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Abstract

We propose a stochastic individual-based model of graph-structured population, viewed

as a simple model of clonal plants. The dynamics is modeled in continuous time and

space, and focuses on the effects of the network structure of the plant on the growth

strategy of ramets. This model is coupled with an explicit advection-diffusion dynamics

for resources. After giving a simulation scheme of the model, the capacity of the model

to reproduce specific features of clonal plants, such as their efficiency to forage resources

and colonize an empty field by means of phalanx or guerrilla strategies, is numerically

studied. Next, we propose a large population approximation of the model for phalanx-

type populations, taking the form of an advection-diffusion partial differential equation

for population densities, where the influence of the local graph structure of the plant

takes the form of a nonlinear dependence in the gradient of resources.

Keywords: Markov process, individual-based model (IBM), clonal plant, asymptotic

analysis

1. Introduction

Individual-based models (IBMs) are in constant development in computational ecol-

ogy (DeAngelis and Gross, 1992; Dieckmann et al., 2000; Grimm and Railsback, 2005).

IThis work received support by the French national research agency (ANR) within the SYSCOMM
project ANR-08-SYSC-012.

∗Corresponding author
Email addresses: Fabien.Campillo@inria.fr (F. Campillo), Nicolas.Champagnat@inria.fr

(N. Champagnat)
1Address: MODEMIC project-team, INRIA/INRA, UMR MISTEA, 2 place Viala, 34060 Montpellier

Cedex 01, France.
2Address: TOSCA project-team, INRIA Nancy – Grand Est, IECN, UMR 7502, Nancy-Université,
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These models aim to represent the dynamics of populations, and in contrast with con-

ventional models where the population is represented as an aggregate state such as the

population size or the total biomass, they explicitly describe each individual as well as

each mechanism acting on these individuals. In this sense, conventional models corre-

spond to a macroscopic approach and IBMs to a microscopic one. Such a description

of an ecosystem at the scale of the individual usually rely on stochastic mechanisms

reflecting the interactions of the individual with its neighbors and its environment.

Among plant communities, those involving a clonal reproduction constitute an inter-

esting challenge in terms of modeling. In most clonal plants, growth can be processed hor-

izontally via the development of modified stems, rhizomes or stolons, connecting ramets

(Van Groenendael et al., 1996). Ramets are potentially autonomous new individuals and

possess aerial and belowground organs in order to sample and uptake resources, like wa-

ter, light, organic nutrients, nitrates or phosphorus (Van Groenendael et al., 1996; Klimeš

et al., 1997). This network structure provides the ability to colonize space (Harper, 1981;

Hutchings, 1999), and allows the exchange of resources and information (Marshall, 1990;

Stuefer et al., 2004; Wijesinghe and Hutchings, 1997; Hutchings, 1999; Charpentier and

Stuefer, 1999; Klimeš et al., 1997). In particular, this network structure implies strong

spatial constraints to the architecture of a clonal plant network that have tradition-

ally been classified along a gradient from phalanx to guerrilla strategies (Lovett-Doust,

1981). Phalanx strategies comprise clonal plants with dense network structures with

short spacers and resulting in an interrupted front of aggregated ramets with a slow ra-

dial propagation (Cheplick, 1997; Humphrey and Pike, 1998). On the contrary, guerrilla

strategies produce long and poorly ramified connections which favor space colonization.

The graph structure allows clonal plants to colonize space in order to locate the

most favorable areas in terms of resources (spatial colonization sensu Wildova et al.,

2007), and exploit the resources in these sites in order to favor the growth of new ramets

(potential descendants) in these areas (space occupation sensu Wildova et al., 2007).

Spatial structure of the interacting species should be therefore a key element of the

dynamics of plant communities.

IBMs generate spatial patterns and dynamics at the scale of plant communities from

local interactions between individuals, which are the processes involved in real commu-
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nities. A sound model in plant ecology should be spatial and individually based. Two

main categories of IBMs can be distinguished: “realistic IBMs” which take into account

a large number of mechanisms, and “simple IBMs” which focus on a specific feature of

the ecosystem and neglect the others. The first category of models aims for realistic local

population structure, whereas the second category can be used to study the influence of

a specific feature of the ecosystem on large spatial scales.

For clonal plants, almost all the IBMs studied in the literature belong to the “real-

istic” category. Most of them are developed on spatial grids (square of hexagonal, for

example), representing the possible locations of each element of the plant (Dieckmann

et al., 1999; Kun and Oborny, 2003; Oborny, 1994; Oborny et al., 2000, 2001; Oborny

and Kun, 2002; Winkler and Klotz, 1997; Winkler et al., 1999; Winkler and Fischer,

2002; Winkler and Stöcklin, 2002). Some models also rely on continuous space domains,

where individuals or plant elements can be located at any place in space (Herben and

Suzuki, 2002; Herben and Novoplansky, 2008). They belong to a larger class of mod-

els, well developed in the more general context of Plant Ecology (Bolker and Pacala,

1999; Dieckmann et al., 1999, 2000; Brown and Bolker, 2004; Bolker, 2004; Fournier and

Méléard, 2004; Birch and Young, 2006). Many of these models belong to the class of

simple models, because simple IBMs in continuous space and time are within the scope

of numerical and mathematical analysis on large spatial scales, whereas IBMs on grids

are much harder to study mathematically. These models have originally been developed

and studied for adaptive dynamics in evolutionary biology, where plants locations are re-

placed by individuals’ phenotypic quantitative characters (Metz et al., 1996; Dieckmann

and Law, 1996; Champagnat et al., 2006; Méléard and Tran, 2009; Champagnat and

Méléard, 2011).

IBMs are useful for studying local structures in plant communities, e.g. for devel-

opment or behavioral studies. However, they are of little practical help for studies at

the scale of a field, where one could want to study the competitive exclusion or coex-

istence of species (Bolker and Pacala, 1999), or simply compute long time statistics of

the model, like the mean, equilibrium relative abundance of species. A proficient answer

to such questions typically requires us to combine statistical and large time numerical

studies, and are hence out of reach of an IBM using usual numerical power (Mony et al.,
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nodes

Figure 1: The plant is represented as a set of nodes connected by links. The nodes can be seen as ramets

and the links as rhizomes.

2012). For such problems, one typically uses partial differential equation (PDE) models

(El Hamidi et al., 2012), but usually no aspect of the local architecture of the plants is

included in the PDE.

The aim of this work is to construct a simple IBM in continuous space and time

for clonal plants, which can be numerically and mathematically studied at the scale of

a grassland, and which can make the link between realistic IBMs and PDE models on

large scales.

We chose to construct an IBM which focuses on the influence of the graph on the

horizontal growth strategy (rate of creation of new connections, new ramets, and the

location of new ramets) through a stochastic IBM in continuous time and space, coupled

with the graph structure of the plant. In view of the crucial influence of resources

exchange between ramets on the space colonization and the localization of favorable

areas, we couple our IBM with resources distributed over continuous space, following an

advection- diffusion deterministic dynamics. This model is tested in the framework of the

phalanx-guerrilla continuum of growth strategies, and we provide exact large population

approximations as partial differential equations for the local population density.

2. Dynamics of the plant and of the resources

At time t the clonal plant is represented as a set of nodes (ramets) that may be

connected by links (rhizomes or stolons), see Figure 1. In this simplified representation

of a clonal plant, ramets are represented by points in the plane, and connection by

straight lines between two ramets. All ramets and connections are assumed to be identical
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in terms of demographic parameters and resource consumption. Age and growth are

neglected, and connections do not uptake resources or incorporate biomass. The influence

of other above ground and below ground aspects of the plant are not physically modelled.

They are only expressed through the birth and death parameters and the interaction with

resources described below.

The state of the nodes is described by the following finite measure:

νt =
Nt∑
i=1

δxit (1)

where xit ∈ R2 is position of the ith node and Nt total number of nodes; δx denotes

the Dirac measure centered on the point x. The measure νt describes the distribution

of nodes over the space D ⊂ R2 of spatial positions. We consider for simplicity D =

[x(1)
min, x

(1)
max] × [x(2)

min, x
(2)
max]. The measure νt is a counting measure: νt(D) is the total

number Nt of individuals and, for all subdomain B of D, νt(B) =
∑Nt
i=1 1B(xit) is the

number of individuals in B.

For any node at position x we define the set of indices of the nodes connected to x:

J(t, x) =
{
i = 1 · · ·Nt ; x and xit are connected

}
. (2)

The plant grows in a resource landscape (see Figure 3). At each time t, this resource

landscape is represented by r(t, x) ∈ [0, rmax] the available resources at position x ∈ D.

The nodes accessing high levels of resources r(t, x) are more likely to give birth to new

nodes.

Birth and death rates

Each node of νt in position x may disappear at a death rate µ(t, x) and give birth to

a new node at a birth rate λ(t, x). These rates are per capita rates. Global death and

birth rates at population level are respectively:

λ̄t =
Nt∑
i=1

λ(t, xit) , µ̄t =
Nt∑
i=1

µ(t, xit) . (3a)

The global event rate is:

µ̄t + λ̄t . (3b)
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Champagnat et al., 2006; Champagnat and Méléard, 2007;
Méléard and Tran, 2009; Champagnat and Méléard, 2010)
or for competition-colonization in population ecology (Bolker
and Pacala, 1997, 1999; Dieckmann et al., 1999, 2000;
Dieckmann and Law, 2000; Law and Dieckmann, 2000;
Fournier and Méléard, 2004; Birch and Young, 2006).

