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Abstract. The electrostatic potential in the neighborhood of a biomolecule can be computed
thanks to the non-linear divergence-form elliptic Poisson-Boltzmann PDE. Dedicated Monte-
Carlo methods have been developed to solve its linearized version (see e.g. [7], [27]). These
algorithms combine walk on spheres techniques and appropriate replacements at the boundary
of the molecule. In the first part of this article we compare recent replacement methods for
this linearized equation on real size biomolecules, that also require efficient computational
geometry algorithms. We compare our results with the deterministic solver APBS. In the
second part, we prove a new probabilistic interpretation of the nonlinear Poisson-Boltzmann
PDE. A Monte Carlo algorithm is also derived and tested on a simple test case.

Résumé. Le potentiel électrostatique autour d’une biomolécule peut être calculé grâce à
l’équation de Poisson-Boltzmann, une EDP elliptique non-linéaire sous forme divergence. Des
méthodes de Monte-Carlo, dédiées à sa version linéarisée, combinent la marche sur les sphères
avec différents schémas de replacement à la frontière de la molécule (voir [7], [27]). La première
partie de cet article est consacrée à l’étude et la comparaison de différentes méthodes de
replacement pour l’EDP linéarisée, dans le cas de géométries réalistes de biomolécules. Dans
la seconde partie, nous donnons une nouvelle interprétation probabiliste de l’EDP de Poisson-
Boltzmann non linéaire. Nous en déduisons une méthode de Monte-Carlo originale qui est
testée sur un cas test simple.

1. Introduction

The goal of this paper is to study Monte Carlo methods to solve both linear and nonlinear versions of
the Poisson-Boltzmann PDE. In the linear case, we implement these algorithms on real size biomolecules,
the geometrical complexity being handled thanks to efficient computational geometry algorithms.

The Poisson-Boltzmann equation describes the electrostatic potential of a biomolecular system in a
ionic solution with permittivity ε, assuming a mean-field distribution of solvent ions—an assumption
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known as the implicit solvent approximation [2]. In this work, we are interested in the case of a neutral
ionic solution with two kinds of ions with opposite charge, where the Poisson-Boltzmann equation takes
the form

−∇ · (ε(x)∇u(x)) + κ2(x) sinh(u(x)) = f(x), ∀x ∈ R3, (1.1)

where

ε(x) =

{
εin > 0 if x ∈ Ωin,

εout > 0 if x ∈ Ωout,
κ(x) =

{
0 if x ∈ Ωin,

κ̄ :=
√
εout κout > 0 if x ∈ Ωout.

(1.2)

Here, Ωout represents the domain of the ionic solvent, and Ωin = Ωcout represents the interior of the
molecule, defined as the union of N spheres of centers c1, c2, . . . , cN and radii r1, r2, . . . , rN respectively,
representing the atoms of the molecule, that is

Ωin =

N⋃
i=1

S(ci, ri),

where S(c, r) = {x ∈ R3 : |x − c| < r}. We denote by Γ the boundary of the bounded domain Ωin.
More precisely, Γ can be either the van der Waals surface when the ri are the radii of the atoms, or the
Solvent Accessible Surface (SAS), which is the set of spheres with radii ri = ρi + rs, where rs is the
radius of solvent molecules and ρi are the radii of the atoms. The positive numbers εin and εout are the
relative permittivity of each medium, and u(x) represents the dimensionless potential at x ∈ R3, defined
as u(x) = ec(kBT )−1Φ(x) where Φ is the potential and the constants ec, kB and T are respectively
the charge of an electron, Boltzmann’s constant and the absolute temperature. Some differences may
be found in the normalizing constants depending on the bibliographic references. We focus here on
the choice of the normalization, the values of each constants and the derivation of Poisson-Boltzmann’s
equation given in [18], also used in the Poisson-Boltzmann solver APBS [3].

The source term f is given as a sum of Dirac measures:

f(dx) =

N∑
i=1

(
e2
c

kBTε0

)
ziδci(dx), (1.3)

where ε0 represents the absolute permittivity of vacuum, and zi is the relative charge of the i-th atom
of the molecule (relative meaning its actual charge divided by ec). Note that, even though ε and κ are
discontinuous and f is a measure, a proper notion of solution can be found in [10]. Note also that κ is
sometimes considered discontinuous at the ion accessible surface (obtained as the SAS surface with rs
replaced by the radius of ions in the solvent) and ε at the van der Waals or the SAS surface. In this
work we present our methods for a single discontinuity surface for both κ and ε (either Van-der-Walls
or SAS), but the methods can easily treat the double discontinuity surfaces model.

