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Abstract

We are interested in modelling Darwinian evolution, resulting from the interplay of

phenotypic variation and natural selection through ecological interactions. Our mod-

els are rooted in the microscopic, stochastic description of a population of discrete

individuals characterized by one or several adaptive traits. The population is mod-

elled as a stochastic point process whose generator captures the probabilistic dynamics

over continuous time of birth, mutation, and death, as in�uenced by each individual's

trait values, and interactions between individuals. An o�spring usually inherits the

trait values of her progenitor, except when a mutation causes the o�spring to take an

instantaneous mutation step at birth to new trait values. We look for tractable large

population approximations. By combining various scalings on population size, birth

and death rates, mutation rate, mutation step, or time, a single microscopic model

is shown to lead to contrasting macroscopic limits, of di�erent nature: deterministic,

in the form of ordinary, integro-, or partial di�erential equations, or probabilistic,

like stochastic partial di�erential equations or superprocesses. In the limit of rare

mutations, we show that a possible approximation is a jump process, justifying rigor-

ously the so-called trait substitution sequence. We thus unify di�erent points of view

concerning mutation-selection evolutionary models.

Key-words: Darwinian evolution, birth-death-mutation-competition point process, mutation-
selection dynamics, nonlinear integro-di�erential equations, nonlinear partial di�erential
equations, nonlinear superprocesses, �tness, adaptive dynamics, trait substitution sequence.

1 Introduction

In this paper, we are interested in modelling the dynamics of populations as driven by
the interplay of phenotypic variation and natural selection operating through ecological
interactions, i.e. Darwinian evolution. The fundamental property of living systems is the
propensity of each individual to create and to select the diversity. This feature requires to
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focus on the stochastic dynamics of each individual in the population. The study of such
evolutionary-ecological models is very complicated, and several approximations have been
proposed. Firstly, Bolker and Pacala [2] and Dieckmann and Law [11] have introduced
the moment equations of the distribution of traits in the population and studied di�er-
ent moment closure heuristics. Secondly, various nonlinear macroscopic models (integro-
di�erential equations, partial di�erential equations, superprocesses) have been proposed
without microscopic justi�cation. Finally, the emerging �eld of adaptive dynamics have
proposed a new class of macroscopic models on the evolutionary time scale, de�ned as
jump processes and ordinary di�erential equations (trait substitution sequences, Metz et
al. [22], canonical equation of adaptive dynamics, Dieckmann and Law [10]). In all these
cases and from a biological point of view, the pathway from microscopic to macroscopic
models deserves a �rm mathematical pavement, at least to clarify the signi�cance of the
implicit biological assumptions underlying the choice of a particular model.

In this work, we unify several macroscopic approximations by recovering them from a
single microscopic model. In particular, we point out the importance of large population
assumptions and that the nature of the approximation strongly depends on the combination
of various scalings of the biological parameters (birth and death rates, mutation rate,
mutation step and time).

This paper starts (Section 2) with the microscopic description of a population of discrete
individuals, whose phenotypes are described by a vector of trait values. The population
is modelled as a stochastic Markov point process whose generator captures the probabilis-
tic dynamics over continuous time of birth, mutation and death, as in�uenced by each
individual's trait values and interactions between individuals. The adaptive nature of a
trait implies that an o�spring usually inherits the trait values of her progenitor, except
when a mutation occurs. In this case, the o�spring makes an instantaneous mutation step
at birth to new trait values. We will refer to the state space parameterized by adaptive
traits as the trait space, and will often (slightly abusively) call trait the actual trait value.
This process is de�ned as the solution of a stochastic di�erential equation driven by point
Poisson measures (Section 2.1). In Section 2.2, we give an algorithmic construction of
the population point process and propose some simulations, for various parameters, of an
asymmetrical example developed in Kisdi [18]. Next, we prove that the point population
process is a measure-valued semimartingale and compute its characteristics (Section 2.3).
Then we look for tractable approximations, following di�erent mathematical paths. Our
�rst approach (Section 3) aims at deriving deterministic equations to describe the moments
of trajectories of the point process, i.e. the statistics of a large number of independent real-
izations of the process. We explain the di�cult hierarchy between these equations coming
from competition kernels and preventing, even in the simple mean-�eld case, decorrelations
and tractable moment closure. The alternative approach involves renormalizations of the
point process based on a large population limit. The measure-valued martingale properties
of the renormalized point process allow us to show that, according to di�erent scalings of
birth, death and mutation rates, one obtains qualitatively di�erent limiting partial di�er-
ential equations and the appearance or not of some demographic stochasticity. We show
in Section 4.1 that by itself, the large-population limit leads to a deterministic, nonlin-
ear integro-differential equation. Then, in Section 4.2.1, we combine the large-population
limit with an acceleration of birth (hence mutation) and death according to small mu-
tation steps. That yields either a deterministic nonlinear reaction-di�usion model, or a
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stochastic measure-valued process (depending on the acceleration rate of the birth-and-
death process). If now this acceleration of birth and death is combined with a limit of
rare mutations, the large-population limit yields a nonlinear integro-di�erential equation
either deterministic or stochastic, depending here again on the speed of the scaling of the
birth-and-death process, as described in Section 4.2.2.

In Section 5, we model a time scale separation between ecological events (fast births
and deaths) and evolution (rare mutations), for an initially monomorphic population. The
competition between individuals takes place on the short time scale. In a large population
limit, this leads on the mutation time scale to a jump process over the trait space, where
the population stays monomorphic at any time. Thereby we provide a rigorous justi�cation
to the notion of trait substitution sequence introduced by Metz et al. [21].

2 Population point process

Even if the evolution manifests itself as a global change in the state of a population, its basic
mechanisms, mutation and selection, operate at the level of individuals. Consequently, we
model the evolving population as a stochastic interacting individual system, where each
individual is characterized by a vector of phenotypic trait values. The trait space X is
assumed to be a closed subset of Rd, for some d ≥ 1.

We will denote by MF (X ) the set of �nite non-negative measures on X . Let also M
be the subset of MF (X ) consisting of all �nite point measures:

M =

{
n∑

i=1

δxi , n ≥ 0, x1, ..., xn ∈ X

}
.

Here and below, δx denotes the Dirac mass at x. For any m ∈ MF (X ), any measurable
function f on X , we set 〈m, f〉 =

∫
X fdm.

We aim to study the stochastic process νt, taking its values in M, and describing the
distribution of individuals and traits at time t. We de�ne

νt =
I(t)∑
i=1

δXi
t
, (2.1)

I(t) ∈ N standing for the number of individuals alive at time t, and X1
t , ..., X

I(t)
t describing

the individuals' traits (in X ).

For a population ν =
∑I

i=1 δxi , and a trait x ∈ X , we de�ne the birth rate b(x, V ∗
ν(x)) = b(x,

∑I
i=1 V (x − xi)) and the death rate d(x,U ∗ ν(x)) = d(x,

∑I
i=1 U(x − xi))

of individuals with trait x; V and U denote the interaction kernels a�ecting respectively
reproduction and mortality. Let µ(x) and M(x, z)dz be respectively the probability that
an o�spring produced by an individual with trait x carries a mutated trait and the law of
this mutant trait.

Thus, the population evolution can be roughly summarized as follows. The initial
population is characterized by a (possibly random) counting measure ν0 ∈ M at time
0, and any individual with trait x at time t has two independent random exponentially
distributed �clocks�: a birth clock with parameter b(x, V ∗ νt(x)), and a death clock with
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parameter d(x,U ∗νt(x)). If the death clock of an individual rings, this individual dies and
disappears. If the birth clock of an individual with trait x rings, this individual produces an
o�spring. With probability 1−µ(x) the o�spring carries the same trait x; with probability
µ(x) the trait is mutated. If a mutation occurs, the mutated o�spring instantly acquires
a new trait z, picked randomly according to the mutation step measure M(x, z)dz. When
one of these events occurs, all individual's clock are reset to 0.

Thus we are looking for aM-valued Markov process (νt)t≥0 with in�nitesimal generator
L, de�ned for real bounded functions φ by

Lφ(ν) =
I∑

i=1

b(xi, V ∗ ν(xi))(1− µ(xi))(φ(ν + δxi)− φ(ν))

+
I∑

i=1

b(xi, V ∗ ν(xi))µ(xi)
∫
X

(φ(ν + δz)− φ(ν))M(xi, z)dz

+
I∑

i=1

d(xi, U ∗ ν(xi))(φ(ν − δxi)− φ(ν)). (2.2)

The �rst term of (2.2) captures the e�ect on the population of birth without mutation; the
second term that of birth with mutation, and the last term that of death. The density-
dependence makes all terms nonlinear.

2.1 Process construction

Let us justify the existence of a Markov process admitting L as in�nitesimal generator.
The explicit construction of (νt)t≥0 also yields three side bene�ts: providing a rigorous and
e�cient algorithm for numerical simulations (given hereafter), laying the mathematical
basis to derive the moment equations of the process (Section 3), and establishing a general
method that will be used to derive some large population limits (Sections 4 and 5).

We make the biologically natural assumption that the trait dependency of birth pa-
rameters is �bounded�, and at most linear for the death rate. Speci�cally, we assume

Assumptions (H):

There exist constants b̄, d̄, Ū , V̄ and C and a probability density function M̄ on Rd

such that for each ν =
∑I

i=1 δxi and for x, z ∈ X ,

b(x, V ∗ ν(x)) ≤ b̄, d(x,U ∗ ν(x)) ≤ d̄(1 + I),
U(x) ≤ Ū , V (x) ≤ V̄ ,

M(x, z) ≤ CM̄(z − x).

These assumptions ensure that there exists a constant C̄, such that the total event rate,
for a population counting measure ν =

∑I
i=1 δxi , obtained as the sum of all event rates, is

bounded by C̄I(1 + I) .
Let us now give a pathwise description of the population process (νt)t≥0. We introduce

the following notation.

Notation 2.1 Let N∗ = N\{0}. Let H = (H1, ...,Hk, ...) : M 7→ (Rd)N∗ be de�ned by
H (
∑n

i=1 δxi) = (xσ(1), ..., xσ(n), 0, ..., 0, ...), where xσ(1) 2 ... 2 xσ(n), for some arbitrary

order 2 on Rd ( for example the lexicographic order).
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This functionH allows us to overcome the following (purely notational) problem. Choosing
a trait uniformly among all traits in a population ν ∈ M consists in choosing i uniformly
in {1, ..., 〈ν, 1〉}, and then in choosing the individual number i (from the arbitrary order
point of view). The trait value of such an individual is thus H i(ν).

We now introduce the probabilistic objects we will need.

De�nition 2.2 Let (Ω,F , P ) be a (su�ciently large) probability space. On this space, we
consider the following four independent random elements:

(i) a M-valued random variable ν0 (the initial distribution),

(ii) independent Poisson point measuresM1(ds, di, dθ), andM3(ds, di, dθ) on [0,∞)×N∗×
R+, with the same intensity measure ds

(∑
k≥1 δk(di)

)
dθ (the "clonal" birth and

the death Poisson measures),

(iii) a Poisson point measure M2(ds, di, dz, dθ) on [0,∞) × N∗ × X × R+, with intensity

measure ds
(∑

k≥1 δk(di)
)
dzdθ (the mutation Poisson measure).

Let us denote by (Ft)t≥0 the canonical �ltration generated by these processes.

We �nally de�ne the population process in terms of these stochastic objects.