Our goal is to construct and analyze a “simple IBM”
putting emphasis on one of the main features of clonal
plants, believed to confer them an advantage for resource
exploitation and space colonization—their network struc-
ture and the transfer of information and resources through
rhizomes or stolons. This graph structure allows clonal
plants to localize favorable areas in terms of resources (Bell,
1984, foraging), and can favor the growth of new ramets
in these areas (Roiloa and Retuerto, 2006). This both
allows a better prospection of resources like water, light,
organic or inorganic nutrients, and a better survival of de-
scendants. In addition, ramets are able to share resources
through links in the network (Stuefer et al., 2004; Wi-
jesinghe and Hutchings, 1997; Hutchings, 1999, physiolog-
ical integration). In particular, ramets located in areas
with few resources can benefit from resources stored by
ramets located in richer areas, transmitted through con-
nections between ramets. In addition, translocation be-
tween ramets also allows clonal plants to resist to other
stresses, like mechanical stress (Yu et al., 2008) or par-
asitism (D’Hertefeldt and van der Putten, 1998). The
model we study here concentrates on these phenomena
and their influence on the reproductive strategy. In par-
ticular, several other known features of clonal plants are
not modeled, e.g. the specialization of ramets (Charpen-
tier and Stuefer, 1999), the resource storage in rhizomes
or stolons (Klimeš et al., 1997), or the effects of the graph
structure on the growth of ramets and rhizomes or stolons.

The paper is organized as follows. In Section 2, we de-
scribe the stochastic individual-based model, coupled with
the graph structure of the plant and a piecewise deter-
ministic advection-diffusion model for resources. In Sec-
tion 3, a partially “exact” Monte Carlo simulation scheme
is described. Simulation results are discussed in Section 4.
Large population approximations of the population are
then given in Section 5. Finally, several extensions of our
model are discussed in Section 6.

2. Dynamics of the plant and of the resources

At time t the clonal plant is represented as a set of
nodes (ramets) that may be connected by links (rhizomes
or stolons), see Figure 1. The state of the nodes is de-
scribed by the following finite measure:

νt =
Nt�
i=1

δxi
t

(1)

where xi
t ∈ R2 is position of the ith node and Nt to-

tal number of nodes; δx denotes the Dirac measure giv-
ing mass 1 to the point x. The measure νt describes

links
nodes

Figure 1: The plant is represented as a set of nodes connected by
links. The nodes can be seen as ramets and the links as rhizomes.
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Figure 2: The nodes evolves in a resource landscape (black/white:
high/low resource availability). The nodes accessing high levels of
resources are more likely to give birth to new nodes ( t1 → t2 →
t3). Simultaneously the node and the link between this node and
the mother node are created. When a node disappears all the links
connected with it simultaneously disappear ( t3 → t4).

the distribution of nodes over the space D ⊂ R2 of spa-
tial positions. In this article, we consider for simplicity
D = [x(1)

min, x
(1)
max]×[x(2)

min, x
(2)
max]. The measure νt is a count-

ing measure: the total mass νt(D) is the number Nt of
individuals and νt(B) is the number of individuals in the
subdomain B of D.

For any node at position x we define the set of indices
of the nodes connected to x:

J(t, x) =
�
i = 1 · · ·Nt ; x and xi

t are connected
�

. (2)

Note that the basic entities of our IBM are ramets and con-
nections. In particular, we do not account for the growth of
ramets and rhizomes or stolons (except through the birth
and death mechanisms described below).

The plant evolves in a resource landscape (see Figure
3). At each time t, this resource landscape is represented
by r(t, x) ∈ [0, rmax] the available resources at position
x ∈ D. The nodes accessing high levels of resources r(t, x)
are more likely to give birth to new nodes.

First we describe the rates at which nodes disappear
and give birth to new individuals, then we describe the
dispersion kernel, and finally the dynamics of the resource.

2

Figure 2: The nodes evolve in a resource landscape (black/white: high/low resource availability). The

nodes accessing high levels of resources are more likely to give birth to new nodes ( t1 → t2 → t3).

Simultaneously the node and the link between this node and the mother node are created. When a node

disappears all the links connected with it simultaneously disappear ( t3 → t4).
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Figure 3: Snapshot of the resource landscape r(t, x) ∈ [0, rmax] at a given time t. The resource dynamics

is modeled as an advection/diffusion transport equation (10) in interaction with the dynamics of the

nodes.
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Basically, the per capita rates depend on the local availability of resources: we suppose

that the birth rate λ(t, x) is an increasing function of r(t, x) and the death rate is a

decreasing function of r(t, x). For example:

λ(t, x) = 1{|J(t,x)|≤Nmax}
(
λ0 + λ1 r(t, x)

)
, (4a)

µ(t, x) = µ0 + µ1 [rmax − r(t, x)] (4b)

where |J(t, x)| is the cardinal of the set J(t, x) and Nmax is the maximum number of con-

nections per node. In IBMs on hexagonal grids, one usually has Nmax = 6 or sometimes

less (for example, a ramet never has more than 3 connections in Oborny and Englert,

2012). Note that the continuous space formalism does not require any restriction on the

number of connections from a ramet (one could take Nmax = +∞). This would lead to

more realistic graph structures for sympodial species which display several buds develop-

ing from a ramet. Note that the local limitation of resources due to ramet consumption

(see below) prevents an excessive local growth of the number of connections and ramets

similar to competition processes between plants, and hence implicitely impose a limit on

the number of neighbors of each ramet.

When a node is added to the population, it is always linked with the mother node,

and the set of connections J(t, xit) corresponding to the mother node and the new node

are modified accordingly. In addition, when a node x is removed from population, all

connections to x are suppressed from all the sets J(t, xit) (see Figure 2).

Dispersion kernel

We have chosen to focus on the effects of the graph structure of the plant on its

horizontal growth strategy, and for simplicity, only on the choice of the position of a new

ramet relative to its “father ramet”, also called dispersion kernel.

A node at position x at time t gives birth to a new node at position y = x + v

according to the p.d.f. Dt,x(v). We propose the following distribution:

Dt,x(v) = f(κ, (dt,x, v)) g(‖v‖) (5)

where
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Figure 3: Snapshot of the resource landscape r(t, x) ∈ [0, rmax] at
a given time t. The resource dynamics is modeled as an advec-
tion/diffusion transport equation (9) in interaction with the dynam-
ics of the nodes.

Birth and death rates
Each node of νt in position x may disappear at a death

rate µ(t, x) and give birth to a new node at a birth rate
λ(t, x). These rates are per capita rates. Global death and
birth rates at population level are respectively:

λ̄t =
Nt�
i=1

λ(t, xi
t) , µ̄t =

Nt�
i=1

µ(t, xi
t) . (3a)

The global event rate is:

κt = µ̄t + λ̄t . (3b)

Basically, the per capita rates depend on the local avail-
ability of resources: we suppose that the birth rate λ(t, x)
is an increasing function of r(t, x) and the death rate is
decreasing function of r(t, x). For example:

λ(t, x) = λ0 + λ1 r(t, x) ,

µ(t, x) = µ0 + µ1 [rmax − r(t, x)] .
(4)

These rates may account for many other mechanisms. One
can limit the number of connections per node with the
following birth rate:

λ(t, x) = 1{|J(t,x)|≤Nmax} [λ0 + λ1 r(t, x)] . (5)

where |J(t, x)| is the cardinal of the set J(t, x) and Nmax is
the maximum number of connections per node. One can
also account for the fact that resources can be translocated
through connections. A possibility could be to include
a dependence of λ with respect to the incoming flux of
resources in the ramet, given by�

i∈J(t,x)

(r(t, xi
t)− r(x)). (6)

(See also the discussion below.)
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Figure 4: The dispersion kernel (7) is the product of the angle prob-
ability density function f and the length probability density function
g. When �dt,x� = 0 then we can for example choose f(θ) = 1

2π
(uniform distribution).

When a node is added to the population, it is always
linked with the mother node, and the set of connections
J(t, xi

t) corresponding to the mother node and the new
node are modified accordingly. In addition, when a node
x is removed from population, all connections to x are
suppressed from all the sets J(t, xi

t) (see Figure 2).

Dispersion kernel
A node at position x at time t gives birth to a new

node at position y = x+ v according to the p.d.f. Dt,x(v).
We propose the following distribution:

Dt,x(v) = f(�dt,x�, (dt,x, v)) g(�v�) (7)

where

(i) (dt,x, v) is the angle between a preferred direction of
reference dt,x and the direction of the new shoot v,
f(a, θ) is a p.d.f. on [−π, π) for all a ≥ 0;

(ii) g(�v�) is the p.d.f. on the length �v� of the connec-
tion (see Figure 4).