Finally, κ̄−1 is the Debye length in the ionic solution (see e.g. [18]),

κ̄−2 =
2NAe2

cI

ε0kBT
, (1.4)

where NA is the Avogadro constant, and I = c z2 is the ionic strength of the solvent, where c is the
concentration of one of the ion species in the ionic solution and z its relative charge (we recall that the
two ion species have the same concentration and opposite charges).

The values of all the physical constants used in the simulations are reported in Appendix A.
In structural biology, the Poisson-Boltzmann equation is often used in its linearized form:

−∇(ε(x)∇u(x)) + κ2(x)u(x) = f(x), ∀x ∈ R3 (1.5)

which gives a good approximation of the electrostatic potential around uncharged molecules. We refer
to Folgari et al. [13] for a survey on applications in structural biology.
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Monte Carlo (MC) algorithms for the linearized Poisson-Boltzmann equation were proposed first
by Mascagni and Simonov in [26, 27] and improved or extended in Mascagni et al. [12, 23, 31, 32],
Bossy et al. [7]. These MC algorithms involve double randomization techniques [27], walk on spheres
techniques [30] to simulate Brownian motion exit times and positions in Ωout and Ωin, and asymmetric
jump methods from the boundary Γ to take into account the discontinuity of ε in the divergence form
of the PDE (1.5). Recently, Lejay and Maire [22] and Maire and Nguyen [24] have proposed new
replacement methods from the boundary Γ which improve the order of convergence of the original
algorithm.

Section 2 is devoted to MC algorithms for the linearized Poisson-Boltzmann equation. After recalling
their general forms, we compare these MC algorithms on biomolecule geometries, i.e. for domains Ωin

defined from measured biomolecular data. The key issue to deal with real-size biomolecule geometries
consists in finding efficient algorithms to locate the closest atom from any position in R3. In this work,
we use the efficient power diagram construction, search and exploration tools developed in the CGAL
library [1] to solve this specific problem.

Section 3 is devoted to the study of probabilistic interpretations and Monte Carlo methods for the
nonlinear Poisson-Boltzmann equation. We show how branching versions of diffusion processes may
be used to deal with the nonlinear version of the PDE (Sections 3.1.2 and 3.1.3). We derive the
corresponding Monte Carlo algorithm in Sections 3.2.1 and 3.2.2. We test the numerical method on
simple molecule test-cases with one or two atoms (Section 3.3).

2. Linear case

This section deals with the linearized Poisson-Boltzmann equation (1.5). The Monte-Carlo algorithm
used to solve this equation was first proposed by Mascagni and Simonov in [27], and the probabilistic
interpretation of the PDE and improved replacement algorithms are given in Bossy et al [7]. This last
reference also presents numerical tests on cases where the molecule has one or two atoms.

In this work, the simulation code that we implement can deal with molecules having an arbitrary
number of atoms. We use the PDB format files of biomolecules which can be found for example on the
RCSB Protein Data Bank, and convert it into PQR files containing the positions, radii and charges of
all the atoms of the biomolecule using PDB2PQR [11]. This gives all the parameters of the Poisson-
Boltzmann equation, except the Debye length κ−1

out, which is computed from (1.4) (see the Appendix A
for the explicit values).

When designing a Monte-Carlo method for the linearized Poisson-Boltzmann equation, the main
difficulty is to deal correctly with the discontinuous coefficient in the divergence form operator. The
key point is the equivalent formulation of the equation (1.5) as two subproblems{

−εin∆u(x) = f(x) for x ∈ Ωin

u(x) = h(x) for x ∈ Γ,
(2.1){

−εout∆u(x) + κ̄2u(x) = 0 for x ∈ Ωout

u(x) = h(x) for x ∈ Γ,
(2.2)

with a transmission condition (see e.g. [20]), which holds true in general for smooth Γ (see [7]):

h = u|Γ, u is continuous on R3, and

εin∇inu(x) ·n(x) = εout∇outu(x) ·n(x), ∀x ∈ Γ,
(2.3)

where

∇inu(x) := lim
y∈Ωin, y→x

∇u(y), ∇outu(x) := lim
y∈Ωout, y→x

∇ϕ(y), ∀x ∈ Γ

and n(x) is the normal vector to Γ at x ∈ Γ pointing towards Ωout.
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2.1. A general probabilistic interpretation for (2.1)-(2.2) -(2.3)

The general principle of the Monte Carlo algorithms used here is given by the following extended
Feynman-Kac formula for the solution u of (1.5) (see [7]) ∀x ∈ Rd \ {c1, . . . , cN},

u(x) = Ex

[
+∞∑
k=1

(
u0(Xτk)− u0(Xτ ′

k
)
)

exp
(
−
∫ τk

0

εoutκ
2(Xs)ds

)]
(2.4)

where for all h > 0, we denote Ωhin := {x ∈ Ωin, d(x,Γ) ≥ h} and define τ ′0 = 0 and ∀k ≥ 1,

τk = inf{t ≥ τ ′k−1, Xt ∈ Ωhin}
τ ′k = inf{t ≥ τk, Xt ∈ Γ}.