De�nition 2.3 Assume (H). A (Ft)t≥0-adapted stochastic process ν = (νt)t≥0 is called a
population process if a.s., for all t ≥ 0,

νt = ν0 +
∫

[0,t]×N∗×R+

δHi(νs−)1{i≤〈νs−,1〉}

1{θ≤b(Hi(νs−),V ∗νs−(Hi(νs−)))(1−µ(Hi(νs−)))}M1(ds, di, dθ)

+
∫

[0,t]×N∗×X×R+

δz1{i≤〈νs−,1〉}

1{θ≤b(Hi(νs−),V ∗νs−(Hi(νs−)))µ(Hi(νs−))M(Hi(νs−),z)}M2(ds, di, dz, dθ)

−
∫

[0,t]×N∗×R+

δHi(νs−)1{i≤〈νs−,1〉}1{θ≤d(Hi(νs−),U∗νs−(Hi(νs−)))}M3(ds, di, dθ) (2.3)

Let us now show that if ν solves (2.3), then ν follows the Markovian dynamics we are
interested in.

Proposition 2.4 Assume (H) and consider a solution (νt)t≥0 of Eq. (2.3) such that
E(supt≤T 〈νt,1〉2) < +∞, ∀T > 0. Then (νt)t≥0 is a Markov process. Its in�nitesimal
generator L is de�ned for all bounded and measurable maps φ : M 7→ R, all ν ∈ M,
by (2.2). In particular, the law of (νt)t≥0 does not depend on the chosen order 2.

Proof The fact that (νt)t≥0 is a Markov process is classical. Let us now consider

a function φ as in the statement. With our notation, ν0 =
∑〈ν0,1〉

i=1 δHi(ν0). A simple
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computation, using the fact that a.s., φ(νt) = φ(ν0)+
∑

s≤t(φ(νs− +(νs− νs−))−φ(νs−)),
shows that

φ(νt) = φ(ν0) +
∫

[0,t]×N∗×R+

(
φ(νs− + δHi(νs−))− φ(νs−)

)
1{i≤〈νs−,1〉}

1{θ≤b(Hi(νs−),V ∗νs−(Hi(νs−)))(1−µ(Hi(νs−)))}M1(ds, di, dθ)

+
∫

[0,t]×N∗×X×R+

(φ(νs− + δz)− φ(νs−))1{i≤〈νs−,1〉}

1{θ≤b(Hi(νs−),V ∗νs−(Hi(νs−)))µ(Hi(νs−))M(Hi(νs−),z)}M2(ds, di, dz, dθ)

+
∫

[0,t]×N∗×R+

(
φ(νs− − δHi(νs−))− φ(νs−)

)
1{i≤〈νs−,1〉}

1{θ≤d(Hi(νs−),U∗νs−(Hi(νs−)))}M3(ds, di, dθ).

Taking expectations, we obtain

E(φ(νt)) = E(φ(ν0))

+
∫ t

0
E
( 〈νs,1〉∑

i=1

{(
φ(νs + δHi(νs))− φ(νs)

)
b(H i(νs), V ∗ νs(H i(νs)))(1− µ(H i(νs)))

+
∫
X

(φ(νs + δz)− φ(νs)) b(H i(νs), V ∗ νs(H i(νs)))µ(H i(νs))M(H i(νs), z)dz

+
(
φ(νs − δHi(νs))− φ(νs)

)
d(H i(νs), U ∗ νs(H i(νs)))

})
ds

Di�erentiating this expression at t = 0 leads to (2.2). �

Let us show existence and moment properties for the population process.

Theorem 2.5 (i) Assume (H) and that E (〈ν0, 1〉) <∞. Then the process (νt)t≥0 de�ned
by De�nition 2.3 is well de�ned on R+.

(ii) If furthermore for some p ≥ 1, E (〈ν0, 1〉p) <∞, then for any T <∞,

E( sup
t∈[0,T ]

〈νt, 1〉p) <∞. (2.4)

Proof We �rst prove (ii). Consider the process (νt)t≥0. We introduce for each n the stop-
ping time τn = inf {t ≥ 0, 〈νt, 1〉 ≥ n}. Then a simple computation using Assumption (H)
shows that, dropping the non-positive death terms,

sup
s∈[0,t∧τn]

〈νs, 1〉p ≤ 〈ν0, 1〉p +
∫

[0,t∧τn]×N∗×R+

((〈νs−, 1〉+ 1)p − 〈νs−, 1〉p)1{i≤〈νs−,1〉}

1{θ≤b(Hi(νs−),V ∗νs−(Hi(νs−)))(1−µ(Hi(νs−)))}M1(ds, di, dθ)

+
∫

[0,t]×N∗×X×R+

((〈νs−, 1〉+ 1)p − 〈νs−, 1〉p)1{i≤〈νs−,1〉}

1{θ≤b(Hi(νs−),V ∗νs−(Hi(νs−)))µ(Hi(νs−))M(Hi(νs−),z)}M2(ds, di, dz, dθ).

6



Using the inequality (1+x)p−xp ≤ Cp(1+xp−1) and taking expectations, we thus obtain,
the value of Cp changing from line to line,

E( sup
s∈[0,t∧τn]

〈νs, 1〉p) ≤ Cp

(
1 + E

(∫ t∧τn

0
b̄ (〈νs−, 1〉+ 〈νs−, 1〉p) ds

))
≤ Cp

(
1 + E

(∫ t

0
(1 + 〈νs∧τn , 1〉

p) ds
))

.

The Gronwall Lemma allows us to conclude that for any T < ∞, there exists a constant
Cp,T , not depending on n, such that

E( sup
t∈[0,T∧τn]

〈νt, 1〉p) ≤ Cp,T . (2.5)

First, we deduce that τn tends a.s. to in�nity. Indeed, if not, one may �nd a T0 <∞ such

that εT0 = P (supn τn < T0) > 0. This would imply that E
(
supt∈[0,T0∧τn] 〈νt, 1〉p

)
≥ εT0n

p

for all n, which contradicts (2.5). We may let n go to in�nity in (2.5) thanks to the Fatou
Lemma. This leads to (2.4).

Point (i) is a consequence of Point (ii). Indeed, one builds the solution (νt)t≥0 step by
step. One only has to check that the sequence of jump instants Tn goes a.s. to in�nity as
n tends to in�nity. But this follows from (2.4) with p = 1. �

2.2 Examples and simulations

Let us remark that Assumption (H) is satis�ed in the case where

b(x, V ∗ ν(x)) = b(x), d(x,U ∗ ν(x)) = d(x) + α(x)
∫
X
U(x− y)ν(dy), (2.6)

where b, d and α are bounded functions.
In the case where moreover, µ ≡ 1, this individual-based model can also be inter-

preted as a model of �spatially structured population�, where the trait is viewed as a
spatial location and the mutation at each birth event is viewed as dispersal. This kind
of models have been introduced by Bolker and Pacala ([2, 3]) and Law et al. ([19]), and
mathematically studied by Fournier and Méléard [15]. The case U ≡ 1 corresponds to a
density-dependence in the total population size.

We will consider later the particular set of parameters for the logistic interaction model,
taken from Kisdi [18] and corresponding to a model of asymmetrical competition:

X̄ = [0, 4], d(x) = 0, α(x) = 1, µ(x) = µ,

b(x) = 4− x, U(x− y) =
2
K

(
1− 1

1 + 1, 2 exp(−4(x− y))

)
(2.7)

andM(x, z)dz is a Gaussian law with mean x and variance σ2 conditionned to the fact that
the mutant stays in [0, 4]. As we will see in Section 4, the constantK scaling the strength of
competition also scales the population size (when the initial population size is proportional
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to K). In this model, the trait x can be interpreted as body size. Equation (2.7) means
that body size in�uences the birth rate negatively, and creates asymmetrical competition
re�ected in the sigmoid shape of U (being larger is competitively advantageous).

Let us give an algorithmic construction for the population process (in the general case),
simulating the size I(t) of the population, and the trait vector Xt of all individuals alive
at time t.

At time t = 0, the initial population ν0 contains I(0) individuals and the corresponding
trait vector is X0 = (Xi

0)1≤i≤I(0). We introduce the following sequences of independent
random variables, which will drive the algorithm.

• The type of birth or death events will be selected according to the values of a sequence
of random variables (Wk)k∈N∗ with uniform law on [0, 1].

• The times at which events may be realized will be described using a sequence of
random variables (τk)k∈N with exponential law with parameter C̄.

• The mutation steps will be driven by a sequence of random variables (Zk)k∈N with
law M̄(z)dz.

We set T0 = 0 and construct the process inductively for k ≥ 1 as follows.
At step k−1, the number of individuals is Ik−1, and the trait vector of these individuals

is XTk−1
.

Let Tk = Tk−1 +
τk

Ik−1(Ik−1 + 1)
. Notice that

τk
Ik−1(Ik−1 + 1)

represents the time be-

tween jumps for Ik−1 individuals, and C̄(Ik−1 +1) gives an upper bound on the total event
rate for each individual.

At time Tk, one chooses an individual ik = i uniformly at random among the Ik−1 alive
in the time interval [Tk−1, Tk); its trait is Xi

Tk−1
. (If Ik−1 = 0 then νt = 0 for all t ≥ Tk−1.)

• If 0 ≤Wk ≤
d(Xi

Tk−1
,
∑Ik−1

j=1 U(Xi
Tk−1

−Xj
Tk−1

))

C̄(Ik−1 + 1)
= W i

1(XTk−1
), then the chosen in-

dividual dies, and Ik = Ik−1 − 1.

• If W i
1(XTk−1

) < Wk ≤W i
2(XTk−1

), where

W i
2(XTk−1

) = W i
1(XTk−1

) +
[1− µ(Xi

Tk−1
)]b(Xi

Tk−1
,
∑Ik−1

j=1 V (Xi
Tk−1

−Xj
Tk−1

))

C̄(Ik−1 + 1)
,

then the chosen individual gives birth to an o�spring with trait Xi
Tk−1

, and Ik =
Ik−1 + 1.

• If W i
2(XTk−1

) < Wk ≤W i
3(XTk−1

, Zk), where

W i
3(XTk−1

, Zk) = W i
2(XTk−1

)+

µ(Xi
Tk−1

)b(Xi
Tk−1

,
∑Ik−1

j=1 V (Xi
Tk−1

−Xj
Tk−1

))M(Xi
Tk−1

, X i
Tk−1

+ Zk)

C̄M̄(Zk)(Ik−1 + 1)
,

then the chosen individual gives birth to a mutant o�spring with trait Xi
Tk−1

+ Zk,
and Ik = Ik−1 + 1.
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• If Wk > W i
3(XTk−1

, Zk), nothing happens, and Ik = Ik−1.

Then, at any time t ≥ 0, the number of individuals is de�ned by I(t) =
∑

k≥0 1{Tk≤t<Tk+1}Ik

and the population process is obtained as νt =
∑

k≥0 1{Tk≤t<Tk+1}
∑Ik

i=1 δXi
Tk

.

The simulation of Kisdi's example (2.7) can be carried out following this algorithm.
We can show a very wide variety of qualitative behavior according to the value of the
parameters σ, µ and K.

In the following �gures, the upper part gives the distribution of the traits in the pop-
ulation at any time, using a grey scale code for the number of individuals holding a given
trait. The lower part of the simulation represents the dynamics of the total size I(t) of the
population.