For f(a, θ) we can choose the Von Mises distribution
with a parameter that may depend on a or, if no direc-
tion is preferred, the uniform distribution. In this last
case, Dt,x(v) ∝ g(�v�). Note that, in the case where
the preferred direction dt,x is 0, the angle (dt,x, v) is un-
defined, so one should take the uniform distribution, i.e.
f(0, θ) = 1/2π. For g(�v�), if we want to fix the length of
the connection to �0 then we just let Dt,x(v) = δ�0 (�v�).

For the preferred direction of reference dt,x, we need
to account for the fact that the ramet can “perceive” the
resource map from the connections with other ramets, for
example because of resource translocations. One possible
choice for dt,x is:

dt,x =
1

|J(t, x)|
�

i∈J(t,x)

r(t, xi
t)− r(t, x)

|xi
t − x|2 [xi

t − x]. (8)

3

Figure 4: The dispersion kernel (5) is the product of the angle probability density function f , the Von

Mises distribution, and the length probability density function g, the log-normal distribution.

(i) (dt,x, v) is the angle between a preferred “direction of reference” dt,x and the di-

rection of the new shoot v, f(κ, θ) is a p.d.f. on [−π, π) centered on the angle 0

and with concentration parameter κ. For f we choose the Von Mises distribution

(circular normal distribution) with location parameter 0 and a given concentra-

tion parameter. The concentration parameter may depend on ‖dt,x‖ and when

‖dt,x‖ = 0, f is chosen as the uniform distribution, i.e. κ = 0.

(ii) g(‖v‖) is the p.d.f. on the length ‖v‖ of the connection (see Figure 4); g is chosen

as the log-normal distribution.

The preferred direction of reference should capture the effect of the local graph struc-

ture of the plant on its horizontal growth. Through their foraging ability, plants are

able to explore space and preferentially develop ramets in favorable sites (Van Kleunen

and Fischer, 2001), resulting in a preferential directional growth. Such sites could be

here sites with the lowest densities of ramets (competitive avoidance sensu Novoplansky,

2009) or sites with the highest resource level. In our model, we assume that growth

takes place preferentially in the direction of higher resource level. However, since our

model couples plants and resources dynamics, areas with high resource densities and low

density of ramets are actually implicitely correlated.

The information about the spatial location of the neighbors of a node at position x
8



at time t can be summarized by the vector

1
|J(t, x)|

∑
i∈J(t,x)

xit − x
|xit − x|

. (6)

When there is single neighbor, this vector gives the direction of the connection between

the ramets and its “mother ramet”. When there are more neighbors, this is simply

the mean vector of the directions of each connections leaving the ramet. If one wants to

model a preferred direction of growth in unexplored directions, one should favor dispersal

in the opposite direction of this vector.

The information about the resource flow entering the ramet at x through connections

can be summarized by the (positive or negative) number

1
|J(t, x)|

∑
i∈J(t,x)

[r(t, xit)− r(t, x)]. (7)

This formula assumes that the flow of resources in a connection is proportional to the

resource difference between the two ramets. One could also assume that the flow is

proportional to the gradient of resources along the connection, leading to the formula

1
|J(t, x)|

∑
i∈J(t,x)

r(t, xit)− r(t, x)
|xit − x|

. (8)

One could for example assume that the range of dispersal from the ramet is positively

influenced by one of these two resource flows.

We have chosen in this work to focus on a compromise between these two effects,

based both on positions and resources:

dt,x =
1

|J(t, x)|
∑

i∈J(t,x)

r(t, xit)− r(t, x)
|xit − x|2

[xit − x]. (9)

This is an approximation of the resource gradient based on the values of r(t, x) at x and

at the positions of all connected nodes (see Figure 5).

The way dt,x approaches ∇r(t, x) can be made more precise as follows: using the

approximation r(t, xit) − r(t, x) ≈ ∇r(t, x) · (xit − x) for all i ∈ J(t, x), valid if the

connections are short enough, we always have dt,x · ∇r(t, x) ≥ 0. In addition, in the

case where the position of each xit for i ∈ J(t, x) is uniformly distributed on a circle

centered at x (i.e. if f(κ, θ) is the uniform p.d.f. on [−π, π)), a simple computation gives

E(dt,x) = π
2∇r(t, x).
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Figure 5: A node in position x will give birth to a new node in position x + v in an approximation of

the gradient of the resources, see (9).

In order to keep the population inside the domain D we simply ignore the new node

y = x+ v when y 6∈ D.

Interactions between nodes and resources

The natural way to model resource concentration is as a density function r(t, x) over

the domain D. Coupling (discrete) individual dynamics with resource density dynamics

is a non-standard problem which requires a choice. We propose the following model:

∂t r(t, x) = div
(
a(x)∇r(t, x)

)
+ b(x) · ∇r(t, x)− r(t, x)α

Nt∑
i=1

Γxit(x) (10a)

with r(0, x) = r0(x) and

Γy(x) = exp
(− 1

2σ2
r
|x− y|2) . (10b)

In the absence of plants, the resource concentration r(t, x) follows a classical advec-

tion/diffusion transport equation. The last term of (10a) represents the resource con-

sumption of the ramets. We assume a rate of resource intake proportional to the local

resource concentration during the whole lifetime of each ramet. In addition, we model

with the function Γ the fact that resource consumption is not local. The parameter σr

can then be interpreted as the mean range of roots of a ramet in the species.

The PDE (10) has to be coupled with appropriate boundary conditions. We assume

here that the boundary of the domain D is a natural boundary that cannot be crossed
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by the plants, because of the absence of resources. This corresponds to the Dirichlet

boundary condition

r(t, x) = 0, ∀x ∈ ∂D .

Of course, other resource consumption models can be considered. For example, consump-

tion can be assumed to occur also at birth, leading to the following resource update at a

birth of a ramet at position y and time t:

r(t, x) = r(t−, x)
(
1− α′ Γy(x)

)
.

One could also take into account the degradation of plants at position y after its death

at time t by updating the resource concentration according to

r(t, x) = r(t−, x)
(
1 + α′′ Γy(x)

)
,

which corresponds to an instantaneous degradation of the plant.

3. Numerical approximation of the IBM

We now describe the simulation algorithm: starting from the state

νTk−1 =
NTk−1∑
i=1

δxiTk−1

at last event time Tk−1, we first sample the time of the next event (birth or death):

Tk = Tk−1 + S with S ∼ Exp
(
λ̄Tk−1 + µ̄Tk−1

)
(11)

and λ̄Tk−1 and µ̄Tk−1 defined by (3a). The next event:

• is a birth event with probability

λ̄Tk−1/(λ̄Tk−1 + µ̄Tk−1) .

Then sample ı̂ according to

{λ(Tk−1, x
i
Tk−1

)/λ̄Tk−1 ; i = 1, . . . , NTk−1}

and v according to the p.d.f. DTk−1,x̂ı
Tk−1

(v), finally let:

νTk = νTk−1 + δ(
x̂ı
Tk−1

+v
)

and update the sets of connections J(Tk, x) accordingly;
11



• is a death event with probability

µ̄Tk−1/(λ̄Tk−1 + µ̄Tk−1) .

Then sample ı̂ according to

{µ(Tk−1, x
i
Tk−1

)/µ̄Tk−1 ; i = 1, . . . , NTk−1},

let:

νTk = νTk−1 − δx̂ı
Tk−1

and update the sets of connections J(Tk, x) accordingly.

Note that this algorithm is valid if the rates λ(t, xit) and µ(t, xit) are approximately

constant for t ∈ [Tk−1, Tk−1 + S). If it is not the case, we should make use of an

acceptance/rejection algorithm (Fournier and Méléard, 2004; Campillo and Joannides,

2009). In parallel, we should numerically integrate the PDE (10), for example with

implicit or explicit finite-difference schemes. In practice, if Tk − Tk−1 is small enough,

which is usually the case if the population is large, a single time step of the finite-

difference scheme is sufficient. Note also that, in order to compute the birth and death

rates λ and µ, one needs to interpolate the resource concentration at each ramet position

from the resource concentrations on the discretization grid. The algorithm is presented

in Algorithm 1.

Because the model contains no grid structure, this algorithm is particularly simple to

implement. The state of the process can be coded as a list of each individual’s location

and the labels of its neighbors.

Note also that this algorithm can be very costly when the population size is large, as

it requires us to compute the sums λ̄ and µ̄ at each time step. Another possibility is to

use an acceptance/rejection procedure (Fournier and Méléard, 2004) in order to replace

this sum by a random sampling of the individual to which the next event will apply.

The drawback is that some (and sometimes many) of these events may actually be void,

leading to an increase of the number of time steps in the simulation. In practice, there

is a significant gain of numerical cost for very large populations.

12



T0 ← 0, ν0, r(0, x) given
for k = 0, 1, . . . do

compute the rates λ(Tk, x), µ(Tk, x), for x ∈ νTk
λ̄←∑

x∈νTk λ(Tk, x), µ̄←∑
x∈νTk µ(Tk, x)

Tk+1 ← Tk + S with S ∼ Exp(λ̄+ µ̄)
if rand() < λ̄/(λ̄+ µ̄) then

sample x according to {λ(Tk, x)/λ̄;x ∈ νTk}
sample v according to DTk,x(v)
νTk+1 ← νTk + δx+v [birth]

else
sample x according to {µ(Tk, x)/µ̄;x ∈ νTk}
νTk+1 ← νTk − δx [death]

end if
compute r(Tk+1, x) [numerical approximation of (10)]

end for

Algorithm 1: Gillespie algorithm. Here we use the notation x ∈ νt instead of xi for
i = 1 · · ·Nt.