The function

u0(x) :=
e2
c

kBTε0

N∑
i=1

zi
4πεin|x− ci|

(2.5)

is solution to −εin∆u0 = f in R3, and (Xt, t ≥ 0) is the weak solution to the stochastic differential
equation with weighted local time at the boundary Γ

Xt = x+

∫ t

0

√
2ε(Xθ)dBθ +

εout − εin

2εout

∫ t

0

n(Xθ)dL
0
θ(Y )

Yt is the signed distance of Xt to Γ (positive in Ωin),

L0(Y ) is the local time at 0 of the semimartingale Y.

The formula (2.4) suggests to use a Monte Carlo approximation of u based onM independent simulations
of (Xt, t ≥ 0). The MC algorithm computes the solution u at specific points (as needed for the
computation of the solvation free energy [2]) and of the same PDEs with different parameters [31].

Moreover, the MC method takes advantage of the geometry of the problem (the molecule is a union
of spheres):

• away from Γ, since the paths of X are scaled Brownian paths, we can use (centered and uncen-
tered) walk on spheres techniques [30] as fast numerical scheme.

• close to Γ, since (2.4) only involves the position of Xt and the amount of time spent in Ωout by
X between τ ′k and τk for all k ≥ 1, we approximate X by a process that jumps away from Γ
when it hits Γ.

2.2. The main steps of the Monte-Carlo algorithm

Let us describe the steps of the simulation of X for the Monte Carlo algorithms.

2.2.1. Outside the molecule: the walk on spheres (WOS) algorithm

Recall that in Ωout, u is a solution to − 1
2∆u + λu = 0 with λ := κ2

out/2. Therefore, u(x) =

Ex[u|Γ(Bτ )e−λτ ], where under Px, (Bt)t≥0 is a Brownian motion started at x and τ is its first hitting
time of Γ.

It is well-known [7, 22, 27, 30] that the WOS algorithm simulates exactly successive positions of B
in Ωout until it reaches –a small neighborhood of– Γ, taking into account the exponential term in the
probabilistic interpretation by means of a constant rate of killing λ.

Starting at a point y0 := x ∈ Ωout, we find the largest sphere S(y0, r0) included in Ωout and centered at
y0. In that sphere, the killed Brownian motion either dies before reaching the boundary of S(y0, r0) with

probability r0

√
2λ/ sinh(r0

√
2λ), or it reaches the sphere boundary at a point y1 uniformly distributed

on S(y0, r0). We then start again the same procedure from y1, and we obtain thus a sequence (yk)k≥0,
possibly killed. Except in very specific situations, this sequence will a.s. never hit Γ with a finite number
of steps. Hence it is classical to introduce a small parameter ε > 0 and to stop the algorithm either at



ESAIM: PROCEEDINGS AND SURVEYS 423

the first killing or at the first step where yk is in the ε-neighborhood of Γ and project yk on Γ to obtain
an approximation of the exit point. More formally, this algorithm can be written as follows.

WOS algorithm in the domain Ωout.
Set k = 0. Given y0 ∈ Ωout, λ ≥ 0, and ε > 0

(1) Let S(yk, rk) be the largest open sphere included in Ωout centered at yk.

(2) Kill the particle with probability 1−rk
√

2λ/ sinh(rk
√

2λ), and goto END if killed.

(3) Sample yk+1 according to the uniform distribution on ∂S(yk, rk).
(4) IF d(yk+1, ∂Ωout) ≤ ε, THEN set exit position(y0) as the closest point of ∂Ωout from

yk+1 and goto END.

ELSE, set k = k + 1 and return to Step (1).

END.

At least for smooth Γ, it is known [30] that this algorithm stops a.s. in finite time, after a mean
number of steps of order O(| log(ε)|). Moreover when u is continuous on Γ,

E[u(exit position(y0))1{exit before killing}] = Ey0 [u(Bτ )e−λτ ] +O(ε). (2.6)

2.2.2. CGAL Library: search for the closest atom

Given a position y ∈ Ωout, the first step of the WOS algorithm requires to construct the biggest
open sphere S = S(y, r) in Ωout with center y. In other words, it requires to find the nearest atom of
the molecule from y, i.e. the atom with index argmin1≤i≤N (‖y − ci‖ − ri), where ‖ · ‖ is the Euclidean

norm in R3.
The simplest way to achieve such a search consists in doing a “brute force”, naive search among the

N atoms to find the closest, with a computational cost of order N . However, for such a minimization
problems, it is generally possible to construct search algorithms with computational cost of order logN ,
if one can afford to build an appropriate search tree in a precomputation step. Since N could be large
for biomolecules (several thousands) and since our algorithm requires to search for the closest atom a
very large number of times (of order log ε times for each independent simulation of the Monte-Carlo
method), it is clearly interesting for us to use this second method.