These simulations will serve to illustrate the di�erent mathematical scalings described
in Sections 4 and 5. Let us observe for the moment the qualitative di�erences between the
cases where K is large (Fig. 1 (c)), in which a wide population density evolves regularly
(see Section 4.1) and where µ is small (Fig. 1 (d)), in which the population trait evolves
according to a jump process (see Section 5.1).

The simulations of Fig. 2 involve an acceleration of the birth and death processes (see
Section 4.2) as

b(x, ζ) = Kη + b(x) and d(x, ζ) = Kη + d(x) + α(x)ζ.

There is a noticeable qualitative di�erence between Fig. 2 (a) and (b), where η = 1/2,
and Fig. 2 (c) and (d), where η = 1. In the latter, we observe strong �uctuations in the
population size and a �nely branched structure of the evolutionnary pattern, revealing a
new form of stochasticity in the large population approximation.

More discussions about these simulations are given in [7], especially about the branching
pattern of some of them.

2.3 Martingale Properties

We �nally give some martingale properties of the process (νt)t≥0, which are the key point
of our approach.

Theorem 2.6 Assume (H), and that for some p ≥ 2, E (〈ν0, 1〉p) <∞.

(i) For all measurable functions φ from M into R such that for some constant C, for all
ν ∈M, |φ(ν)|+ |Lφ(ν)| ≤ C(1 + 〈ν, 1〉p), the process

φ(νt)− φ(ν0)−
∫ t

0
Lφ(νs)ds (2.8)

is a càdlàg (Ft)t≥0-martingale starting from 0.

(ii) Point (i) applies to any function φ(ν) = 〈ν, f〉q, with 0 ≤ q ≤ p−1 and with f bounded
and measurable on X .
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(a) µ = 0.03, K = 100, σ = 0.1. (b) µ = 0.03, K = 3000, σ = 0.1.

(c) µ = 0.03, K = 100000, σ = 0.1. (d) µ = 0.00001, K = 3000, σ = 0.1.

Figure 1: Numerical simulations of trait distributions (upper panels, darker is higher fre-
quency) and population size (lower panels). The initial population is monomorphic with
trait value 1.2 and containsK individuals. (a�c) Qualitative e�ect of increasing system size
(measured by parameter K). (d) Large parameter K and very small mutation probability
(µ).

10



(a) µ = 0.3, K = 10000, σ = 0.3/Kη/2, η = 0.5. (b) µ = 0.1/Kη, K = 10000, σ = 0.1, η = 0.5.

(c) µ = 0.3, K = 10000, σ = 0.3/Kη/2, η = 1. (d) µ = 0.3, K = 10000, σ = 0.3/Kη/2, η = 1.

Figure 2: Numerical simulations of trait distribution (upper panels, darker is higher fre-
quency) and population size (lower panels) for accelerated birth and death and concurrently
increased parameter K. Parameter η (between 0 and 1) relates the acceleration of demo-
graphic turnover and the increase of system size K. (a) Rescaling mutation step. (b)
Rescaling mutation probability. (c�d) Rescaling mutation step in the limit case η = 1; two
samples for the same population. The initial population is monomorphic with trait value
1.2 and contains K individuals.
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(iii) For such a function f , the process

Mf
t = 〈νt, f〉 − 〈ν0, f〉 −

∫ t

0

∫
X

{(
(1− µ(x))b(x, V ∗ νs(x))− d(x,U ∗ νs(x))

)
f(x)

+ µ(x)b(x, V ∗ νs(x))
∫
X
f(z)M(x, z)dz

}
νs(dx)ds (2.9)

is a càdlàg square integrable martingale starting from 0 with quadratic variation

〈Mf 〉t =
∫ t

0

∫
X

{(
(1− µ(x))b(x, V ∗ νs(x))− d(x,U ∗ νs(x))

)
f2(x)

+ µ(x)b(x, V ∗ νs(x))
∫
X
f2(z)M(x, z)dz

}
νs(dx)ds. (2.10)

Proof First of all, note that point (i) is immediate thanks to Proposition 2.4 and (2.4).
Point (ii) follows from a straightforward computation using (2.2). To prove (iii), we �rst

assume that E
(
〈ν0, 1〉3

)
<∞. We apply (i) with φ(ν) = 〈ν, f〉. This yields that Mf is a

martingale. To compute its bracket, we �rst apply (i) with φ(ν) = 〈ν, f〉2 and obtain that

〈νt, f〉2 − 〈ν0, f〉2 −
∫ t

0

∫
X

{(
(1− µ(x))b(x, V ∗ νs(x))(f2(x) + 2f(x) 〈νs, f〉)

+ d(x,U ∗ νs(x))(f2(x)− 2f(x) 〈νs, f〉)
)

+ µ(x)b(x, V ∗ νs(x))
∫
X

(f2(z) + 2f(z) 〈νs, f〉)M(x, z)dz
}
νs(dx)ds (2.11)

is a martingale. In another hand, we apply the Itô formula to compute 〈νt, f〉2 from (2.9).
We deduce that

〈νt, f〉2 − 〈ν0, f〉2 −
∫ t

0
2 〈νs, f〉

∫
X

{(
(1− µ(x))b(x, V ∗ νs(x))− d(x,U ∗ νs(x))

)
f(x)

+ µ(x)b(x, V ∗ νs(x))
∫
X
f(z)M(x, z)dz

}
νs(dx)ds− 〈Mf 〉t (2.12)

is a martingale. Comparing (2.11) and (2.12) leads to (2.10). The extension to the case

where only E
(
〈ν0, 1〉2

)
< ∞ is straightforward, since even in this case, E(〈Mf 〉t) < ∞

thanks to (2.4) with p = 2. �

3 Moment equations

Moment equations have been proposed by Bolker and Pacala ([2, 3]) and Dieckmann and
Law ([11]) as handy analytical models for spatially structured populations.

The philosophy of moment equations is germane to the principle of Monte-Carlo meth-
ods: computing the mean path of the point process from a large number of independent
realizations. (Another approach, as we shall see in Section 4, is to model the behavior of
a single trajectory when it is the initial number of individuals which is made large).
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Let us de�ne the deterministic measure E(ν) associated with a random measure ν

by

∫
X
ϕ(x)E(ν)(dx) = E(

∫
X
ϕ(x)ν(dx)). Taking expectations in (2.9), we obtain some

formula for
∫
X ϕ(x)E(ν)(dx) involving the expectations of integrals with respect to ν(dx)

or to ν(dx)ν(dy). Nevertheless, this equation is very intricate and presents an unresolved
hierarchy of nonlinearities. Writing an equation for E(ν(dx)ν(dy)) could be possible but
will involve integrals with respect to ν(dx)ν(dy)ν(dz) and so on. Whether this approach
may eventually help describe the population dynamics in the trait space is still unclear.

Let us consider the case of spatially structured population (see Section 2.2) where
d(x, ζ) = d(x) + α(x)ζ, b(x, ζ) = b(x) and µ(x) = 1. Let N(t) = E(I(t)) where I(t) is the
number of individuals at time t. Taking expectations on (2.9) with ϕ ≡ 1 yields:

N(t)=N(0)+
∫ t

0
E

(∫
X
(b(x)− d(x))νs(dx)−

∫
X×X

α(x)U(x− y)νs(dx)νs(dy)
)
ds. (3.1)

In the speci�c case where b, d and α are independent of (the spatial location) x, (cf. [19]),
(3.1) recasts into

Ṅ = (b− d)N − αE

(∫
X×X

U(x− y)νt(dx)νt(dy)
)
. (3.2)

Even in the speci�c mean-�eld case where U = 1 , we get

Ṅ = (b− d)N − αE

(∫
X×X

νt(dx)νt(dy)
)
. (3.3)

The quadratic term corresponding to spatial correlations can not be simpli�ed and (3.3)
allows us to precisely identify the mathematical issues raised by the problem of moment
closure. In Section 4.1, we will see that one needs the additional large population hypothesis
to decorrelate the quadratic term and to recover the well-known logistic equation.

Nevertheless, even if we are not able to produce a closed equation satis�ed by E(ν),
we are able to show, in the general case, the following qualitative important property
concerning the absolute continuity of the expectation of νt.

Proposition 3.1 Assume (H), that E(〈ν0, 1〉) <∞ and that E(ν0) is absolutely continu-
ous with respect to the Lebesgue measure. Then for all t ≥ 0, E(νt) is absolutely continuous
with respect to the Lebesgue measure.

Remark 3.2 This implies in particular that, when the initial trait distribution E(ν0) has
no singularity w.r.t. the Lebesgue measure, these singularities, such as Dirac masses, can
only appear in the limit of in�nite time.

Proof Consider a Borel set A of Rd with Lebesgue measure zero. Consider also, for each
n ≥ 1, the stopping time τn = inf {t ≥ 0, 〈νt, 1〉 ≥ n}. A simple computation allows us to
obtain, for all t ≥ 0, all n ≥ 1,

E (〈νt∧τn ,1A〉) ≤ E(〈ν0,1A〉) + b̄ E

(∫ t∧τn

0

∫
X

1A(x)νs(dx)ds
)

+ b̄ E

(∫ t∧τn

0

∫
X

(∫
X

1A(z)M(x, z)dz
)
νs(dx)ds

)
.
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By assumption, the �rst term on the RHS is zero. The third term is also zero, since for
any x ∈ X ,

∫
X 1A(z)M(x, z)dz = 0. By Gronwall's lemma, we conclude that for each n,

E(〈νt∧τn ,1A〉) is zero. Thanks to (2.4) with p = 1, τn a.s. grows to in�nity with n, which
concludes the proof. �

4 Large-population renormalizations of the individual-based

process

The moment equation approach outlined above is based on the idea of averaging a large
number of independent realizations of the population process initiated with a �nite number
of individuals. If K scales the initial number of individuals, the alternative approach
consists in studying the exact process by letting that system size become very large and
making some appropriate renormalizations. Several types of approximations can then be
derived, depending on these renormalizations.

For any K, let the set of parameters UK , VK , bK , dK , MK , µK satisfy the Assump-
tion (H). Let νK

t be the counting measure of the population at time t. We de�ne the
measure-valued Markov process (XK

t )t≥0 by

XK
t =

1
K
νK

t .

As the system size K goes to in�nity, we need to assume the
Assumption (H1): The parameters UK , VK , bK , dK , MK and µK are all continuous,

ζ 7→ b(x, ζ) and ζ 7→ d(x, ζ) are Lipschitz for any x ∈ X , and

UK(x) = U(x)/K, VK(x) = V (x)/K.

A biological interpretation of this renormalization is that larger systems are made up of
smaller individuals, which may be a consequence of a �xed amount of available resources to
be partitioned among individuals. Thus, the biomass of each interacting individual scales
as 1/K, which may imply that the interaction e�ect of the global population on a focal
individual is of order 1. Parameter K may also be interpreted as scaling the resources
available, so that the renormalization of UK and VK re�ects the decrease of competition
for resources.

The generator L̃K of (νK
t )t≥0 is given by (2.2), with parameters UK , VK , bK , dK , MK ,

µK . The generator LK of (XK
t )t≥0 is obtained by writing, for any measurable function φ

from MF (X ) into R and any ν ∈MF (X ),

LKφ(ν) = ∂tEν(φ(XK
t ))t=0 = ∂tEKν(φ(νK

t /K))t=0 = L̃KφK(Kν)

where φK(µ) = φ(µ/K). Then we get

LKφ(ν) = K

∫
X
bK(x, V ∗ ν(x))(1− µK(x))(φ(ν +

1
K
δx)− φ(ν))ν(dx)

+K

∫
X

∫
X
bK(x, V ∗ ν(x))µK(x)(φ(ν +

1
K
δz)− φ(ν))MK(x, z)dzν(dx)

+K

∫
X
dK(x,U ∗ ν(x))(φ(ν − 1

K
δx)− φ(ν))ν(dx). (4.1)
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By a similar proof as the one of Section 2.3, we may summarize the moment and
martingale properties of XK .