4. Simulation

We simulated through this model the growth of two contrasted growth forms: guerril-

las and phalanx growth strategies (sensu Lovett-Doust, 1981) in a heterogeneous resource

concentration landscape. We implemented both types by suitably adjusting the param-

eters of the dispersion kernel in (5):

(i) if the p.d.f. f(κ, θ) of the shoot angle has a large concentration parameter and if the

p.d.f. g(‖v‖) favors large lengths, then the model will present the characteristics of

a guerrilla plant;

(ii) if the p.d.f. f(κ, θ) of the shoot angle has a small concentration parameter and if the

p.d.f. g(‖v‖) favors small lengths, then the model will present the characteristics

of a phalanx plant;

see Figure 6. Examples of resulting plant networks are presented in Figure 7 for the case

of a maximum number of Nmax = 3 connexions per node.

These preliminary simulation tests are run for very simple dynamics of resources: we

assume that there is no advection of resources over the land (b(x) = 0) and that the

diffusion coefficient of resources is constant (a(x) = σ2) in (10a). Since the colonization
13
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Figure 6: If the shoot angle p.d.f. f(a, θ) has a large variance (resp.
small variance) and if the p.d.f. g(�v�) favors small lengths (resp.
large lengths), then the model will present the characteristics of a
phalanx growth strategy (resp. guerrilla growth strategy).

for the first point (because the plant grows along straight
lines), but inefficient for the second point. Pure Phalanx
strategies are less efficient for the first point, but more effi-
cient for the second point (as they grow in all directions).
We explore a range of intermediate strategies simply by
varying the variance of the shoot angle distribution f . A
small variance means that the plant grows nearly along
straight lines and has a very small probability to change
its growth direction. A large variance corresponds to the
case where the graph structure has no influence on the
population dynamics, i.e. the case where f is the uniform
distribution on [0, 2π).

As expected, the simulations of Figure 8 show that
there is an optimal tradeoff: when the shoot angle p.d.f.
is not directive enough or too directive, the plant fails
to reach areas with high level of resources; in intermedi-
ate cases, the plant reaches these areas and reaches them
rapidly.
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Figure 7: Typical graph patterns for the guerrilla and the phalanx
cases. In Figure 9 we present an example where the number of
connexions per node is limited.

5. Large population approximation of the IBM

Individual-based models are a convenient tool for mod-
eling small-scale ecological systems. However, their simu-
lation is often costly and can hardly provide relevant field-
scale informations in reasonable computational time. This
is typically the case for phalanx-type clonal plants, where
the connection length is often short and the plant architec-
ture is dense. In order to understand the global interaction
between plants and resources, the search for simpler ap-
proximation models is crucial.

One then typically seeks for partial differential equa-
tions (PDE) governing the time dynamics of the popula-
tion density over space, obtained in a limit of large pop-
ulation. This has been done under various scalings of the
individual parameters for plants systems without network
structure (Fournier and Méléard, 2004; Champagnat et al.,
2006, 2008). Three main families of scalings were described
in the second paper: in the first scaling, space is unscaled,
leading to a non-local integro-differential equation for the
population density; in the second one, space is scaled, and
births and deaths are accelerated accordingly in order to
obtain a limit, which takes the form of a local reaction-
diffusion PDE; in the last scaling, births and deaths are
even more accelerated, leading to a stochastic reaction-
diffusion PDE.

Because of the underlying network structure and the
explicit coupling with resource dynamics, these results do
not apply directly to our IBM. Similar results can be ob-
tained in network-structured populations (Campillo and
Champagnat, 2010), but without explicit dynamics for the
resources. The result we present here is a first attempt to
fill this gap. A full mathematical proof is likely to be very
technical because our model couples a stochastic, discrete
structure for the population and a deterministic, contin-
uous structure for resource concentrations. We leave this
proof as an open problem and only present and justify
our macroscopic model as a reasonable large population
approximation of the IBM.
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Figure 6: If the shoot angle p.d.f. f(a, θ) has a large variance (resp.
small variance) and if the p.d.f. g(�v�) favors small lengths (resp.
large lengths), then the model will present the characteristics of a
phalanx growth strategy (resp. guerrilla growth strategy).

for the first point (because the plant grows along straight
lines), but inefficient for the second point. Pure Phalanx
strategies are less efficient for the first point, but more effi-
cient for the second point (as they grow in all directions).
We explore a range of intermediate strategies simply by
varying the variance of the shoot angle distribution f . A
small variance means that the plant grows nearly along
straight lines and has a very small probability to change
its growth direction. A large variance corresponds to the
case where the graph structure has no influence on the
population dynamics, i.e. the case where f is the uniform
distribution on [0, 2π).

As expected, the simulations of Figure 8 show that
there is an optimal tradeoff: when the shoot angle p.d.f.
is not directive enough or too directive, the plant fails
to reach areas with high level of resources; in intermedi-
ate cases, the plant reaches these areas and reaches them
rapidly.
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Figure 7: Typical graph patterns for the guerrilla and the phalanx
cases. In Figure 9 we present an example where the number of
connexions per node is limited.

5. Large population approximation of the IBM

Individual-based models are a convenient tool for mod-
eling small-scale ecological systems. However, their simu-
lation is often costly and can hardly provide relevant field-
scale informations in reasonable computational time. This
is typically the case for phalanx-type clonal plants, where
the connection length is often short and the plant architec-
ture is dense. In order to understand the global interaction
between plants and resources, the search for simpler ap-
proximation models is crucial.

One then typically seeks for partial differential equa-
tions (PDE) governing the time dynamics of the popula-
tion density over space, obtained in a limit of large pop-
ulation. This has been done under various scalings of the
individual parameters for plants systems without network
structure (Fournier and Méléard, 2004; Champagnat et al.,
2006, 2008). Three main families of scalings were described
in the second paper: in the first scaling, space is unscaled,
leading to a non-local integro-differential equation for the
population density; in the second one, space is scaled, and
births and deaths are accelerated accordingly in order to
obtain a limit, which takes the form of a local reaction-
diffusion PDE; in the last scaling, births and deaths are
even more accelerated, leading to a stochastic reaction-
diffusion PDE.

Because of the underlying network structure and the
explicit coupling with resource dynamics, these results do
not apply directly to our IBM. Similar results can be ob-
tained in network-structured populations (Campillo and
Champagnat, 2010), but without explicit dynamics for the
resources. The result we present here is a first attempt to
fill this gap. A full mathematical proof is likely to be very
technical because our model couples a stochastic, discrete
structure for the population and a deterministic, contin-
uous structure for resource concentrations. We leave this
proof as an open problem and only present and justify
our macroscopic model as a reasonable large population
approximation of the IBM.

6

Figure 6: If the shoot angle p.d.f. f(κ, θ) has a small concentration parameter κ (resp. large concen-
tration parameter κ) and if the p.d.f. g(‖v‖) favors small lengths (resp. large lengths), then the model
will present the characteristics of a phalanx growth strategy (resp. guerrilla growth strategy).

occurs on a short time-scale, we also neglect the degradation phenomenon by which

resources return to the environment. The resource landscape is chosen multimodal: the

resources are distributed in several patches. Our goal is to test the capabilities of our

clonal plant model to explore space and to adapt its network according to the distribution

of resources.

For the phalanx strategy, we observe a dense colonization front, because of the excess

of resources. Away from the front, the population density stabilizes to a lower level,

due to the stabilization of the resource concentration at a small level. For the guerrilla

strategy, the colonization front is not as clearly delimited, but we still observe an area

with high density where the colonization progresses, and the stabilization of resources

and population densities in already colonized regions.

One of the main advantages that network structure are believed to confer to clonal

plants is their capacity to adapt their growth strategy to the local resources landscape,

felt either by foraging or physiological integration. This capacity is given in our IBM by

the dependency of the dispersion kernel – more precisely the shoot angle p.d.f. f – on

the estimated resource gradient dt,x (9).
14



−3 −2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

link angle pdf

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

po
pu

la
tio

n 
si

ze

0

10

20

30

40

50

60

70

80

90

re
so

ur
ce

 e
vo

lu
tio

n

−3 −2 −1 0 1 2 3

0.145

0.15

0.155

0.16

0.165

0.17

0.175
link angle pdf

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

po
pu

la
tio

n 
si

ze

0

10

20

30

40

50

60

70

80

90

re
so

ur
ce

 e
vo

lu
tio

n

−3 −2 −1 0 1 2 3

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

link angle pdf

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

po
pu

la
tio

n 
si

ze

0

10

20

30

40

50

60

70

80

90

re
so

ur
ce

 e
vo

lu
tio

n

−3 −2 −1 0 1 2 3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

link angle pdf

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

po
pu

la
tio

n 
si

ze

0

10

20

30

40

50

60

70

80

90

re
so

ur
ce

 e
vo

lu
tio

n

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

link angle pdf

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

po
pu

la
tio

n 
si

ze

0

10

20

30

40

50

60

70

80

90

re
so

ur
ce

 e
vo

lu
tio

n

shoot angle p.d.f. f(θ) evolution of the population size (red)

and of the amount of resources (blue)

Figure 8: We assume that for all a > 0, f(a, θ) = f(θ) is the Von
Mises distribution with variance parameter κ. Taking different val-
ues for this parameter (κ = 0, 0.1, 0.5, 2, 3) we plot, on the left,
the corresponding shoot angle p.d.f. f(θ) and, on the right, the time
evolution of the size of the population (red) and of the total resource
(blue); we suppose that there is no advection of resources (i.e. b ≡ 0
in (9)). The simulation is done with the initial resource map of
Figure 3 with high resources spot on the north of the domain, a less
important spot in the south and 3 negligible spots (left, center and
right), the initial plant is located on the left spot. In the first case,
κ = 0, the plant explore all directions without any preference (uni-
form distribution of the shoot angle): by chance the plant reaches
the north spot corresponding to the increase of population and the
population subsequently decreases. In the second case, κ = 0.1, the
plant first reaches the south spot and then the north spot. In the
third case, κ = 0.5, the plant rapidly reaches the north spot and
then the south spot. In the fourth case, κ = 2, the plant need more
time to reach the two important spots. In the last case, the plant
does not reach any resource spot and node population goes extinct
rapidly.
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Figure 9: Here the birth rate is adjusted so that each node can have
a maximum of 3 connections (i.e. Nmax = 3 in (5)).