The C++ library CGAL (Computational Geometry Algorithms Library) [1] proposes geometric
algorithms allowing to solve this problem. The idea is to construct first the power diagram associated
to the set of spheres (S(ci, ri))1≤i≤N , i.e. the partition of the space into polygonal cells, each of which
are associated to an index j ∈ {1, . . . , N}, such that the power distance ‖x − ci‖2 − r2

i , 1 ≤ i ≤ N , of
points x of the cell, is minimal for i = j. Given a point y ∈ R3, the library can then easily compute,
with complexity O(|log(ε)|), the index of the cell containing y. Since it minimizes the power distance,
this index is not necessarily the one that minimizes the Euclidean distance, so we need to check that
none of the neighboring cells are closer. CGAL also provides tools to explore the neighboring cells in
the power diagram, which we used. This last step is needed since otherwise one could use the WOS
algorithm on a too large sphere and obtain points that would belong to Ωin. We ran several tests to find
the proportion of such events. Without the local search step, this proportion is roughly 8%, whereas
with the local search step, it drops down to roughly 2%1. We use this local search in all the numerical
tests presented here.

For comparison, we implement three methods to find the nearest atom from a point:

• The brute localization method is the naive but exact method, of complexity O(N).
• The power diagram method uses the CGAL tools described above, of complexity O(logN).
• The power diagram with hint: in the WOS algorithm, the closest atom in the previous step

was already computed. Therefore, it can be used as a hint to find the atom with minimal power
distance among the neighboring atoms of the previous one. CGAL proposes options enabling to
start the search from specific points. This method is also of complexity O(logN), but hopefully
with a smaller constant multiplying logN .

1These proportions of course depend on the biomolecule and on the starting point for the simulation of X; the values
given here were obtained from a molecule with 103 atoms described in section 2.3.
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The computational costs of those three methods are reported in Figure 1(a). Note that other ideas
to improve the computational speed of this localization step were recently developed in [23].

2.2.3. Inside the molecule: uncentered walk on spheres (UWOS) algorithm

If the current position of the particle belongs to Ωin, we use the function u0 in (2.5) as the unique
bounded solution of the PDE (2.1) in the domain R3. Thus u − u0 is harmonic in Ωin, and using the
notation of Section 2.2.1, for all x ∈ Ωin,

(u− u0)(x) = E [(u|Γ − u0)(Bτ )] . (2.7)

Again, one can use a walk on spheres algorithm to compute this expectation. This can be done by
taking advantage of the union of spheres geometry of the molecule. In this case, it is convenient to use
an uncentered walk on spheres method: at each step we use the atom sphere to which the simulated
path’s position belongs, instead of drawing a virtual sphere centered around the current position. The
exit position from the sphere is not uniformly distributed on the sphere, but can be explicitly computed
and exactly simulated [27]. The following algorithm allows the exact simulation of the exit position of
a Brownian motion from Ωin.

UWOS algorithm in the domain Ωin.
Set k = 0. Given y0 ∈ Ωin,

(1) Choose i ∈ {1, . . . , n} such that yk ∈ S(ci, ri).
(2) Simulate yk+1 = (ri, θ, ϕ) where θ is uniform on [0, 2π] and ϕ is independent of θ with

cumulative distribution function Fri,|yk−ci|, in the spherical coordinates centered

at ci such that yk = (|yk − ci|, 0, 0).
(3) IF yk+1 ∈ ∂Ωin, THEN set exit(y0) = yk+1 and goto END.

ELSE, set k = k + 1 and return to Step (1).

END.

The cumulative distribution function FR,r is explicitly invertible and is given by

FR,r(α) :=
R2 − r2

2Rr

(
R

R− r
− R√

R2 − 2Rr cosα+ r2

)
.

2.2.4. On the boundary of the molecule: the jump method

The last ingredient of the MC algorithm is the discretization procedure to apply when the process
X hits the boundary Γ. We use approximations of the process X that jumps immediately after hitting
Γ either in Ωin at a distance h from Γ (as in the probabilistic representation of the solution u in (2.4)),
or in Ωout at a distance αh from Γ, for some constant α > 0. More formally, we associate to each x ∈ Γ
a random variable p(x) a.s. belonging to (R3 \ Γ) ∪ {∂}, distributing the new position in R3 \ Γ of the
process after its jump, or killing the process when it belongs to the cemetery point ∂.

