∀x ≥ 0,

where the convergence holds for the uniform norm on [0,∞).
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So let f, g ∈ D have compact support. In particular, there exists C > 0
such that Psf(x) + Psg(x) ≤ Cx for all x, s ≥ 0. Since f, g ∈ D, Psf and
Psg also belong to D and Lebesgue’s theorem entails that, for all s ∈ [0, t]

ψ′(s) =

∫ ∞
0

LPsf(x)Pt−sg(x)m(dx)−
∫ ∞
0

Psf(x)LPt−sg(x)m(dx)

=

∫ ∞
0

Pt−sg(x) d(LPsf)+(x)−
∫ ∞
0

Psf(x) d(LPt−sg)+(x).

The right-hand side is equal to zero by the integration by parts formula for
Stieljes integrals.

Since D is dense in the set of continuous functions on (0,∞) with com-
pact support, the proof is completed.

5.4 Proof of Proposition 3.11

The proof is similar to the one of Theorem 3.1 (see Subsection 5.1) and we
only detail the steps that need to be modified. Our aim is to check that
conditions (A1) and (A2) hold.

Step 1. (A1) is satisfied.
Since m satisfies the conditions of Theorem 3.1, we deduce that (A1)

holds for X. As a consequence, there exist two constants c1 > 0 and t0 > 0
and a probability measure ν on (0,+∞), such that, for all A ⊂ (0,∞)
measurable,

Px(Xt0 ∈ A) ≥ c1ν(A)Px(t0 < τ∂), ∀x ∈ (0,+∞).

By construction of X̃, we have

Px(X̃t0 ∈ A) ≥ e−t0Px(Xt0 ∈ A).

Fix x ∈ (0, 1). Using the fact that Xt = X̃t for all t ≤ T1 under Px, we
deduce that

Px(t0 < τ̃∂) ≤ Px({t0 < τ∂} ∪ {X̃t0 6= Xt0})
≤ Px(t0 < τ∂) + Px(T1 ≤ τ∂)

≤ Ax+ x

≤ A+ 1

a
Px(t0 < τ∂),
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where a > 0 is the positive constant from Proposition 3.4 (i). As a conse-
quence, for all A ⊂ (0,∞) measurable,

Px(X̃t0 ∈ A) ≥ c1ae
−t0

A+ 1
ν(A)Px(t0 < τ̃∂), (5.14)

which concludes the proof of (A1) for X̃.

Step 2. (A2) is satisfied.
By construction of the process X̃ from the process X and an independent

Poisson process, it is clear that, for all x ≤ y, all t > 0 and a ∈ (0, x), we
have

Px(T̃a ≤ t) ≥ Py(T̃a ≤ t),

where T̃a = inf{t ≥ 0, X̃t = a}, and that Px(X̃t ≥ a) ≥ Px(Xt ≥ a). Hence
we only need to prove that X̃ satisfies (5.7), the rest of the proof being the
same as in Step 4 of Subsection 5.1.

Fix ε > 0 and set tε = − log(1 − ε/2) > 0. For all a > 0, we have, by
independence of the Poisson process (Nt)t≥0,

inf
x∈(a,+∞)

Px(T̃a ≤ tε) = lim
x→∞

Px(T̃a ≤ tε) ≥
(

1− ε

2

)
lim
x→∞

Px(Ta ≤ tε).

Since X comes down from infinity, there exists aε > 0 such that

lim
x→+∞

Px(Taε ≤ tε) ≥ 1− ε

2
.

Hence, for all ε > 0 small enough, there exists aε > 0 such that, for all
x ≥ aε,

Px(1 < T̃aε) ≤ Px(tε < T̃aε) ≤ 1−
(

1− ε

2

)2
≤ ε.

This entails (5.7) and (A2) as in Step 4 of the proof of Theorem 3.1.
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