The limit PDE
The more relevant scaling within the context of phalanx-

type clonal plants is the space-scaling and acceleration of
births and deaths which leads to a reaction-diffusion PDE
for population densities. It is also the less technical, and
we restrict ourselves to this case here. Concerning other
possible scalings, we refer to the discussion below (see also
Campillo and Champagnat. 2010). In this case, the PDE
approximation of the IBM takes the following form: denot-
ing by u(t, x) the population density at time t and position
x in D,

∂tu(t, x) = β ∆(γ(x) u(t, x)) + (λ(t, x)− µ(t, x)) u(t, x)
−div(γ(x) F (x,∇r(t, x)) u(t, x)) ,

∂tr(t, x) = ∇(a(x) r(t, x)) + b(x) ·∇r(t, x)
−δ r(t, x) u(t, x),

u(t, x) = r(t, x) = 0, ∀x ∈ ∂D.

(11)
This model is a diffusion-advection PDE with a term of
local growth for the population density coupled with an
diffusion-advection PDE for resources, where the resource
consumption depends on the local population density u(t, x)
and the advection of the population density depends on the
local gradient of resources ∇r(t, x). Note that the PDE for
u is linear, but depends non-linearly on r through F , λ and
µ. Therefore, this is not strictly speaking a reaction diffu-
sion PDE as in the competition-colonization plant model
of Champagnat et al. (2006). Note also that the local
growth rate of the population density is given as one could
expect by λ(t, x)− µ(t, x).

The parameters β, γ, δ and F appearing in this equa-
tion are obtained as explicit functions of individual param-
eters. Before giving their expression, we first explain the
scaling corresponding to this PDE and how it is obtained.

The parameter scalings
Fix a parameter η ∈]0, 1[ and introduce a constant K

which will correspond to the order of the population size.
This constant K is related to the carrying capacity of the
system and is also often called “system size” (Metz et al.,

7

Figure 7: Simulation of guerrilla and phalanx behavior descried in Figure 6 with a maximum number
of Nmax = 3 connections, see (4a).

The efficiency to exploit resources can then be compared with simulations of IBM

involving different dispersion kernels. This is done in Figure 8 with the initial resource

landscape given by Figure 3.

This resource map features several resource-rich areas (patches), with different levels

of resource richness, separated by resource-poor areas of different width. The arbitrary

choice we made is intended to provide various situations to test the ability of the clonal

plant to (i) cross areas with small resource density in order to visit new patches and (ii)

to uptake resources within a patch efficiently.

Pure guerrilla strategies are efficient for the first point (because the plant grows

along straight lines), but inefficient for the second point. Pure Phalanx strategies are

less efficient for the first point, but more efficient for the second point (as they grow in

all directions).

We explore a range of intermediate strategies simply by varying the concentration of

the shoot angle distribution f . A large concentration means that the plant grows nearly

along straight lines and has a very small probability to change its growth direction. A

small concentration corresponds to the case where the graph structure has no influence

on the population dynamics, i.e. the case where f is the uniform distribution on [0, 2π).
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As expected, the simulations of Figure 8 show that there is an optimal tradeoff: when

the shoot angle p.d.f. is not directive enough or too directive, the plant fails to reach

areas with high level of resources; in intermediate cases, the plant reaches these areas

and reaches them rapidly.

5. Large population approximation of the IBM

Individual-based models are a convenient tool for modelling small-scale ecological sys-

tems. However, their simulation is often costly and can hardly provide relevant field-scale

information in reasonable computational time. This is typically the case for phalanx-type

clonal plants, where the connection length is often short and the plant architecture is

dense. In order to understand the global interaction between plants and resources and to

speed up the computational time, the search for simpler approximation models is crucial.

It is natural to seek partial differential equations (PDE) (El Hamidi et al., 2012)

governing the time dynamics of the population density over space, obtained in a limit of

large population. This has been done under various scalings of the individual parameters

for plants systems without network structure (Fournier and Méléard, 2004; Champagnat

et al., 2006, 2008). Three main families of scalings were described in the second paper:

in the first scaling, space is unscaled, leading to a non-local integro- differential equation

for the population density; in the second one, space is scaled, and births and deaths are

accelerated accordingly in order to obtain a PDE with local reaction-diffusion; in the last

scaling, births and deaths are even more accelerated, leading to a stochastic reaction-

diffusion PDE.

Because of the underlying network structure and the explicit coupling with resource

dynamics, these results do not apply to our IBM. The result we present here is a first

attempt to fill this gap. This is a convergence theorem under appropriate parameter

scalings, so we insist on the fact that the limit is exact. We give in the Appendix an

argument justifying this convergence, but we do not provide a full proof, which would be

very technical because our model couples a stochastic, discrete structure for the popula-

tion and a deterministic, continuous structure for resource concentrations (see Campillo

and Champagnat, 2012, for a proof in a graph-structured IBM without resources).
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shoot angle p.d.f. f(θ) evolution of the population size (red)

and of the amount of resources (blue)

Figure 8: We assume that for all a > 0, f(a, θ) = f(θ) is the Von
Mises distribution with variance parameter κ. Taking different val-
ues for this parameter (κ = 0, 0.1, 0.5, 2, 3) we plot, on the left,
the corresponding shoot angle p.d.f. f(θ) and, on the right, the time
evolution of the size of the population (red) and of the total resource
(blue); we suppose that there is no advection of resources (i.e. b ≡ 0
in (9)). The simulation is done with the initial resource map of
Figure 3 with high resources spot on the north of the domain, a less
important spot in the south and 3 negligible spots (left, center and
right), the initial plant is located on the left spot. In the first case,
κ = 0, the plant explore all directions without any preference (uni-
form distribution of the shoot angle): by chance the plant reaches
the north spot corresponding to the increase of population and the
population subsequently decreases. In the second case, κ = 0.1, the
plant first reaches the south spot and then the north spot. In the
third case, κ = 0.5, the plant rapidly reaches the north spot and
then the south spot. In the fourth case, κ = 2, the plant need more
time to reach the two important spots. In the last case, the plant
does not reach any resource spot and node population goes extinct
rapidly.
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Figure 9: Here the birth rate is adjusted so that each node can have
a maximum of 3 connections (i.e. Nmax = 3 in (5)).

The limit PDE
The more relevant scaling within the context of phalanx-

type clonal plants is the space-scaling and acceleration of
births and deaths which leads to a reaction-diffusion PDE
for population densities. It is also the less technical, and
we restrict ourselves to this case here. Concerning other
possible scalings, we refer to the discussion below (see also
Campillo and Champagnat. 2010). In this case, the PDE
approximation of the IBM takes the following form: denot-
ing by u(t, x) the population density at time t and position
x in D,

∂tu(t, x) = β ∆(γ(x) u(t, x)) + (λ(t, x)− µ(t, x)) u(t, x)
−div(γ(x) F (x,∇r(t, x)) u(t, x)) ,

∂tr(t, x) = ∇(a(x) r(t, x)) + b(x) ·∇r(t, x)
−δ r(t, x) u(t, x),

u(t, x) = r(t, x) = 0, ∀x ∈ ∂D.

(11)
This model is a diffusion-advection PDE with a term of
local growth for the population density coupled with an
diffusion-advection PDE for resources, where the resource
consumption depends on the local population density u(t, x)
and the advection of the population density depends on the
local gradient of resources ∇r(t, x). Note that the PDE for
u is linear, but depends non-linearly on r through F , λ and
µ. Therefore, this is not strictly speaking a reaction diffu-
sion PDE as in the competition-colonization plant model
of Champagnat et al. (2006). Note also that the local
growth rate of the population density is given as one could
expect by λ(t, x)− µ(t, x).

The parameters β, γ, δ and F appearing in this equa-
tion are obtained as explicit functions of individual param-
eters. Before giving their expression, we first explain the
scaling corresponding to this PDE and how it is obtained.