The following algorithm computes a score along the trajectory of an approximation of (Xt)t≥0. In
view of the probabilistic representation of u (2.4), the Monte-Carlo average of this score approximates
u(x0).

Given x0 6∈ {c1, . . . , cN}, set k = 0 and score = u0(x0) if x0 ∈ Ωin or score = 0 otherwise.

(1) IF xk ∈ Ωin,

(a) THEN use the UWOS algorithm to simulate exit position(xk) and set score = score−
u0(exit position(xk)),

(b) ELSE use the WOS algorithm with λ = κ̄2/2εout to simulate exit position(xk).
IF the particle has been killed, THEN return score and goto END.

(2) Set xk+1 equal to an independent copy of p(exit position(xk)).
(3) IF xk+1 ∈ Ωin, THEN set score = score+ u0(xk+1).
(4) Set k = k + 1 and return to Step (1).

END.
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In this work, we consider three different jump methods, i.e. three different families of r.v. (p(x))x∈Γ.
All are based on a finite difference approximation of the transmission condition (2.3). Note that other
types of jump methods have been studied in the literature, among which “jump on spheres” tech-
niques [32] and neutron transport approximations [7]. For the first two methods, we follow the termi-
nology of [7].

Symmetric normal jump (SNJ): This method is the one proposed by Mascagni and Simonov in
their seminal paper [27]. It can be justified by a first-order expansion in (2.3): for all x ∈ Γ,

u(x) =
εout

εin + εout
u(x+ hn(x)) +

εin

εin + εout
u(x− hn(x)) + remainder,

where the remainder is of order O(h2) provided that the solution u to the Poisson-Boltzmann equation
has uniformly bounded second-order derivatives in Ωout and Ωin. This holds true at least if Γ is a C∞

manifold [7, Thm. 2.17]. The expansion can be written as an expectation involving a Bernoulli r.v. B
with parameter εout

εin+εout
as

u(x) = E[u(x+ (2B − 1)hn(x))] +O(h2). (2.8)

This suggests the following choice for the r.v. p(x): fix h > 0, then for all x ∈ Γ,

pSNJ(x) =


x+ hn(x) with probability

εout

εin + εout

x− hn(x) with probability
εin

εin + εout
.

(2.9)

Note that the full simulation algorithm with the SNJ jump method (called the SNJ algorithm) can also
be obtained by successive iterations of the formulas (2.7), (2.6) and (2.8), as explained in [27]). This
suggests that an error of order h2 accumulates at each time the discretized process hits Γ. Since this
number of hitting times is of order 1/h, this suggests a global error of order h. Taking into account the
additional error in the WOS algorithm, one can actually prove for smooth Γ that the error between u(x)
and the expectation of the score of the SNJ algorithm is of order O(h+ε/h) when h, ε→ 0 [7, Thm. 4.7].

Asymmetric normal jump (ANJ): This method, proposed in [7], can also be deduced from the
transmission condition (2.3), by introducing different finite difference steps to approximate the interior
and exterior gradients. We fix h > 0 and introduce a fixed parameter α > 0. Then, for all x ∈ Γ, we set

pANJ(x) =


x+ αhn(x) with probability

εout

εout + αεin

x− hn(x) with probability
αεin

εout + αεin
.

(2.10)

The error of the ANJ algorithm obtained with this jump method is also of order O(h+ε/h) [7, Thm. 4.7],
but, if α > 1, the process is moved further away from Γ when it jumps in Ωout. Since the process is
killed with a larger probability when it starts in Ωout further away from Γ, assuming α > 1 makes the
computational cost of a simulation score smaller than for the SNJ algorithm. Of course, a compromise
must be found with the increased bias for increased α > 1, which is analysed in [7].

Totally Asymmetric Jump (TAJ): This jump method from Γ is a new proposition in the context
of the Poisson-Boltzmann equation. It was originally proposed in a two-dimensional context by Lejay
and Maire [22] and for more general equations and boundary conditions by Maire and Nguyen in [24].
These methods apply to linear divergence form equations with damping. It is based on a higher order
expansion of the transmission conditions of the PDE on Γ and extensively use the linearity. It does not
apply in the nonlinear case, and will not be used in Section 3.