Proposition 4.1 Assume that for some p ≥ 2, E(〈XK
0 , 1〉p) < +∞.

(1) For any T > 0, E(supt∈[0,T ]〈XK
t , 1〉p) < +∞.

(2) For any bounded and measurable functions φ on MF such that |φ(ν)| + |LKφ(ν)| ≤
C(1+ < ν, 1 >p), the process φ(XK

t ) − φ(XK
0 ) −

∫ t
0 L

Kφ(XK
s )ds is a càdlàg mar-

tingale.

(3) For each measurable bounded function f , the process

mK,f
t = 〈XK

t , f〉 − 〈XK
0 , f〉

−
∫ t

0

∫
X

(bK(x, V ∗XK
s (x))− dK(x,U ∗XK

s (x)))f(x)XK
s (dx)ds

−
∫ t

0

∫
X
µK(x)bK(x, V ∗XK

s (x)
(∫

X
f(z)MK(x, z)dz − f(x)

)
XK

s (dx)ds

is a square integrable martingale with quadratic variation

〈mK,f 〉t =
1
K

{∫ t

0

∫
X
µK(x)bK(x, V ∗XK

s (x))
(∫

X
f2(z)MK(x, z)dz−f2(x)

)
XK

s (dx)ds

+
∫ t

0

∫
X

(bK(x, V ∗XK
s (x)) + dK(x,U ∗XK

s (x)))f2(x)XK
s (dx)ds

}
(4.2)

The search of tractable limits for the semimartingales 〈XK , f〉 yields the di�erent choices
of scalings of the parameters developed in this section. In particular, we obtain the deter-
ministic or stochastic nature of the approximation by studying the quadratic variation of
the martingale term, given in (4.2).

4.1 Large-population limit

We assume here that bK = b, dK = d, µK = µ, MK = M .

Theorem 4.2 Assume Assumptions (H) and (H1). Assume moreover that the initial con-
ditions XK

0 converge in law and for the weak topology on MF (X ) as K increases, to a �nite
deterministic measure ξ0, and that supK E(〈XK

0 , 1〉3) < +∞.
Then for any T > 0, the process (XK

t )t≥0 converges in law, in the Skorohod space
D([0, T ],MF (X )), as K goes to in�nity, to the unique deterministic continuous function
ξ ∈ C([0, T ],MF (X )) satisfying for any bounded f : X → R

〈ξt, f〉 = 〈ξ0, f〉+
∫ t

0

∫
X
f(x)[(1− µ(x))b(x, V ∗ ξs(x))− d((x,U ∗ ξs(x))]ξs(dx)ds

+
∫ t

0

∫
X
µ(x)b(x, V ∗ ξs(x))

(∫
X
f(z)M(x, z)dz

)
ξs(dx)ds (4.3)
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The proof of Theorem 4.2 is let to the reader. It can be adapted from the proofs of
Theorem 4.3 and 4.5 below, or obtained as a generalization of Theorem 5.3 in [15]. This
result is illustrated by the simulations of Figs. 1 (a)�(c).

Main Examples:

(1) A density case. Following similar arguments as in the proof of Proposition 3.1, one
shows that if the initial condition ξ0 has a density w.r.t. Lebesgue measure, then the
same property holds for the �nite measure ξt, which is then solution of the functional
equation:

∂tξt(x) = [(1− µ(x))b(x, V ∗ ξt(x))− d(x,U ∗ ξt(x))] ξt(x)

+
∫

Rd

M(y, x)µ(y)b(y, V ∗ ξt(y))ξt(y)dy (4.4)

for all x ∈ X and t ≥ 0. Desvillettes et al. [9] suggest to refer to ξt as the population
number density; then the quantity nt =

∫
X ξt(x)dx can be interpreted as the total

population density over the whole trait space.

(2) The mean �eld case. As for moment equations (cf. Section 3), the case of spatially
structured populations with constant rates b, d, α is meaningful. In this context, (4.3)
leads to the following equation on nt:

∂tnt = (b− d)nt − α

∫
X×X

U(x− y)ξt(dx)ξt(dy). (4.5)

With the assumption U ≡ 1, we recover the classical mean-�eld logistic equation of
population growth:

∂tnt = (b− d)nt − αn2
t .

Comparing (4.5) with the �rst-moment equation (3.3) obtained previously stresses
out the �decorrelative� e�ect of the large system size renormalization (only in case
U ≡ 1). In (3.3), the correction term capturing the e�ect of spatial correlations in
the population remains, even if one assumes U ≡ 1.

(3) Monomorphic and dimorphic cases without mutation. We assume here that
the population evolves without mutation (parameter µ = 0); then the population
traits are the initial ones.

(a) Monomorphic case: only trait x is present in the population at time t =
0. Thus, we can write XK

0 = nK
0 (x)δx, and then XK

t = nK
t (x)δx for any time t.

Theorem 4.2 recasts in this case into nK
t (x) → nt(x) with ξt = nt(x)δx, and (4.3)

writes
d

dt
nt(x) = nt(x)

(
b(x, V (0)nt(x))− d(x,U(0)nt(x))

)
, (4.6)

(b) Dimorphic case: when the population contains two traits x and y, i.e. when
XK

0 = nK
0 (x)δx + nK

0 (y)δy, we can de�ne in a similar way nt(x) and nt(y) for any
t as before, such that ξt = nt(x)δx + nt(y)δy satis�es (4.3), which recasts into the
following system of coupled ordinary di�erential equations:
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d

dt
nt(x)=nt(x)

(
b(x, V (0)nt(x)+V (x−y)nt(y))−d(x,U(0)nt(x)+U(x−y)nt(y))

)
d

dt
nt(y)=nt(y)

(
b(y, V (0)nt(y)+V (y−x)nt(x))−d(y, U(0)nt(y)+U(y−x)nt(x))

)
.

(4.7)

4.2 Large-population limit with accelerated births and deaths

We consider here an alternative limit of a large population, combined with accelerated birth
and death. This may be useful to investigate the qualitative di�erences of evolutionary
dynamics across populations with allometric demographies (larger populations made up of
smaller individuals who reproduce and die faster, See [5], [8]).

Here, we assume that X = Rd. Let us denote by MF the space MF (Rd). We consider
the acceleration of birth and death processes at a rate proportional to Kη while preserv-
ing the demographic balance. That is, the birth and death rates scale with system size
according to

Assumption (H2):

bK(x, ζ) = Kηr(x) + b(x, ζ), dK(x, ζ) = Kηr(x) + d(x, ζ).

The allometric e�ect (smaller individuals reproduce and die faster) is parameterized by the
function r, positive and bounded over Rd, and the constant η. A detailed discussion of the
biological meaning of these parameters in terms of allometry and life-history scalings can
be found in [7]. As in Section 4.1, the interaction kernels V and U are renormalized by
K. Using similar arguments as in Section 4.1, the process XK = 1

K ν
K is now a Markov

process with generator

LKφ(ν) = K

∫
Rd

(Kηr(x) + b(x, V ∗ ν(x)))(1− µK(x))(φ(ν +
1
K
δx)− φ(ν))ν(dx)

+K

∫
Rd

(Kηr(x) + b(x, V ∗ ν(x)))µK(x)
∫

Rd

(φ(ν +
1
K
δz)− φ(ν))MK(x, z)dzν(dx)

+K

∫
Rd

(Kηr(x) + d(x,U ∗ ν(x)))(φ(ν − 1
K
δx)− φ(ν))ν(dx).

As before, for any measurable functions φ on MF such that |φ(ν)| + |LKφ(ν)| ≤ C(1 +
〈ν, 1〉3), the process

φ(XK
t )− φ(XK

0 )−
∫ t

0
LKφ(XK

s )ds (4.8)

is a martingale. In particular, for each measurable bounded function f , we obtain

MK,f
t = 〈XK

t , f〉 − 〈XK
0 , f〉

−
∫ t

0

∫
Rd

(b(x, V ∗XK
s (x))− d(x,U ∗XK

s (x)))f(x)XK
s (dx)ds (4.9)

−
∫ t

0

∫
Rd

µK(x)(Kηr(x) + b(x, V ∗XK
s (x)))

(∫
Rd

f(z)MK(x, z)dz − f(x)
)
XK

s (dx)ds,
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is a square integrable martingale with quadratic variation

〈MK,f 〉t =
1
K

{∫ t

0

∫
Rd

(2Kηr(x) + b(x, V ∗XK
s (x)) + d(x,U ∗XK

s (x)))f2(x)XK
s (dx)ds

+
∫ t

0

∫
Rd

µK(x)(Kηr(x)+b(x, V ∗XK
s (x)))

(∫
Rd

f2(z)MK(x, z)dz−f2(x)
)
XK

s (dx)ds
}
.

(4.10)

Two interesting cases will be considered hereafter, in which the variance e�ect µKMK

is of order 1/Kη. That will ensure the deterministic part in (4.9) to converge. In the
large-population renormalization (Section 4.1), the quadratic variation of the martingale
part was of order 1/K. Here, it is of order Kη × 1/K. This quadratic variation will thus
stay �nite provided that η ∈ (0, 1], in which case tractable limits will result. Moreover,
this limit will be zero if η < 1 and nonzero if η = 1, which will lead to deterministic or
random limit models.

4.2.1 Accelerated mutation and small mutation steps

We consider here that the mutation rate is �xed, so that mutations are accelerated as a
consequence of accelerating birth. We assume

Assumptions (H3):

(1) µK = µ.

(2) The mutation step density MK(x, z) is the density of a random variable with mean x,
variance-covariance matrix Σ(x)/Kη (where Σ(x) = (Σij(x))1≤i,j≤d) and with third
moment of order 1/Kη+ε uniformly in x (ε > 0). (Thus, as K goes to in�nity, mutant
traits become more concentrated around their progenitors').

(3)
√

Σ denoting the symmetrical square root matrix of Σ, the function
√

Σrµ is Lipschitz
continuous.

The main example is when the mutation step density is taken as the density of a vector
of independent Gaussian variables with mean x and variance σ2(x)/Kη:

MK(x, z) =
(

Kη

2πσ2(x)

)d/2

exp[−Kη|z − x|2/2σ2(x)] (4.11)

where σ2(x) is positive and bounded over Rd.
Then the convergence results of this section can be stated as follows.

Theorem 4.3 (1) Assume (H), (H1), (H2), (H3) and 0 < η < 1. Assume also that
the initial conditions XK

0 converge in law and for the weak topology on MF as K
increases, to a �nite deterministic measure ξ0, and that

sup
K
E(〈XK

0 , 1〉3) < +∞. (4.12)
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Then, for each T > 0, the sequence of processes (XK) belonging to D([0, T ],MF )
converges (in law) to the unique deterministic function (ξt)t≥0 ∈ C([0, T ],MF ) sat-
isfying: for each function f ∈ C2

b (Rd),

〈ξt, f〉 = 〈ξ0, f〉+
∫ t

0

∫
Rd

(b(x, V ∗ ξs(x))− d(x,U ∗ ξs(x)))f(x)ξs(dx)ds

+
∫ t

0

∫
Rd

1
2
µ(x)r(x)

∑
1≤i,j≤d

Σij(x)∂2
ijf(x)ξs(dx)ds, (4.13)

where ∂2
ijf denotes the second-order partial derivative of f with respect to xi and xj

(x = (x1, . . . , xd)).