The parameter scalings
Fix a parameter η ∈]0, 1[ and introduce a constant K

which will correspond to the order of the population size.
This constant K is related to the carrying capacity of the
system and is also often called “system size” (Metz et al.,

7

Figure 8: Let κ be the concentration parameter of the Von Mises distribution f . Taking different values
for this parameter (κ = 0, 0.1, 0.5, 2, 3) we plot, on the left, the corresponding shoot angle p.d.f. f(κ, θ)
and, on the right, the time evolution of the size of the population (red) and of the total resource (blue);
we suppose that there is no advection of resources (i.e. b ≡ 0 in (10)). The simulation is done with the
initial resource map of Figure 3 with high resources spot on the north of the domain, a less important
spot in the south and 3 negligible spots (left, center and right), the initial plant is located on the left spot.
In the first case, κ = 0, the plant explore all directions without any preference (uniform distribution of
the shoot angle): by chance the plant reaches the north spot corresponding to the increase of population
and the population subsequently decreases. In the second case, κ = 0.1, the plant first reaches the south
spot and then the north spot. In the third case, κ = 0.5, the plant rapidly reaches the north spot and
then the south spot. In the fourth case, κ = 2, the plant needs more time to reach the two important
spots. In the last case, the plant does not reach any resource spot and node population goes extinct
rapidly.
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The limit PDE

The more relevant scaling within the context of phalanx-type clonal plants is the

space-scaling and acceleration of births and deaths which leads to a reaction-diffusion

PDE for population densities. It is also the less technical, and we restrict ourselves

to this case here. Other possible scalings are discussed below (see also Campillo and

Champagnat, 2012). In this case, the PDE approximation of the IBM takes the following

form: denoting by u(t, x) the population density at time t and position x in D,

∂tu(t, x) = β∆(γ(x)u(t, x)) + (λ(t, x)− µ(t, x))u(t, x)

−div(γ(x)F (x,∇r(t, x))u(t, x)) ,

∂tr(t, x) = ∇(a(x) r(t, x)) + b(x) · ∇r(t, x)

−δ r(t, x)u(t, x),

u(t, x) = r(t, x) = 0, ∀x ∈ ∂D.

(12)

This model is a diffusion-advection PDE for population densities with a term of lo-

cal growth, coupled with an diffusion-advection PDE for resources, where the resource

consumption depends on the local population density u(t, x) and the advection of the

population density depends on the local gradient of resources ∇r(t, x). Note that the

PDE for u is linear, but depends non-linearly on r through F , λ and µ. Therefore,

this is not strictly speaking a reaction diffusion PDE as in the competition-colonization

plant model of Champagnat et al. (2006). Note also that the local growth rate of the

population density is given as one could expect by λ(t, x)− µ(t, x).

The parameters β, γ, δ and F appearing in this equation are obtained as explicit

functions of individual parameters in the Appendix.

The parameter scalings

The PDE (12) is obtained from a large population scaling of our IBM. Hence, we

introduce a parameter K which will give the order of the total number of individuals in

the population. The constant K is related to the carrying capacity of the system and is

also often called “system size” (Metz et al., 1996). We also fix a parameter η ∈]0, 1[. We

denote by νK and rK the population measure and resource concentration corresponding
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to the parameter K, and we scale νK as

νKt =
1
K

NKt∑
i=1

δxit .

First, in order to make the population larger, we need to increase the quantity of resources

available, or equivalently to reduce the rate of resource consumption per individual:

∂t rK(t, x) = div
(
a(x)∇rK(t, x)

)
+ b(x) · ∇rK(t, x)− α

K
rK(t, x)

NKt∑
i=1

ΓKxit(x), (13)

which amounts to replacing α by α/K in (10). We also apply a space scaling, which

corresponds to the choice

ΓKy (x) = K−η/2 exp
(− Kη

2σ2
r
|x− y|2) .

in the resource dynamics. This means that the typical size of a ramet (and its roots,

stolons excluded) is of order K−η/2 in the new space-scale. Since the integral of ΓKy over

space remains of order 1, the total amount of resources consumed per ramet and per unit

of time remains of order 1/K (because α has been divided by K). This is consistent with

a total population size of order K.

Concerning the population dynamics, we require that births and deaths are acceler-

ated as follows:
λK(t, x) = λ(t, x) +Kη γ(x),

µK(t, x) = µ(t, x) +Kη γ(x),
(14)

where λ and µ may depend on r as in (4). This means that, while keeping the growth

rate per individual λK − µK = λ − µ constant, births and deaths are accelerated by

the term Kηγ, where γ is a function that may depend on x ∈ D. This corresponds to

a time-scale where ramets have short life spans and reproduce rapidly, while the total

population grows or declines on a slower time scale. In other words, we want to describe

the global changes in the population on an intermediate time scale, after the initial (fast)

colonization of space, but before it stabilizes to a global equilibrium.

Finally, the space scaling must also be applied to the dispersion kernel, and the

preferred dispersion direction must be consistent with the phalanx-type population we

consider: we replace the dispersion distribution of (5) by

DK
t,x(v) =

1
Kη

g
( ‖v‖
Kη/2

)(
(1−K−η/2)

(dt,x, v)
2π

+K−η/2 f(κ, (dt,x, v))
)
. (15)

19



The scaling of the p.d.f. g corresponds to the space scaling of K−η/2 which was used

above for the resource consumption kernel ΓK . The scaling of the p.d.f. f amounts to

a uniform dispersion direction with probability 1−K−η/2 and otherwise to a dispersion

direction around the preferred direction according to f . This corresponds to a population

with nearly no preferred direction, hence a phalanx-type population. Still, the small

probability K−η/2 for a dispersal along the preferred direction has an effect at large space-

scales on the global behavior of the population, corresponding to the term F (x,∇r(t, x))

in the limit PDE (12). This shows that even a small asymmetry in the dispersal direction

for each ramet can lead to a non-negligible global effect. Again, this global effect can be

explicitly expressed in terms of the individual parameters (see Appendix).

6. Discussion

The construction of a model in any scientific domain has to meet several contradictory

goals and must often be a compromise. The first goal is of course the faithfulness of its

results compared to the quantitative results of experiments, and as a consequence, the

details and precision that the model should include in all the relevant mechanisms. The

second goal is its practical interest in terms of prediction, description and analysis of the

phenomenon under study. In this respect, we can distinguish several major issues: the

number of parameters of the model, the difficulty of its numerical implementation, the

numerical cost of its simulation and the possibility of its mathematical analysis. The

tendency to build complicated models to describe natural phenomena has to be faced

with the problems of calibration of too many parameters compared with the amount of

data available, the arbitrary choices that must often be made in the details of the model,

and the numerical cost of its simulation, which can make statistical information or large

time behaviors out of reach.

The construction of a useful model requires to restrict to the significant factors in-

volved in the phenomenon. Of course, the notion of significant factors is highly dependent

of the goals of the study. In Ecology, depending on the spatial scale of the study, one may

prefer to use “realistic IBMs” which aims to describe realistic local population structures,

or “simple IBMs” which focus on a specific feature of the ecosystem and can be used

to study its influence on large space scales. For clonal plants, the first class of models
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has received much more attention than the second one, and this work is an attempt to

construct a simple IBM for clonal plants which can be numerically and mathematically

studied at the scale of a grassland.

A simple IBM allowing to simulate the growth of two clonal plants

In this work, we presented a simple IBM for clonal plants in continuous time and

space, which can be numerically and mathematically studied on large space-scale. To

this aim, we chose a modelling compromise which consists in substantially simplifying

several aspects of the local architecture of the plant, while focusing on a single aspect: the

influence of the graph structure of the plant on its horizontal growth strategy. Our goal

was to model the influence of the network structure of the plant on its ability to colonize

space (Harper, 1981; Hutchings, 1999) through the exchange of resources and information

along connections (Marshall, 1990; Stuefer et al., 2004; Wijesinghe and Hutchings, 1997;

Hutchings, 1999; Charpentier and Stuefer, 1999; Klimeš et al., 1997). This was done by

constructing a preferred horizontal growth direction based on the position and resources

of the neighbors of a ramet in the network. This preferred growth direction influences

the position of new ramets. Because of the importance of resources in the horizontal

growth strategy, we also included an explicit resource dynamics in the model taking the

form of an advection-diffusion partial differential equation.

Typical network architectures of clonal plants range from phalanx to guerrilla strate-

gies (Lovett-Doust, 1981). These strategies strongly influence the horizontal growth of

clonal plants, which in turn strongly influences their colonization and space occupation

abilities (Wildova et al., 2007). Based on a partly exact simulation scheme, as the exact

IBM scheme is coupled with an approximate resources dynamics, the numerical study

of our IBM was done in the context of the colonization of a land with an heterogeneous

and fragmented resource landscape. We proposed a possible parameterization of guerrilla

and phalanx strategies in our model, and we studied the efficiency of these strategies on

the speed of colonization and the resource consumption.

We observed a trade-off between exploration and exploitation inducing contrasted

colonization performance of plants. Space colonization depended on the species clonal

dispersal strategy. Guerilla species were the most efficient at exploring space as their

strategies enable them to colonize space and minimize competition within the clone
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(Lovett-Doust, 1981). These differences in the success of these two strategies are consis-

tent with previous studies (Humphrey and Pike, 1997).