When the process hits the boundary, we replace it as follows:
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• with probability
αεin

αεin + εout + 1
2 κ̄

2α2h2
, the process moves toward Ωin at one of the following

four points with uniform probability:{
x− hn(x) +

√
2hm(x), x− hn(x) +

√
2hq(x), x− hn(x)−

√
2hm(x) or x− hn(x)−

√
2hq(x)

}
,

where m(x) and q(x) are any two orthonormal vectors in the tangent plane of Γ at the point x,

• with probability
εout

αεin + εout + 1
2 κ̄

2α2h2
, the process moves toward Ωout at one of the four points

with uniform probability:{
x+ αhn(x) +

√
2αhm(x), x+ αhn(x) +

√
2αhq(x), x+ αhn(x)−

√
2αhm(x) or x+ αhn(x)−

√
2αhq(x)

}
,

• with probability
1
2 κ̄

2α2h2

αεin + εout + 1
2 κ̄

2α2h2
, the process is killed.

As stated in Theorem 1 below, the TAJ method is of order 2, whereas SNJ and ANJ are first order
methods.

Theorem 1. Assume that Γ is a C∞ compact manifold in R3. Then, for all x 6∈ {c1, . . . , cN}, the
expectation ūh,α,ε(x) of the score of the TAJ algorithm with parameters h, α and ε, started from x0 = x,
satisfies

|ū(x)− u(x)| ≤ C
(
h2 +

ε

h

)
,

for a constant C depending only on α and the finite constant supy 6∈Γ, ‖y‖≤R(|u(y)|+‖∇u(y)‖+‖∇2u(y)‖+
‖∇3u(y)‖), for R large enough such that Γ ⊂ B(0, R), where B(0, R) = {z ∈ R3 : ‖z‖ < R}.

While the proof is based on similar computations in [24], for the sake of completeness we give a
detailed proof in the context of Poisson Boltzmann equation. Note that the above TAJ replacement
formulas are more convenient than the formulas derived in [24], as they do not require to impose some
constraints on h.

Proof. In the case where Γ is C∞, it has been proved in [7, Thm. 2.17] that the solution u to the
Poisson-Boltzmann equation satisfies that u|Γ is C∞. Hence, the solutions of the two subproblems (2.1)

and (2.2) admit derivatives of any order which are continuous up to Γ, i.e. they belong to C∞(Ωin) and
C∞(Ωout), respectively (see [15]). In particular, ∇ku is bounded on B(0, R) for all k ≥ 0.

Hence the following Taylor expansions are valid for all x ∈ Γ and y ∈ B(0, R) \ Γ:

u(y) = u(x) +∇inu(x) · (y − x) +
1

2
(y − x)′∇2

inu(x)(y − x) +O(‖y − x‖3), if y ∈ Ωin, (2.11)

u(y) = u(x) +∇outu(x) · (y − x) +
1

2
(y − x)′∇2

outu(x)(y − x) +O(‖y − x‖3), if y ∈ Ωout, (2.12)

where theO(‖y−x‖3) are bounded by ‖y−x‖3 times a constant depending only on supz 6∈Γ, ‖z‖≤R ‖∇3u(z)‖,
and where the notation ∇in and ∇out are extended to higher-order derivatives in an obvious way.

Fix x ∈ Γ, η ∈ R and γ > 0. Without loss of generality, we can assume that x = 0, n(x) = (1, 0, 0),
q(x) = (0, 1, 0) and m(x) = (0, 0, 1). We define

Eη,γu =
u(η, γη, 0) + u(η,−γη, 0) + u(η, 0, γη) + u(η, 0,−γη)

4
.

Applying (2.11), we obtain

E−h,γ = u(0)− h∇inu(0) ·n(0) +
1

4

[
2h2 ∂

2
inu(0)

∂x2
+ γ2h2

(
∂2

inu(0)

∂y2
+
∂2

inu(0)

∂z2

)]
+O(h3),
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and applying (2.12),

Eαh,αγ = u(0) + αh∇outu(0) ·n(0) +
1

4

[
2α2h2 ∂

2
outu(0)

∂x2
+ γ2α2h2

(
∂2

outu(0)

∂y2
+
∂2

outu(0)

∂z2

)]
+O(h3).

Now, the relations ∆u(x) = 0 in Ωin in the neighborhood of Γ and ∆u(x) = κ2
outu(x) in Ωout can be

extended by continuity to Γ, so that

∂2
inu(0)

∂y2
+
∂2

inu(0)

∂z2
= −∂

2
inu(0)

∂x2
,

and
∂2

outu(0)

∂y2
+
∂2

outu(0)

∂z2
= −∂

2
outu(0)

∂x2
+ κ2

outu(0).

This entails

E−h,γ = u(0)− h∇inu(0) ·n(0) +
2− γ2

4
h2 ∂

2
inu(0)

∂x2
+O(h3)

and

Eαh,αγ =

(
1 +

κ2
outα

2γ2h2

4

)
u(0) + αh∇outu(0) ·n(0) +

2− γ2

4
α2h2 ∂

2
outu(0)

∂x2
+O(h3).