(2) Assume moreover that there exists c > 0 such that r(x)µ(x)s∗Σ(x)s ≥ c||s||2 for any
x and s in Rd. Then for each t > 0, the measure ξt has a density with respect to
Lebesgue measure.

Remark 4.4 In case (2), Eq. (4.13) may be written as

∂tξt(x) =
(
b(x, V ∗ ξt(x))− d(x,U ∗ ξt(x))

)
ξt(x) +

1
2

∑
1≤i,j≤d

∂2
ij(rµΣijξt)(x). (4.14)

Observe that, for the example (4.11), this equation writes

∂tξt(x) =
(
b(x, V ∗ ξt(x))− d(x,U ∗ ξt(x))

)
ξt(x) +

1
2
∆(σ2rµξt)(x). (4.15)

Therefore, Eq. (4.15) generalizes the Fisher reaction-di�usion equation known from classi-
cal population genetics (see e.g. [4]).

Theorem 4.5 Assume (H), (H1), (H2), (H3) and η = 1. Assume also that the initial
conditions XK

0 converge in law and for the weak topology on MF as K increases, to a
�nite (possibly random) measure X0, and that supK E(〈XK

0 , 1〉3) < +∞.
Then, for each T > 0, the sequence of processes (XK) converges in law in D([0, T ],MF )

to the unique (in law) continuous superprocess X ∈ C([0, T ],MF ), de�ned by the following
conditions:

sup
t∈[0,T ]

E
(
〈Xt, 1〉3

)
<∞, (4.16)

and for any f ∈ C2
b (Rd),

M̄f
t = 〈Xt, f〉 − 〈X0, f〉 −

1
2

∫ t

0

∫
Rd

µ(x)r(x)
∑

1≤i,j≤d

Σij(x)∂2
ijf(x)Xs(dx)ds

−
∫ t

0

∫
Rd

f(x) (b(x, V ∗Xs(x))− d(x,U ∗Xs(x)))Xs(dx)ds (4.17)

is a continuous martingale with quadratic variation

〈M̄f 〉t = 2
∫ t

0

∫
Rd

r(x)f2(x)Xs(dx)ds. (4.18)
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Remark 4.6 (1) The limiting measure-valued process X appears as a generalization of
the one proposed by Etheridge [12] to model spatially structured populations.

(2) The conditions characterizing the process X above can be formally rewritten as

∂tXt(x) =
(
b(x, V ∗Xt(x))−d(x,U ∗Xt(x))

)
Xt(x)+

1
2

∑
1≤i,j≤d

∂2
ij(rµΣijXt)(x)+Ṁt

where Ṁt is a random �uctuation term, which re�ects the demographic stochasticity
of this fast birth-and-death process, that is, faster than the accelerated birth-and-death
process which led to the deterministic reaction-di�usion approximation (4.15).

(3) As developed in Step 1 of the proof of Theorem 4.5 below, a Girsanov's theorem relates
the law of Xt and the one of a standard super-Brownian motion, which leads to
conjecture that a density for Xt exists only when d = 1, as for the super-Brownian
motion.

These two theorems are illustrated by the simulations of Figs. 2 (a), (c) and (d).

Proof of Theorem 4.3 We divide the proof in several steps. Let us �x T > 0.

Step 1 Let us �rst show the uniqueness for a solution of the equation (4.13).
To this aim, we de�ne the evolution equation associated with (4.13). It is easy to prove

that if ξ is a solution of (4.13) satisfying supt∈[0,T ]〈ξt, 1〉 <∞, then for each test function

ψt(x) = ψ(t, x) ∈ C1,2
b (R+ × Rd), one has

〈ξt, ψt〉 = 〈ξ0, ψ0〉+
∫ t

0

∫
Rd

(b(x, V ∗ ξs(x))− d(x,U ∗ ξs(x)))ψ(s, x)ξs(dx)ds

+
∫ t

0

∫
Rd

(∂sψ(s, x) +
1
2
r(x)µ(x)

∑
i,j

Σij(x)∂2
ijψs(x))ξs(dx)ds. (4.19)

Now, since the function
√

Σrµ is Lipschitz continuous, we may de�ne the transition semi-
group (Pt) whith in�nitesimal generator f 7→ 1

2rµ
∑

i,j Σij∂
2
ijf . Then, for each function

f ∈ C2
b (Rd) and �xed t > 0, to choose ψ(s, x) = Pt−sf(x) yields

〈ξt, f〉 = 〈ξ0, Ptf〉+
∫ t

0

∫
Rd

(b(x, V ∗ ξs(x))− d(x,U ∗ ξs(x)))Pt−sf(x)ξs(dx)ds, (4.20)

since ∂sψ(s, x) + 1
2r(x)µ(x)

∑
i,j Σij(x)∂2

ijψs(x) = 0 for this choice.
We now prove the uniqueness of a solution of (4.20).
Let us consider two solutions (ξt)t≥0 and (ξ̄t)t≥0 of (4.20) satisfying supt∈[0,T ]

〈
ξt + ξ̄t, 1

〉
=

AT < +∞. We consider the variation norm de�ned for µ1 and µ2 in MF by

||µ1 − µ2|| = sup
f∈L∞(Rd), ||f ||∞≤1

| 〈µ1 − µ2, f〉 |. (4.21)
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Then, we consider some bounded and measurable function f de�ned on X such that
||f ||∞ ≤ 1 and obtain

|
〈
ξt − ξ̄t, f

〉
| ≤

∫ t

0

∣∣∣∣∫
Rd

[ξs(dx)− ξ̄s(dx)] (b(x, V ∗ ξs(x))− d(x,U ∗ ξs(x)))Pt−sf(x)
∣∣∣∣ ds

+
∫ t

0

∣∣∣∣∫
Rd

ξ̄s(dx)(b(x, V ∗ ξs(x))− b(x, V ∗ ξ̄s(x)))Pt−sf(x)
∣∣∣∣ ds

+
∫ t

0

∣∣∣∣∫
Rd

ξ̄s(dx)(d(x,U ∗ ξs(x))− d(x,U ∗ ξ̄s(x)))Pt−sf(x)
∣∣∣∣ ds. (4.22)

Since ||f ||∞ ≤ 1, then ||Pt−sf ||∞ ≤ 1 and for all x ∈ Rd,

|(b(x, V ∗ ξs(x))− d(x,U ∗ ξs(x)))Pt−sf(x)| ≤ b̄+ d̄(1 + ŪAT ).

Moreover, b and d are Lipschitz continuous in their second variable with respective con-
stants Kb and Kd. Thus we obtain from (4.22) that

|
〈
ξt − ξ̄t, f

〉
| ≤

[
b̄+ d̄(1 + ŪAT ) +KbAT V̄ +KdAT Ū

] ∫ t

0
||ξs − ξ̄s||ds. (4.23)

Taking the supremum over all functions f such that ||f ||∞ ≤ 1, and using the Gronwall
Lemma, we �nally deduce that for all t ≤ T , ||ξt − ξ̄t|| = 0. Uniqueness holds.

Step 2 Next, we would like to obtain some moment estimates. First, we check that
for all T <∞,

sup
K

sup
t∈[0,T ]

E
(
〈XK

t , 1〉3
)
<∞. (4.24)

To this end, we use (4.8) with φ(ν) = 〈ν, 1〉3. (To be completely rigorous, one should �rst
use φ(ν) = 〈ν, 1〉3 ∧ A, make A tend to in�nity). Taking expectation, we obtain that for
all t ≥ 0, all K,

E
(
〈XK

t , 1〉3
)

= E
(
〈XK

0 , 1〉3
)

+
∫ t

0
E

(∫
Rd

(
[Kη+1r(x) +Kb(x, V ∗XK

s (x))]
{

[〈XK
s , 1〉+

1
K

]3 − 〈XK
s , 1〉3

}
{
Kη+1r(x) +Kd(x,U ∗XK

s (x))
}{

[〈XK
s , 1〉 −

1
K

]3 − 〈XK
s , 1〉3

})
XK

s (dx)
)
ds.

Dropping the non-positive death term involving d, we get

E
(
〈XK

t , 1〉3
)
≤ E

(
〈XK

0 , 1〉3
)

+
∫ t

0
E

(∫
Rd

(
Kη+1r(x)

{
[〈XK

s , 1〉+
1
K

]3 + [〈XK
s , 1〉 −

1
K

]3 − 2〈XK
s , 1〉3

}
+Kb(x, V ∗XK

s (x))
{

[〈XK
s , 1〉+

1
K

]3 − 〈XK
s , 1〉3

})
XK

s (dx)
)
ds.

But for all x ≥ 0, all ε ∈ (0, 1], (x+ε)3−x3 ≤ 6ε(1+x2) and |(x+ε)3+(x−ε)3−2x3| = 6ε2x.
We �nally obtain

E
(
〈XK

t , 1〉3
)
≤ E

(
〈XK

0 , 1〉3
)

+ C

∫ t

0
E
(
〈XK

s , 1〉+ 〈XK
s , 1〉2 + 〈XK

s , 1〉3
)
ds.
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Assumption (4.12) and the Gronwall Lemma allows us to conclude that (4.24) holds.
Next, we wish to check that

sup
K
E
(

sup
t∈[0,T ]

〈XK
t , 1〉2

)
<∞. (4.25)

Applying (4.9) with f ≡ 1, we obtain

〈XK
t , 1〉 = 〈XK

0 , 1〉+
∫ t

0

∫
X

(
b(x, V ∗XK

s (x))− d(x,U ∗XK
s (x))

)
XK

s (dx)ds+mK,1
t .

Hence

sup
s∈[0,t]

〈XK
s , 1〉2 ≤ C

(
〈XK

0 , 1〉2 + b̄

∫ t

0
〈XK

s , 1〉2ds+ sup
s∈[0,t]

|MK,1
s |2

)
.

Thanks to (4.12), the Doob inequality and the Gronwall Lemma, there exists a constant
Ct not depending on K such that

E
(

sup
s∈[0,t]

〈XK
s , 1〉2

)
≤ Ct

(
1 + E

(
〈MK,1〉t

))
.

Using now (4.10), we obtain, for some other constant Ct not depending on K,

E
(
〈MK,1〉t

)
≤ C

∫ t

0

(
E
(
〈XK

s , 1〉+ 〈XK
s , 1〉2

) )
ds ≤ Ct

thanks to (4.24). This concludes the proof of (4.25).

Step 3 We �rst endow MF with the vague topology, the extension to the weak
topology being handled in Step 6 below. To show the tightness of the sequence of laws
QK = L(XK) in P(D([0, T ],MF )), it su�ces, following Roelly [23], to show that for any
continuous bounded function f on Rd, the sequence of laws of the processes 〈XK , f〉 is tight
in D([0, T ],R). To this end, we use the Aldous criterion [1] and the Rebolledo criterion
(see [17]). We have to show that

sup
K
E
(

sup
t∈[0,T ]

|〈XK
t , f〉|

)
<∞, (4.26)

and the tightness respectively of the laws of the predictable quadratic variation of the
martingale part and of the drift part of the semimartingales 〈XK , f〉.
Since f is bounded, (4.26) is a consequence of (4.25): let us thus consider a couple (S, S′)
of stopping times satisfying a.s. 0 ≤ S ≤ S′ ≤ S + δ ≤ T . Using (4.10) and (4.25), we get
for constants C,C ′

E
(
〈MK,f 〉S′ − 〈MK,f 〉S

)
≤ CE

(∫ S+δ

S

(
〈XK

s , 1〉+ 〈XK
s , 1〉2

)
ds

)
≤ C ′δ.