The average distance between two connected ramets and the variance of the gap

between the actual and the preferred directions of growth appear to be particularly im-

portant traits for the plant efficiency. In our simple situation, we observed the existence

of an optimal resource consumption, intermediate between pure phalanx and pure guer-

rilla strategies. The importance of architectural trait in plant performances has been

a key question in clonal plant studies, especially studied through modelling approaches

(Winkler and Schmid, 1995; Wildova et al., 2007; Wong et al., 2011). In particular, an-

gles between branches have been shown to be a key element for determining the ability

of a plant to handle the trade-off between intraclonal competition and space coloniza-

tion (Bell, 1979; Kisljuk et al., 1996; Wong et al., 2011). The model of Smith and

Palmer (1976) demonstrated that a hexagonal architecture would maximize the centrifu-

gal spread and area colonized by the clonal fragment, while generating gaps within it.

Weak variation of this angle disfavors ramet superposition (Bell and Tomlinson, 1980).

Comparison with other classes of IBMs

IBMs on a grid are a convenient way to model the spatial constraints on the network

structure of a plant community without giving too much care to the underlying mecha-

nisms. For example, a spatial grid limits the local spatial density of ramets or spacers,

and the complexity of the network structure. This is probably an important reason for

the success of IBMs on grids for clonal plant modelling.

However, IBMs on grids also have some drawbacks: they can produce unrealistic

structures of the plant (particularly for sympodial species), the spatial constraints are

modelled in an arbitrary way, the numerical implementation of the model can be complex

due to the grid structure, and the models can be analyzed only via simulations.

IBMs in continuous space can answer several of the above mentioned drawbacks: the

absence of grid can solve the spatial artifacts of IBMs with grid; the spatial constraints

can be modelled as a direct consequence of the interaction between plants and resources;

the numerical implementation of the model is very simple and its numerical cost is good

(Section 3); finally, provided they are not too complicated, these models are amenable

to exact macroscopic approximations (Section 5).
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However, IBMs in continuous space also have drawbacks, among which: (i) the graph-

structure of the plant can be unrealistic, since a ramet can produce two very close new

ramets or the local ramet density could be very high; (ii) it is harder to include a realistic

interaction between ramets and resources, since resource concentrations are modelled as

continuous variables over continuous space, whereas individuals are discrete. This last

point is a major difficulty, since the structure of the root system, the mechanisms of

resource absorption by roots (including stolons) and the degradation of the plants are

very complex. We proposed a simple solution for this problem, probably unrealistic.

Still, one can hope that differences on the resource consumption mechanisms at the local

scale have a small influence on larger space-scale. This is supported by our mathematical

analysis in the Appendix, where the resource consumption profile of (10b) only influences

the global dynamics of the population through its mass and its standard deviation σr.

To our knowledge, the mechanism of resource consumption which we use is the first

one proposed in the context of a discrete population and a resource landscape over a

continuous space.

Our model belongs to the family of “simple IBMs”: the basic elements of the plants

are ramets and connections between ramets (rhizomes or stolons), and the above ground

and below ground aspects of the plant are not physically modelled. Of course, this

makes the model unrealistic concerning the local architecture of the plant. However,

our simulations show that our model is able to capture global features of the horizontal

growth of plants, such as guerrilla or phalanx growth strategies.

In addition, our model has a much smaller number of parameters than traditional

IBMs for clonal plants (5 parameters for birth and death rates: the minimal and maximal

birth and death rates and the maximum number of neighbors; 4 parameters for the

dispersal kernel). This makes our model much easier to calibrate than models giving

more details to the plant structure. One of the most promising approaches to calibrate

IBMs lies in the approximate Bayesian computation method (Hartig et al., 2010).

Our purpose was to construct a simple IBM that can be mathematically analized.

However, “realistic IBMs” are a key tool for studying local structures in plant commu-

nities, e.g. for development or behavioral studies. We can propose various extensions of

our model for future studies: (i) to account for unsuccessful exploration of space by the
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stolon, one can add to the model a probability of actual birth of a new ramet, which

could depend on the local resource concentration; (ii) the birth and death rates (4) may

also depend on resource translocation between ramets (Stuefer et al., 2004), for example

through incoming flow like those defined in (7) or (8); (iii) one can consider external sup-

ply of resources, either with flux (Neumann) boundary conditions or source terms for the

resources PDE (10a); (iv) more generally all information on the plant architecture usu-

ally included in realistic IBMs could be easily translated in models on continuous space.

For example, one can attach variables to each ramet, like their size, age or biomass (for

example, resources attached to a ramet sensu Herben and Novoplansky, 2008), and let

the birth and death parameters depend on these variables. Internal or terminal ramets

could also be distinguished (Oborny and Englert, 2012). Spacers can also disconnect

at a given rate (Herben and Novoplansky, 2008), be characterized by an amount of re-

sources or biomass (physiological integration sensu Stuefer et al., 2004), or grow linearly

in continuous time, similarly as in most of the IBMs of clonal plants on grids.

Towards PDE models for various types of clonal plants

We proposed a PDE model which approaches the IBM when the population is large,

the births and deaths are fast and the size of ramets and spacers is small. This particular

scaling is relevant for clonal plants with phalanx strategies on large space-scales.

The derivation of such a result is usually only possible for “simple IBMs”, and much

easier for IBMs in continuous space. For particle systems on grids, similar results exist,

but usually under mixing assumptions (hence their name of hydrodynamic limits), like

fast motion of individuals (Durrett, 1995; Kipnis and Landim, 1999). Unfortunately,

such assumptions are totally irrelevant for IBMs of plant dynamics. The difficulty comes

from the fact that, without mixing assumptions, IBMs on grids remain influenced by the

geometry of the grid on large space scales (a celebrated example in a different context is

the Wulff crystal shape in statistical mechanics, see Cerf, 2006).

In the class of simple IBMs in continuous space, the first macroscopic results were

obtained using moment equations and their approximation by closure methods under

various space scalings (Bolker and Pacala, 1999; Dieckmann et al., 1999, 2000; Brown

and Bolker, 2004; Bolker, 2004). Afterwards, these results were improved with exact

convergence results to PDEs for population densities, using large space-scale and large
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population asymptotic (Fournier and Méléard, 2004; Champagnat et al., 2006; Campillo

and Joannides, 2009; Méléard and Tran, 2009). All these results were obtained in models

without network structure.

Our method, which makes the connection between IBMs with graph structure in

continuous space, and continuous PDE models, is new and shows how the local details

of the model can keep a non-trivial influence at larger space-scales. In addition, it can

be extended to other scalings of our IBM in the fashion of Champagnat et al. (2008) and

Campillo and Champagnat (2012), or to more complex interactions: (i) the birth, death

and dispersion parameters may also depend on the mean position of the neighbors of a

ramet (6) or on the flow of resources (7) or (8) entering a ramet; (ii) one can also scale

the population size without scaling space, by taking η = 0 in Section 5; in the limit,

the population densities solve a non-local PDE (as the network is unscaled), and must

be expressed also as a function of the age and parent position of a randomly sampled

individual (Campillo and Champagnat, 2012); (iii) our scaling can also be applied to

guerrilla-type strategies, for which the preferred growth direction has a strong influence;

in this case, the limit population density solves a pure advection (or transport) PDE, of

very different nature than the reaction-diffusion PDE obtained for phalanx strategies in

Section 5; (iv) one can also handle the case η = 1, where some demographic stochasticity

remains in the limit of large population, in the fashion of the Fleming-Viot process

(Etheridge, 2004; Champagnat et al., 2006).

Conclusion

By voluntary limiting ourselves to a simple individual-based model, we were able to

propose a precise asymptotic analysis that allowed us to approximate, at the scale of

the field, the IBM by a PDE system. This work is the first result that bridges the gap

between IBM and PDE in the context of clonal plant growth.

This scaling is especially valid for clonal plants with phalanx-type growth. Other

scalings can also be considered for guerrilla-type populations. This is an interesting per-

spective in terms of competition models between two species of clonal plants competing

for common resources. Depending on the scale of study or the species, it could be perti-

nent to consider hybrid models, where one species could be modelled in PDE terms and

the other species could be modelled in IBM terms.
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We believe that the dual representation of IBMs, by means of computer simulation

tools and of mathematical formalisms, will greatly expand in the future.

Appendix — Approximation argument for the limit PDE (12)

Equation (12) can be derived from the scaling described in Section 5 as follows:

we assume that the initial population state νK0 converges to some non-trivial measure

u0(x)dx on D, i.e. that the initial population size is of order K and is distributed over

space close to the population density u0(x). Now, assume that K is large and that at

some time t, the population state νKt is close to the density u(t, x), and consider some

test function φ over D. Then, the quantity At =
∫
D
φ(x) νKt (dx) changes on the time

interval [t, t+ dt] due to the following three effects:

• Each individual close to x ∈ D gives birth to a number λK(t, x) dt of individuals,

and a proportion µK(t, x) dt die. This gives a local change of the population density

(λK(t, x)− µK(t, x))u(t, x) dt, and a change of At given by∫
D

φ(x) (λ(t, x)− µ(t, x))u(t, x) dx dt.