Hence, choosing γ =
√

2, we obtain

αεin

αεin + εout(1 + κ2
outα

2h2/2)
E−h,

√
2 +

εout

αεin + εout(1 + κ2
outα

2h2/2)
Eαh,

√
2α = u(0) +O(h3), (2.13)

where the gradient terms canceled because of (2.3) and where the O(h3) is bounded by h3 times a
constant depending only on supz 6∈Γ, ‖z‖≤R ‖∇3u(z)‖. The TAJ jump method corresponds exactly to the
probabilistic interpretation of this formula.

Theorem 1 then follows from (2.13) exactly as Theorem 4.7 of [7] follows from Equation (4.19)
of [7]. �

2.3. Numerical experiments

2.3.1. Parallel version of the algorithm

It is usually very simple to implement a parallel version of a Monte-Carlo algorithm. This is the case
for our algorithm. The only delicate issue for reliable and statistically sound calculations is the parallel
generation of pseudo random numbers. In our MPI2 parallel implementation of the code, we used the
SPRNG 4.4 library [25].

2.3.2. Comparison of the ‘locate nearest atom’ methods

As described in Subsection 2.2.2, we implemented three different methods to approximate the closest
atom from a given particle position in R3. In Figure 1(a), we present the CPU time for each method as
a function of the size of the molecule. We use 5 molecules of different sizes: the molecule composed of
N = 103 atoms described in the next subsection, and the molecules 2KAM, 4HHF, 1KDM, 1HHO, 1HFO and
4K4Y of RCSB Protein Data Bank, with sizes ranging from N = 416 to N = 29420 atoms. We start
each simulation from a location close to the alpha-carbon atom of the first residue of the molecule. We
use the SNJ algorithm with h = 0.1 and ε = 10−4 (the shape of the curves is roughly independent on
the jump method). We run 105 independent simulations for each molecule on a laptop computer. Of
course, the computational time is very dependent of the shape of the molecule and of the initial position
of the algorithm, so that the CPU time does not necessarily increase with N , as observed in Figure 1(a)
for the largest molecules.

2Message Passing Interface (MPI) is a standardized and portable message-passing system available on a wide variety
of parallel computers.
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However, as expected, the power diagram with hints method is the fastest, at least for large
molecules. The power diagram method is slightly slower, but the difference is not very significant. The
brute localization method is up to 10 times slower than the power diagram with hints method
for large molecules, but is actually faster for molecules of sizes smaller than a thousand atoms.
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(b) Comparison with APBS. The blue curve is produced

with our code, and the red curve with APBS.

Figure 1. Comparison of the localization methods and adequation with a determin-
istic method.

2.3.3. Comparison with APBS

As a validation of the algorithm, we compared our Monte-Carlo estimate of u(x) with the value
computed by a deterministic solver of Poisson-Boltzmann equation. We choose APBS solver [4], which
uses adaptive finite element methods and algebraic multilevel methods.

This numerical experiment is done on a small peptide composed of 6 residues (GLU-TRP-GLY-
PRO-TRP-VAL) and N = 103 atoms. To produce the plots in Figure 1(b), we have calculated u at 30
different points of the space located on a line close to the alpha-carbon of the first residue (GLU). Our
Monte-Carlo method was run with the SNJ jump method, h = 0.1, ε = 10−4 and 4× 104 independent
simulations for each initial points to compute the Monte-Carlo average. The agreement between the two
curves is quite good, although there are some differences, which might be due either to the Monte-Carlo
error, or to the discretization in APBS.

2.3.4. The TAJ methods’ convergence order in the single atom case

The goal of this experiment is to check that the expected error of the TAJ method converges faster
than ANJ methods, as suggested by Theorem 1. We used the simplest molecule, composed of a single
atom, which is the only practical case where Γ is C∞ in Poisson-Boltzmann equation. In [7], some
comparisons were done on the SNJ and ANJ convergences in such a case. We consider an atom with
radius 1 Å and charge 1. We compute the approximation of (u − u0)(x0), where x0 is the center of
the atom, using SNJ, ANJ (α = 3 and α = 10) and TAJ (α = 1, α = 3 and α = 10) methods. The
Monte-Carlo average is computed from 107 independent simulations for each method and each values
of h, ranging from 0.003 to 0.9 and we took ε = 10−5. The results are compared with the exact value
of (u− u0)(x0) for which an exact expression is known [7].

The results are shown in Figure 2 and Figure 4(a). As expected, we observe a faster convergence for
the TAJ methods, although the second order is not very clear because of the Monte-Carlo error. The
first order of convergence for the SNJ and ANJ methods can be observed much more clearly.