In a similar way, the expectation of the �nite variation part of 〈XK
S′ , f〉−〈XK

S , f〉 is bounded
by C ′δ.

Hence, the sequence QK = L(XK) is tight.
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Step 4 Let us now denote by Q the limiting law of a subsequence of QK . We still
denote this subsequence by QK . Let X = (Xt)t≥0 a process with law Q. We remark that
by construction, almost surely,

sup
t∈[0,T ]

sup
f∈L∞(Rd),||f ||∞≤1

|〈XK
t , f〉 − 〈XK

t− , f〉| ≤ 1/K.

This implies that the process X is a.s. strongly continuous.

Step 5 The time T > 0 is �xed. Let us now check that almost surely, the process X
is the unique solution of (4.13). Thanks to (4.25), it satis�es supt∈[0,T ]〈Xt, 1〉 < +∞ a.s.,

for each T . We �x now a function f ∈ C3
b (Rd) (the extension of (4.13) to any function f

in C2
b is not hard) and some t ≤ T .

For ν ∈ C([0, T ],MF ), denote by

Ψ1
t (ν) = 〈νt, f〉 − 〈ν0, f〉 −

∫ t

0

∫
Rd

(b(x, V ∗ νs(x))− d(x,U ∗ νs(x)))f(x)νs(dx)ds,

Ψ2
t (ν) = −

∫ t

0

∫
Rd

1
2
µ(x)r(x)

∑
i,j

Σij(x)∂2
ijf(x)νs(dx)ds. (4.27)

We have to show that
EQ

(
|Ψ1

t (X) + Ψ2
t (X)|

)
= 0. (4.28)

By (4.9), we know that for each K,

MK,f
t = Ψ1

t (X
K) + Ψ2,K

t (XK),

where

Ψ2,K
t (XK) = −

∫ t

0

∫
Rd

µ(x)(Kηr(x) + b(x, V ∗XK
s (x)))(∫

Rd

f(z)MK(x, z)dz − f(x)
)
XK

s (dx)ds. (4.29)

Moreover, (4.25) implies that for each K,

E
(
|MK,f

t |2
)

= E
(
〈MK,f 〉t

)
≤
CfK

η

K
E

(∫ t

0

{
〈XK

s , 1〉+ 〈XK
s , 1〉2

}
ds

)
≤
Cf,TK

η

K
,

(4.30)
which goes to 0 as K tends to in�nity, since 0 < η < 1. Therefore,

lim
K
E(|Ψ1

t (X
K) + Ψ2,K

t (XK)|) = 0.

Since X is a.s. strongly continuous, since f ∈ C3
b (Rd) and thanks to the continuity of

the parameters, the functions Ψ1
t and Ψ2

t are a.s. continuous at X. Furthermore, for any
ν ∈ D([0, T ],MF ),

|Ψ1
t (ν) + Ψ2

t (ν)| ≤ Cf,T sup
s∈[0,T ]

(
1 + 〈νs, 1〉2

)
. (4.31)
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Hence using (4.24), we see that the sequence (Ψ1
t (X

K)+Ψ2
t (X

K))K is uniformly integrable,
and thus

lim
K
E
(
|Ψ1

t (X
K) + Ψ2

t (X
K)|
)

= E
(
|Ψ1

t (X) + Ψ2
t (X)|

)
. (4.32)

We have now to deal with Ψ2,K
t (XK)−Ψ2

t (X
K). The convergence of this term is due to

the fact that the measure MK(x, z)dz has mean x, variance Σ(x)/Kη, and third moment
bounded by C/Kη+ε (ε > 0) uniformly in x. Indeed, if Hf(x) denotes the Hessian matrix
of f at x,∫

Rd

f(z)MK(x, z)dz

=
∫

Rd

(
f(x) + (z − x) · ∇f(x) +

1
2
(z − x)∗Hf(x)(z − x) +O((z − x)3)

)
MK(x, z)dz

= f(x) +
1
2

∑
i,j

Σij(x)
Kη

∂2
ijf(x) + o(

1
Kη

). (4.33)

where Kηo( 1
Kη ) tends to 0 uniformly in x (since f is in C3

b ), as K tends to in�nity. Then,

Ψ2,K
t (XK) = −

∫ t

0

∫
Rd

µ(x)(Kηr(x) + b(x, V ∗XK
s (x)))×

×
(

1
2

∑
i,j

Σij(x)
Kη

∂2
ijf(x) + o(

1
Kη

)
)
XK

s (dx)ds,

and

|Ψ2,K
t (XK)−Ψ2

t (X
K)| ≤ Cf

(
sup
s≤T

< XK
s , 1 >

)( 1
Kη

+Kηo(
1
Kη

)
)
.

Using (4.25), we conclude the proof of (4.28).

Step 6 The previous steps imply that (XK)K converges to ξ in D([0, T ],MF ), where
MF is endowed with the vague topology. To extend the result to the case where MF is
endowed with the weak topology, we use a criterion proved in Méléard and Roelly [20]:
since the limiting process is continuous, it su�ces to prove that the sequence (〈XK , 1〉)
converges to 〈ξ, 1〉 in law, in D([0, T ],R). One may of course apply Step 5 with f ≡ 1,
which concludes the proof of (1).

(2) Let us now assume the non-degeneracy property r(x)µ(x)s∗Σ(x)s ≥ c‖s‖2 > 0 for
each x ∈ Rd, s ∈ Rd. That implies that for each time t > 0, the transition semigroup
Pt(x, dy) introduced in Step 1 of this proof has for each x a density function pt(x, y) with
respect to the Lebesgue measure. Then if we come back to the evolution equation (4.20),
we can write∫

Rd

f(x)ξt(dx) =
∫

Rd

(∫
Rd

f(y)pt(x, y)dy
)
ξ0(dx)

+
∫ t

0

∫
Rd

(b(x, V ∗ ξs(x))− d(x,U ∗ ξs(x)))
(∫

Rd

f(y)pt−s(x, y)dy
)
ξs(dx)ds.
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Using the fact that the parameters are bounded, that supt≤T 〈ξt, 1〉 < +∞ and that
f is bounded, we can apply Fubini's theorem and deduce that∫

Rd

f(x)ξt(dx) =
∫

Rd

Ht(y)f(y)dy

with H ∈ L∞([0, T ], L1(Rd)), which implies that ξt has a density with respect to the
Lebesgue measure for each time t ≤ T .

Equation (4.14) is then the dual form of (4.13). �

Proof of Theorem 4.5 We will use a similar method as the one of the previous theorem.
Steps 2, 3, 4 and 6 of this proof can be achieved exactly in the same way. Therefore, we
only have to prove the uniqueness (in law) of the solution to the martingale problem (4.16)�
(4.18) (Step 1), and that any accumulation point of the sequence of laws of XK is solution
to (4.16)�(4.18) (Step 5).

Step 1 This uniqueness result is well-known for the super-Brownian process (de�ned
by a similar martingale problem, but with b = d = 0, r = µ = 1 and Σ = Id, cf. [23]).
Following [12], we may use the version of Dawson's Girsanov transform obtained in Evans
and Perkins [14] (Theorem 2.3), to deduce the uniqueness in our situation, provided the
condition

E

(∫ t

0

∫
Rd

[b(x, V ∗Xs(x))− d(x,U ∗Xs(x))]2Xs(dx)ds
)
< +∞

is satis�ed. This is easily obtained from the assumption that supt∈[0,T ]E[〈Xt, 1〉3] < ∞
since the coe�cients are bounded.

Step 5 Let us identify the limit. Let us call QK = L(XK) and denote by Q a
limiting value of the tight sequence QK , and by X = (Xt)t≥0 a process with law Q.
Because of Step 4, X belongs a.s. to C([0, T ],MF ). We have to show that X satis�es the
conditions (4.16), (4.17) and (4.18). First note that (4.16) is straightforward from (4.25).

Then, we show that for any function f in C3
b (Rd), the process M̄f

t de�ned by (4.17) is a
martingale (the extension to every function in C2

b is not hard). We consider 0 ≤ s1 ≤ ... ≤
sn < s < t, some continuous bounded maps φ1, ...φn on MF , and our aim is to prove that,
if the function Ψ from D([0, T ],MF ) into R is de�ned by

Ψ(ν) = φ1(νs1)...φn(νsn)
{
〈νt, f〉 − 〈νs, f〉

−
∫ t

s

∫
Rd

(
1
2
µ(x)r(x)

∑
i,j

Σij∂
2
ijf(x) + f(x) [b(x, V ∗ νu(x))− d(x,U ∗ νu(x))]

)
νu(dx)du

}
,

(4.34)

then
E (Ψ(X)) = 0. (4.35)

It follows from (4.9) that

0 = E
(
φ1(XK

s1
)...φn(XK

sn
)
{
MK,f

t −MK,f
s

})
= E

(
Ψ(XK)

)
−AK , (4.36)
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where AK is de�ned by

AK = E
(
φ1(XK

s1
)...φn(XK

sn
)
∫ t

s

∫
Rd

µ(x)
{
b(x, V ∗XK

u (x))
[∫

Rd

(f(z)− f(x))MK(x, z)dz
]

+ r(x)K
[∫

Rd

(f(z)− f(x)−
∑
i,j

Σij(x)
2K

∂2
ijf(x))MK(x, z)dz

]}
XK

u (dx)du
)
.

It turns out from (4.33) that AK tends to zero as K grows to in�nity, and using (4.25),
that the sequence (|Ψ(XK)|)K is uniformly integrable, so

lim
K
E
(
|Ψ(XK)|

)
= EQ (|Ψ(X)|) . (4.37)

Collecting the previous results allows us to conclude that (4.35) holds, and thus M̄f is a
martingale.
We �nally have to show that the bracket of M̄f is given by (4.18). To this end, we �rst
check that

N̄f
t = 〈Xt, f〉2 − 〈X0, f〉2 −

∫ t

0

∫
Rd

2r(x)f2(x)Xs(dx)ds

− 2
∫ t

0
〈Xs, f〉

∫
Rd

f(x) [b(x, V ∗Xs(x))− d(x,U ∗Xs(x))]Xs(dx)ds

−
∫ t

0
〈Xs, f〉

∫
Rd

µ(x)r(x)
∑
i,j

Σij(x)∂2
ijf(x)Xs(dx)ds (4.38)

is a martingale. This can be done exactly as for M̄f
t , using the semimartingale decom-

position of 〈XK
t , f〉2, given by (4.8) with φ(ν) = 〈ν, f〉2. In another hand, Itô's formula

implies that

〈Xt, f〉2 − 〈X0, f〉2 − 〈M̄f 〉t −
∫ t

0
〈Xs, f〉

∫
Rd

r(x)µ(x)
∑
i,j

Σij(x)∂2
ijf(x)Xs(dx)ds

− 2
∫ t

0
〈Xs, f〉

∫
Rd

f(x)
[
b(x, V ∗Xs(x))− d(x,U ∗Xs(x))

]
Xs(dx)ds

is a martingale. Comparing this formula with (4.38), we obtain (4.18). �

4.2.2 Rare mutations

In this case, the mutation step density M is �xed and the mutation rate is decelerated
proportionally to 1/Kη:

Assumption (H4):

MK = M, µK =
µ

Kη
.