This gives the first-order change of At. Higher-order changes (i.e. changes involving

derivatives of φ) must also be taken into account.

• Among all the births from the individuals around x ∈ D, a proportion 1−K−η/2
are located symmetrically around x at a distance K−η/2 ρ, where ρ is distributed

as g(ρ). Making a Taylor expansion of φ around x, the corresponding change of At

is given by

dt

∫
D

dxλK(t, x)u(t, x)
∫ 2π

0

dθ

2π

∫ +∞

0

g(ρ) dρ×

1
2 (ρK−η/2 vθ)′∇2 φ(x) (ρK−η/2 vθ),

where vθ = (cos θ, sin θ) is the unit vector of direction θ. Note that the first-order

term does not appear as it vanishes because of the symmetry of dispersions. Note

also that the scaling of λK in (14) has been chosen so that it exactly cancels the

scaling of the dispersion distance K−η/2ρ. Neglecting the smaller order terms, an
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easy computation gives a change of At of∫ +∞
0

ρ2 g(ρ) dρ
4

∫
D

∆φ(x) γ(x)u(t, x) dx dt.

• Among all the births from the individuals around x ∈ D, a proportion K−η/2

are located at x + K−η/2v, where v has distribution (5). Making again a Taylor

expansion of φ, we obtain a local change of At of

dt

∫
D

K−η/2λK(t, x)u(t, x)∇φ(x) ·K−η/2〈vt,x〉 dx,

where 〈vt,x〉 is the mean of vt,x when v has distribution (5), in which dt,x has the

distribution of the preferred dispersion direction in the population around x. Of

course, this last distribution is unknown and must be computed (see below).

Putting together all the previous results, we obtain

dAt
dt

=
∫
D

( R +∞
0 ρ2 g(ρ) dρ

4 ∆φ(x) γ(x)u(t, x)

+ φ(x) (λ(t, x)− µ(t, x))u(t, x) +∇φ(x) 〈vt,x〉 γ(x)u(t, x)
)
dx .

This is the weak formulation of the PDE (12), where we put

β =

∫ +∞
0

ρ2 g(ρ) dρ
4

,

F (x,∇r(t, x)) = 〈vt,x〉.

The fact that 〈vt,x〉 only depends on x and ∇r(t, x) will be justified below.

Before coming to the computation of F , we observe that the last term of the PDE (13)

for rK may be written as

−α rK(t, x)
∫
D

ΓKy (x)νK(dy).

Replacing νK(dy) with its limit u(t, y)dy and passing to the limit K → +∞ would

formally give the second equation of (12) with

δ =
α√

2π σr

.

However, this requires a sufficient regularity for u(t, x) and a convergence of νKt (dy) to

u(t, y)dy such that space means of νKt over balls of diameter of the order of K−η/2 also
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converge to u(t, x). This is the place where a full mathematical proof requires a careful

analysis that we do not examine here.

Finally, we need to compute the distribution of the preferred dispersion direction over

the population close to a fixed x ∈ D at a fixed time t ≥ 0. We consider one of these

ramets chosen at random and call it RSI (Randomly Sampled Individual) at x, and we

divide the computation into several steps.

Scaled age distribution of a RSI

Because of the scaling of the death rate µK(t, x), the life span of the RSI is of order

K−η, and the position of its mother ramet is at a distance of order K−η/2 because of

the scaling of the p.d.f. g. Over these time and space scales, the population densities

and resource concentration can be assumed constant equal to u(t, x) and r(t, x). We call

scaled age of an individual at x at time t, its age multiplied by Kη.

In particular, the ramets alive at time t close to x appeared at an (approximately)

constant rate during a time length of order K−η. Since they die (approximately) at

constant rate Kηγ(x), the probability of survival of an individual born at time t− yK−η
is e−yγ(x). Since the birth rate of individuals close to x is approximately constant, we

deduce that the scaled age of a RSI at x is asymptotically distributed when K → +∞
as an exponential random variable with parameter γ(x).

Number of living offsprings of a RSI

Conditionally on the age K−ηy (or the scaled age y) of a RSI at x, the birth rate at x

over the time interval [t−K−ηy, t] is (approximately) constant equal to Kηγ(x). There-

fore, the scaled age of all its offspring is distributed as a Poisson process of parameter

γ(x) on the interval [0, y]. In particular, the total number of offsprings is distributed as

a Poisson random variable with parameter yγ(x). Among them, some are already dead

at time t.

In order to compute the number of living neighbors of the RSI, we need to introduce an

additional conditioning on the number k of offspring of a RSI conditioned to have scaled

age y. We use the following feature of Poisson processes: conditionally of the number k

of offspring of the RSI, their scaled age are distributed as k independent and identically

distributed (i.i.d.) random variables with uniform distribution on [0, y]. In other words,
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conditionally on the age K−ηy of the RSI and the number of its children k, the ages

of its children are distributed as k i.i.d. random variable with uniform distribution on

[0,K−ηy].

Since they all die at (approximate) rate Kηγ(x), the survival probability of each is

1
K−ηy

∫ K−ηy

0

e−K
ηγ(x)sds =

1− e−yγ(x)
yγ(x)

.

We denote by px,y the right-hand side of this equation. This leads to a number of living

children of the RSI with binomial distribution with parameters k and px,y.

Number of living neighbors of a RSI

Similarly, conditionally on the scaled age y of the RSI, its mother ramet is still alive

at time t with probability e−yγ(x).

Therefore, the number N of living neighbors of a RSI at x conditionally on A = y,

where A is the scaled age of the RSI, is distributed as

P(N = n | A = y) = e−y γ(x)
∑

k≥n−1

e−y γ(x)
(y γ(x))k

k!

(
k

n− 1

)
pn−1
x,y (1− px,y)k−n+1

+ (1− e−y γ(x))
∑
k≥n

e−y γ(x)
(y γ(x))k

k!

(
k

n

)
pnx,y(1− px,y)k−n,

for n ≥ 1 and

P(N = 0 | A = y) = (1− e−y γ(x))
∑
k≥0

e−y γ(x)
(y γ(x))k

k!
(1− px,y)k.

Denoting for convenience these quantities qx,y(n), we obtain the following distribution

for the number N of living neighbors of a RSI at x: for all n ≥ 0,

P(N = n) =
∫ +∞

0

γ(x)e−y γ(x) qx,y(n) dy. (16)

Positions of the neighbors of a RSI

Neglecting the smaller-order terms in (15), we have

DK
t,x ≈ 1

Kη g
(
‖v‖
Kη/2

)
(dt,x,v)

2π ,

which means that the direction of dispersal is (approximately) uniform for each birth.

This is also the case for the births from the RSI at x, as well as its mother ramet.

Therefore, the positions of all the neighbors of the RSI at x are i.i.d. and distributed as

x+K−η/2ρvθ, where ρ has p.d.f. g(ρ) and vθ = (cos θ, sin θ).
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Asymptotic distribution of dt,x

Since the length of connections is of order K−η/2, we can replace r(t, xit) − r(t, x)

with ∇r(t, x) · (xit − x) in the formula (9) for the preferred dispersion direction dt,x.

Therefore, conditionally on N = n ≥ 1, the preferred dispersion direction dt,x of a RSI

at x is distributed as
1
n

n∑
i=1

(∇r(t, x) · vθi)vθi , (17)

where θ1, θ2, . . . are i.i.d. random variable uniformly distributed on [0, 2π).

Introducing θt,x such that ∇r(t, x) = ‖∇r(t, x)‖ vθt,x , and applying the rotation of

angle −θt,x to the vector (17) yields

1
n

n∑
i=1

cos(θ′i) vθ′i , (18)

where the θ′i are i.i.d. and uniformly distributed on [0, 2π).

Denoting by µ(w)dw the distribution of cos(θ)vθ for θ uniformly distributed on [0, 2π),

the distribution of the vector (18) is µ∗n(nw) dw, where µ∗n = µ ∗ . . . ∗ µ and ∗ denotes

the convolution operator. Therefore, a RSI at x at time t has the following distribution

for its preferred dispersal direction dt,x rotated of the angle −θt,x:

P(N = 0) δ0(dw) +
∑
n≥1

P(N = n)µ∗n(nw) dw

where P(N = n) is given by (16). Denoting by π(dw) the previous distribution, we finally

obtain

F (x,∇r(t, x)) = 〈vt,x〉 =
∫

R2
π(dw)

∫ 2π

0

dθ

∫ +∞

0

dρ ρ vθt,x+θ f
(
κ(‖w‖), (w, vθ)

)
g(ρ) .

Note that the right-hand side only depends on x through the distribution of N , and on

∇r(t, x) through the angle θt,x.
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Oborny, B., Kun, Á., Czárán, T., Bokros, S., 2000. The effect of clonal integration on plant competition
for mosaic habitat space. Ecology 81, 3291–3304.

Smith, A. P., Palmer, J. O. 1976, Vegetative reproduction and close packing in a successional plant
species. Nature 261, 232–23.

Stuefer, J., Gomez, S., Van Mölken, T., 2004. Clonal integration beyond resource sharing: implications
for defence signalling and desease transmission in clonal plant networks. Evolutionary Ecology 18,
647—667.
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