Thus only births without mutation are accelerated.
As in Section 4.2.1, we obtain deterministic or random limits, according to the value

of η ∈ (0, 1].
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Theorem 4.7 (1) Assume (H), (H1), (H2), (H4) and 0 < η < 1. Assume also that
the initial conditions XK

0 converge in law and for the weak topology on MF as K
increases, to a �nite deterministic measure ξ0, and that supK E(〈XK

0 , 1〉3) < +∞.

Then, for each T > 0, the sequence of processes (XK) belonging to D([0, T ],MF )
converges (in law) to the unique deterministic function (ξt)t≥0 ∈ C([0, T ],MF ) weak
solution of the deterministic nonlinear integro-di�erential equation:

∂tξt(x) = [b(x, V ∗ ξt(x))− d(x,U ∗ ξt(x))]ξt(x) +
∫

Rd

M(y, x)µ(y)r(y)ξt(y)dy

− µ(x)r(x)ξt(x). (4.39)

(2) Assume now η = 1 and that XK
0 converge in law to X0. Then, for each T > 0, the

sequence of processes (XK) converges in law in D([0, T ],MF ) to the unique (in law)
continuous superprocess X ∈ C([0, T ],MF ), de�ned by the following conditions:

sup
t∈[0,T ]

E
(
〈Xt, 1〉3

)
<∞,

and for any f ∈ C2
b (Rd),

M̄f
t = 〈Xt, f〉 − 〈X0, f〉 −

∫ t

0

∫
Rd

µ(x)r(x)
∫

Rd

M(x, z)(f(z)− f(x))dzXs(dx)ds

−
∫ t

0

∫
Rd

f(x) (b(x, V ∗Xs(x))− d(x,U ∗Xs(x)))Xs(dx)ds

is a continuous martingale with quadratic variation

〈M̄f 〉t = 2
∫ t

0

∫
Rd

r(x)f2(x)Xs(dx)ds.

In a SPDE formalism, one can write the last limit as formal solution of the equation

∂tXt(x) = [b(x, V ∗Xt(x))− d(x,U ∗Xt(x))]Xt(x) +
∫

Rd

M(y, x)µ(y)r(y)Xt(dy) + Ṁ

− µ(x)r(x)Xt(x), (4.40)

where Ṁ is a random �uctuation term.
The proof of Theorem 4.7 is similar to proofs of Theorems 4.3 and 4.5 and we leave it

to the reader. Theorem 4.7 (1) is illustrated in the simulation of Fig. 2 (b).

5 Rare mutation renormalization of the monomorphic pro-

cess and adaptive dynamics

In the previous section, Eqs. (4.39) and (4.40) have been obtained at the population growth
time scale (ecological time scale), under an assumption of rare mutation. Here, we are
interested in the behavior of the population process at the evolutionary time scale, when
mutations are extremely rare, as illustrated by the simulation of Fig. 1 (d). We hence
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recover rigorously the stochastic �trait substitution sequence� jump process of adaptive
dynamics (Metz et al. [22]) when the initial condition is monomorphic. The biological
idea behind such a scaling of the population process is that selection has su�cient time
between two mutations to eliminate all disadvantaged traits, so that the population remains
monomorphic on the evolutionary timescale. Then the evolution proceeds by successive
invasions of mutant traits, replacing the resident trait from which the mutant trait is born.
These invasions occur on an in�nitesimal timescale with respect to the mutation timescale.
Our result emphasizes how the mutation scaling should compare to the system size (K) in
order to obtain the correct time scale separation between the �mutant-invasions� (taking
place on a short time scale) and the mutations (evolutionary time scale).

5.1 Statement of the result

We consider here a limit of rare mutations combined with the large population limit of
Section 4.1 (Assumption (H1) and bK = b, dK = d and MK = M). We assume

Assumptions (H5):

(i) µK(x) = uKµ(x).
(ii) For any constant C > 0,

e−CK � uK � 1
K logK

(5.1)

(thus uK → 0 when K → +∞), or, equivalently, for any C and t > 0,

logK � t

KuK
� eCK . (5.2)

(iii) For any x ∈ X , ζ 7→ b(x, ζ) and ζ 7→ d(x, ζ) are positive functions, non-increasing
and increasing respectively, satisfying

∀x ∈ X , b(x, 0)− d(x, 0) > 0,
lim

ζ→+∞
inf
x∈X

d(x, ζ) = +∞. (5.3)

(iv) There exists a constant U > 0 such that U(h) ≥ U for any h ∈ Rd.

Assumption (H5)-(i) entails the rare mutation asymptotic, and (H5)-(ii) gives the cor-
rect scaling between the mutation probability and the system size in order to obtain the cor-
rect time scale separation. Observe that (H5)-(ii) implies that KuK → 0 when K → +∞,
so that the timescale t/KuK , which corresponds to the timescale of mutations (the popu-
lation size is proportional to K, and each birth event produces a mutant with a probability
proportional to uK , which gives a total mutation rate in the population proportional to
KuK) is a long timescale. Our result gives the behavior of the population process on this
long timescale.

Assumptions (H5)-(iii) and (iv) will allow us to bound the population size on the
mutation timescale, and to study the behavior of the population when it is monomorphic
or dimorphic between two (rare) mutation events. Speci�cally, the monotonicity properties
of b and d in Assumption (H5)-(iii) ensures, for any x ∈ X , the existence of a unique non-
trivial stable equilibrium n̄(x) for the monomorphic logistic equation (4.6) of Example 3
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in Section 4.1. Moreover, since b(x, V (0)u) − d(x,U(0)u) > 0 for any u < n̄(x) and
b(x, V (0)u)− d(x,U(0)u) < 0 for any u > n̄(x), any solution to (4.6) with positive initial
condition converges to n̄(x).

Concerning the dimorphic logistic equations (4.7), an elementary linear analysis of the
equilibrium (n̄(x), 0) gives that it is stable if f(y, x) < 0 and unstable if f(y, x) > 0, where
the function

f(y, x) = b(y, V (y − x)n̄(x))− d(y, U(y − x)n̄(x)) (5.4)

is known as the ��tness function� ([21, 22]), which gives a measure of the selective advantage
of a mutant individual with trait y in a monomorphic population of trait x at equilibrium.
Similarly, the stability of the equilibrium (0, n̄(y)) is governed by the sign of f(x, y).

In order to ensure that, when the invasion of a mutant trait is possible, then this invasion
will end with the extinction of the resident trait, we will need the following additional
assumption:

Assumptions (H6):

Given any x ∈ X , Lebesgue almost any y ∈ X satis�es one of the two following
conditions:

(i) either f(y, x) < 0 (so that (n̄(x), 0) is stable),
(ii) or f(y, x) > 0, f(x, y) < 0 and any solution to (4.7) with initial condition with

positive coordinates in a given neighborhood of (n̄(x), 0) converges to (0, n̄(y)).

In the case of linear logistic density-dependence introduced in Section 2.2 (b(x, ζ) =
b(x) and d(x, ζ) = d(x) + α(x)ζ), the equilibrium monomorphic density n̄(x) writes
(b(x) − d(x))/α(x)U(0) and the condition (H6)-(ii) is actually equivalent to f(y, x) > 0
and f(x, y) < 0 (see [6]).

Our convergence result writes

Theorem 5.1 Assume (H), (H1), (H5) and (H6). Given x ∈ X , γ > 0 and a sequence
of N-valued random variables (γK)K∈N, such that γK/K is bounded in L1 and converges
in law to γ, consider the process (XK

t , t ≥ 0) of Section 4 generated by (4.1) with initial
state γK

K δx. Then, for any n ≥ 1, ε > 0 and 0 < t1 < t2 < . . . < tn < ∞, and for any
measurable subsets Γ1, . . . ,Γn of X ,

lim
K→+∞

P
(
∀i ∈ {1, . . . , n}, ∃xi ∈ Γi : Supp(XK

ti/KuK
) = {xi}

and |〈XK
ti/KuK

,1〉 − n̄(xi)| < ε
)

= P (∀i ∈ {1, . . . , n}, Yti ∈ Γi) (5.5)

where for any ν ∈ MF (X ), Supp(ν) is the support of ν and (Yt, t ≥ 0) is a Markov jump
process with initial state x generated by

Aϕ(x) =
∫

Rd

(ϕ(y)− ϕ(x))g(y, x)M(x, y)dy (5.6)

where

g(y, x) = µ(x)b(x, V (0)n̄(x))n̄(x)
[f(y, x)]+

b(y, V (y − x)n̄(x))
(5.7)

and [·]+ denotes the positive part.
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Corollary 5.2 With the same notations and assumptions as in Theorem 5.1, assuming
moreover that γK/K is bounded in Lq for some q > 1, the process (XK

t/KuK
, t ≥ 0) converges

when K → +∞, in the sense of the �nite dimensional distributions for the topology on
MF (X ) induced by the functions ν 7→ 〈ν, f〉 with f bounded and measurable on X , to the
process (Zt, t ≥ 0) de�ned by

Zt =
{
γδx if t = 0
n̄(Yt)δYt if t > 0.

This corollary follows from the following long time moment estimates.

Lemma 5.3 Under (H), (H1), (H5)(iii) (5.3) and (iv), and if supK≥1E(〈XK
0 , 1〉q) < +∞

for some q ≥ 1, then
sup
K≥1

sup
t≥0

E
(
〈XK

t ,1〉q
)
< +∞,

and therefore, if q > 1, the family of random variables {〈XK
t ,1〉}{K≥1, t≥0} is uniformly

integrable.

Proof of Lemma 5.3 Observe that, if we replace b(x, V ∗ ν) by b̄ and d(x,U ∗ ν) by
g(U〈ν,1〉) where g(ζ) := infx∈X d(x, ζ) in the indicator functions of each terms of the
construction (2.3) of the process XK

t , we can stochastically dominate the population size
〈XK

t ,1〉 by a birth and death Markov process (ZK
t )t≥0 with initial state ZK

0 = 〈XK
0 , 1〉

and transition rates
ib̄ from i/K to (i+ 1)/K,
ig(U i

K ) from i/K to (i− 1)/K.

Therefore, it su�ces to prove that supK≥0 supt≥0E((ZK
t )q) < +∞.

Let us de�ne pk
t = P (ZK

t = k/K). Then

d

dt
E((ZK

t )q) =
∑
k≥1

(
k

K

)q dpk
t

dt

=
1
Kq

∑
k≥1

kq

[
b̄(k − 1)pk−1

t + (k + 1)g
(
U
k + 1
K

)
pk+1

t − k

(
b̄+ g

(
U
k

K

))
pk

t

]

=
1
Kq

∑
k≥1

[
b̄

((
1 +

1
k

)q

− 1
)

+ g

(
U
k

K

)((
1− 1

k

)q

− 1
)]

kq+1pk
t .

Now, by (H5) (iii) (5.3), g(α) → +∞ when α→ +∞, so there exists α0 such that, for any
α ≥ α0, g(Uα) ≥ 2b̄. Therefore, for k ≥ Kα0, b̄((1+1/k)q−1)+g(Uk/K)((1−1/k)q−1) ≤
−b̄[3 − 2(1 − 1/k)q − (1 + 1/k)q], the RHS term being equivalent to −b̄q/k. Therefore,
enlarging α0 if necessary and using in the �rst inequality the facts that (1 + α)q − 1 ≤
α(2q − 1) and (1− α)q − 1 ≤ 0 for any α ∈ [0, 1], we can write

d

dt
E((ZK

t )q) ≤
dKα0e−1∑

k=1

b̄(2q − 1)
(
k

K

)q

pk
t −

∑
k≥dKα0e

b̄q

2

(
k

K

)q

pk
t

≤
dKα0e−1∑

k=1

b̄(q/2 + 2q − 1)αq
0 p

k
t −

b̄q

2
E((ZK

t )q) ≤ b̄q

2
[C − E((ZK

t )q)],
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where C = (1 + 2(2q − 1)/q)αq
0. This di�erential inequality solves as

E((ZK
t )q) ≤ C + [E((ZK

0 )q)− C]e−b̄qt/2,

which gives the required uniform bound. �

Proof of Corollary 5.2 Let Γ be a measurable subset of X . Let us prove that

lim
K→+∞

E
[
〈XK

t/KuK
,1Γ〉

]
= E

[
n̄(Yt)1Yt∈Γ

]
. (5.8)

By (H5)-(iii)-(5.3), there exists ζ0 > 0 such that for any ζ > ζ0 and x ∈ X , d(x, ζ) >
b̄. Therefore, by (H5)-(iv), for any x ∈ X , n̄(x) ∈ [0, ζ0/U ]. Fix ε > 0, and write
[0, ζ0/U ] ⊂ ∪p

i=1Ii, where p is the integer part of ζ0/(Uε), and Ii = [(i − 1)ε, iε[. De�ne
Γi = {x ∈ X : n̄(x) ∈ Ii} for 1 ≤ i ≤ p, and apply (5.5) to the sets Γ ∩ Γ1, . . . ,Γ ∩ Γp with
n = 1, t1 = t and the constant ε above. Then, by Lemma 5.3, for some constant C > 0
and for su�ciently large K,

lim sup
K→+∞

E
[
〈XK

t/KuK
,1Γ〉

]
≤ lim sup

K→+∞
E
[
〈XK

t/KuK
,1Γ〉1〈XK

t/KuK
,1〉≤C

]
+ ε

≤
p∑

i=1

lim sup
K→+∞

E
[
〈XK

t/KuK
,1Γ∩Γi〉1〈XK

t/KuK
,1〉≤C

]
+ ε

≤
p∑

i=1

(i+ 1)εP (Yt ∈ Γ ∩ Γi) + ε

≤
p∑

i=1

(
E
[
n̄(Yt)1Yt∈Γ∩Γi

]
+ 2εP (Yt ∈ Γi)

)
+ ε

≤ E
[
n̄(Yt)1Yt∈Γ

]
+ 3ε.

A similar estimate for the lim inf ends the proof of (5.8), which implies the convergence
of one-dimensional laws for the required topology.

The same method gives easily the required limit when we consider a �nite number of
times t1, . . . , tn. �

Observe that the fact that the limit process is not right-continuous prevents the possi-
bility to obtain a convergence for the Skorohod topology on D([0, T ],MF (X )).

5.2 Idea of the proof

Theorem 5.1 can be proved in a similar way as in Champagnat [6]. Let us give an idea
of the method in order to explain the assumptions, the various parameters appearing in
Theorem 5.1 and the tools involved in the proof. It is based on two ingredients: the study
of a monomorphic population before the �rst mutation, and the study of the invasion of a
single mutant individual in this population.

1) The �rst part obtains from large deviation results for the convergence of XK
t to

nt(x)δx when the initial population is monomorphic with trait x, where nt(x) satis�es (4.6).
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Any positive solution to (4.6) converges to n̄(x) when t→ +∞, and hence reaches a given
neighborhood of n̄(x) in �nite time, i.e. on an in�nitesimal time scale with respect to
the mutation time scale. Large deviations theory allows us to show that the exit time of
〈XK

t ,1〉 from this neighborhood behaves as exp(KC) for some C > 0 (problem of exit
from a domain, Freidlin and Wentzell [16]). Thanks to the right part of Assumption (5.2),
we can prove that, with high probability, 〈XK

t ,1〉 is close to n̄(x) when the �rst mutation
occurs. Therefore, the total mutation rate is close to uKµ(x)Kn̄(x)b(x, V (0)n̄(x)) and so,
on the mutation time scale t/KuK , the rate of mutation is close to n̄(x)µ(x)b(x, V (0)n̄(x)),
which explain the left part of the RHS of (5.7). This argument can be made rigorous using
stochastic domination results similar to the one used at the beginning of the proof of
Lemma 5.3, and leads to the following result:

Lemma 5.4 Let τ1 denote the �rst mutation time and PK
XK

0
the law of XK with initial

state XK
0 . Given x ∈ X and a sequence of integers (zK)K≥1 such that zK/K → z > 0,

(a) For any ε > 0,

lim
K→+∞

PK
zK
K

δx

(
τ1 > logK, sup

t∈[log K,τ1]
|〈XK

t ,1〉 − n̄(x)| > ε

)
= 0 (5.9)

and
lim

K→+∞
PK

zK
K

δx
(τ1 < logK) = 0.

In particular, under PK
zK
K

δx
, XK

log K → n̄(x)δx and XK
τ1− → n̄(x)δx in probability.

(b) For any t > 0,

lim
K→+∞

PK
zK
K

δx

(
τ1 >

t

KuK

)
= exp

(
− β(x)t

)
,

where β(x) = µ(x)n̄(x)b(x, V (0)n̄(x)).

2) The study of the invasion of a mutant individual with trait y can be divided in three
steps represented in Fig. 3.

Firstly, the invasion of the mutant (between 0 and t1 in Fig. 3) can be de�ned as the
growth of the mutant density 〈XK

t ,1{y}〉 from 1/K (one individual) to a �xed small level
ε (εK individuals). As long as the mutant density is small, the dynamics of the resident
density 〈XK

t ,1{x}〉 is close to the one it followed before the mutation, so it is close to
n̄(x) with high probability. Therefore, between 0 and t1, the birth and death rates of an
individual with trait y are close to b(y, V (y− x)n̄(x)) and d(y, U(y− x)n̄(x)) respectively.
Therefore, the number of mutant individuals is close to a binary branching process with the
parameters above. When K → +∞, the probability that such a branching process reaches
level εK is close to its survival probability, which writes [f(y, x)]+/b(y, V (y−x)n̄(x)). This
gives the second part of the RHS of (5.7).

Secondly, once the invasion succeeded (which is possible only if f(y, x) > 0), the dy-
namics of the densities of traits x and y are close to the solution to the dimorphic logistic
equation (4.7) with initial state (n̄(x), ε), represented in dotted curves between t1 and t2
in Fig. 3. Because of Assumption (H6), the resident density can be proved to reach level
ε with high probability (at time t2 in Fig. 3).
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Figure 3: The three steps of the invasion and �xation of a mutant trait y in a monomor-
phic population with trait x. Plain curves represent the resident and mutant densities
〈XK

t ,1{x}〉 and 〈XK
t ,1{y}〉, respectively. Dotted curves represent the solution of Eq. (4.7)

with initial state n0(x) = n̄(x) and n0(y) = ε.

Finally, a similar argument as in the �rst step above allows us to prove that the resi-
dent population density 〈XK

t ,1{x}〉 follows approximately a binary branching process with
birth rate b(y, V (x − y)n̄(y)) and death rate d(y, U(x − y)n̄(y)). Since f(x, y) < 0 by
Assumption (H6), this is a sub-critical branching process, and therefore, the resident trait
x disappears in �nite time t3 with high probability.

We can show, using results on branching processes, that t1 and t3 − t2 are of order
logK, whereas t2− t1 depends only on ε. Therefore, the left part of (5.2) ensures that the
three steps of the invasion are completed before the next mutation, with high probability.
The previous heuristics can be made rigorous using further comparison results, and leads
to the following result.

Lemma 5.5 Assume that the initial population is made of individuals with traits x and
y satisfying assumption (H6) (i) or (ii). Let θ0 denote the �rst time when the population
gets monomorphic, and V0 the remaining trait. Let (zK)K≥1 be a sequence of integers such
that zK/K → n̄(x). Then,

lim
K→+∞

PK
zK
K

δx+ 1
K

δy
(V0 = y) =

[f(y, x)]+
b(y, V (y − x)n̄(x))

, (5.10)

lim
K→+∞

PK
zK
K

δx+ 1
K

δy
(V0 = x) = 1− [f(y, x)]+

b(y, V (y − x)n̄(x))
, (5.11)

∀η > 0, lim
K→+∞

PK
zK
K

δx+ 1
K

δy

(
θ0 >

η

KuK
∧ τ1

)
= 0 (5.12)

and ∀ε > 0, lim
K→+∞

PK
zK
K

δx+ 1
K

δy

(
|〈XK

θ0
,1〉 − n̄(V0)| < ε

)
= 1, (5.13)

where f(y, x) has been de�ned in (5.4).

33



Once these lemmas are proved, the proof can be completed by observing that the
generator A of the process (Yt, t ≥ 0) of Theorem 5.1 can be written as

Aϕ(x) =
∫

Rl

(ϕ(y)− ϕ(x))β(x)κ(x, dy), (5.14)

where β(x) has been de�ned in Lemma 5.4 and the probability measure κ(x, dh) is de�ned
by

κ(x, dy) =
(

1−
∫

Rl

[f(z, x)]+
b(z, V (z − x)n̄(x))

M(x, z)dz
)
δx(dy)

+
[f(y, x)]+

b(y, V (y − x)n̄(x))
M(x, y)dy. (5.15)

This means that the process Y with initial state x can be constructed as follows: let
(M(k), k = 0, 1, 2, . . .) be a Markov chain in X with initial state x and with transition
kernel κ(x, dy), and let (N(t), t ≥ 0) be an independent standard Poisson process. Let also
(Tn)n≥1 denote the sequence of jump times of the Poisson process N . Then, the process
(Yt, t ≥ 0) de�ned by

Yt := M

(
N

(∫ t

0
β(Ys)ds

))
is a Markov process with in�nitesimal generator (5.14) (cf. [13] chapter 6).

Let Px denote its law, and de�ne (Sn)n≥1 by Tn =
∫ Sn

0 β(Ys)ds. Observe that any
jump of the process Y occurs at some time Sn, but that all Sn may not be e�ective jump
times for Y , because of the Dirac mass at x appearing in (5.15).

Fix t > 0, x ∈ X and a measurable subset Γ of X . Under Px, S1 and YS1 are
independent, S1 is an exponential random variable with parameter β(x), and YS1 has law
κ(x, ·). Therefore, for any n ≥ 1, the strong Markov property applied to Y at time S1

yields

Px(Sn ≤ t < Sn+1, Yt ∈ Γ)

=
∫ t

0
β(x)e−β(x)s

∫
Rl

Py(Sn−1 ≤ t− s < Sn, Yt−s ∈ Γ)κ(x, dy)ds (5.16)

and
Px(0 ≤ t < S1, Yt ∈ Γ) = 1{x∈Γ}e

−β(x)t. (5.17)

Using the Markov property at time τ1 and Lemmas 5.4 and 5.5, we can prove that,
when we replace Sn by the n-th mutation time of XK

t/KuK
and Yt by the support of X

K
t/KuK

(when it is a singleton) in the LHS of (5.16) and (5.17), the same relations hold in the
limit K → +∞. Therefore, Theorem 5.1 is proved for one-dimensional time marginals. A
similar method generalizes to �nite dimensional laws.
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