It seems that for a given h, the error is smaller for a smaller parameter α both for ANJ and TAJ
methods, but this needs to be compared with the CPU time of the simulations. The performance plot
of Figure 4(a) shows the expected error of the Monte-Carlo algorithm as a function of CPU time. It
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(a) Monte-Carlo average as a function of h (Log scale).
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Figure 2. Convergence and error of the linear with jump methods SNJ, ANJ (α = 3
and α = 10) and TAJ (α = 1, α = 3 and α = 10) for the single atom case.

reveals that, for a given CPU time of computation and choosing an appropriate value of h, the expected
error of the algorithm is comparable for the three different values of α, and is slightly smaller for α = 10
for ANJ algorithms. This is consistent with the tests realized in [7]. This plot also confirms the better
efficiency of the TAJ methods.

2.3.5. Comparison between the different jump methods on a biomolecule

The goal of this experiment is to compare the SNJ, ANJ and TAJ methods on a small molecule, but
with realistic geometry. We use the molecule composed of 103 atoms described in Section 2.3.3. We use
the jump methods SNJ, ANJ (α = 3 and α = 10) and TAJ (α = 1, α = 3 and α = 10). The simulations
are done with ε = 10−6 and with different values for h, ranging from 0.9 to 0.003, and we take the same
number of Monte-Carlo simulations (106) for each run, large enough to be able to detect and compare
the convergence of the expectation of the score computed by our algorithms.

(a) Monte-Carlo average as a function of h (Log scale).
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Figure 3. Convergence and error of the linear with jump methods SNJ, ANJ (α = 3
and α = 10) and TAJ (α = 1, α = 3 and α = 10) for a molecule composed of 103 atoms.

Figure 3 shows the approximation of u(x0) by Monte-Carlo average, and the associated error relative
to a reference value computed using ANJ (α = 3) algorithm, h = 0.001, ε = 10−7 and (15 · 106) runs
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for the Monte Carlo average. The point x0 is chosen out to the molecule, but close (at 1Å) to the Trp
amino acid.

We also compared the result with the value computed with the APBS method, but it differs from
the Monte-Carlo reference value of roughly 7%, which is too large to detect the rate of convergence for
h small. We suspect that this difference is due to the finite element discretization used in APBS. The
value computed by APBS is shown in Figure 3(a).

All 6 methods show a good convergence. The higher order of convergence of the TAJ method cannot
be detected because of the statistical error of the Monte Carlo method. However, we observe a smaller
error for larger values of h for the TAJ method than for the ANJ ones. Of course, the TAJ methods
might not converge with order 2 as in Theorem 1, because Γ is not smooth. This indeed also causes some
difficulties in the implementation of the method, since it might occur, even for small h, that a jump
from Γ to the direction of Ωout actually gives a new position inside the molecule. This is particularly
true for the TAJ algorithm. Our tests show that the result of the algorithm is quite sensitive to the
method used in this particular situation, and can produce differences up to 5%. When this situation
occurs, we chose here to push the particle outside of the molecule, at a distance h of Γ, close to its
position before the jump. This choice shows good agreement between the values given by the ANJ and
TAJ algorithms.

As in the case of a single atom, we compare the performance of the 6 methods in Figure 4(b). This
plot does not show as clear conclusions as for the case of a single atom, but it confirms that TAJ has a
better performance at small CPU times.

(a) The error (Log scale) as a function of CPU time (Log
scale), on a signe atom.
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Figure 4. Performance plots of the 6 linear with jump methods SNJ, ANJ and TAJ for
a single atom (a), and a molecule composed of 103 atoms (b).

3. Non-linear case

The method we present here extends the previous probabilistic interpretation to the non-linear
Poisson-Boltzmann equation (1.1), by making use of the link between PDEs with non-linearity of order
0 (in u) and branching diffusions. Our algorithm is based on the simulation of a family of branching
particles in R3. As in the linear case, our method involves walk on spheres algorithms inside and outside
the molecule, a jump and scoring procedure when the particle hits Γ (SNJ and ANJ jump methods),
and a killing rate outside of the molecule. In the nonlinear case, our method also involves a possible
reproduction of a particle when it dies. This modifies the scoring procedure which is now based on the
product of the scores of the daughter particles.
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Similarly to the linear case, the Poisson-Boltzmann equation (1.1) can be reformulated as two PDEs
in Ωin and Ωout, and the transmission condition (2.3). The PDE in Ωin is still (2.1), but in Ωout the
PDE (2.2) is replaced by {

− 1
2∆u(x) + λ0 sinhu(x) = 0, for x ∈ Ωout

u(x) = h(x) for x ∈ Γ,
(3.1)

where λ0 :=
κ2
out

2 = κ̄2

2εout
.

Subsection 3.1 is devoted to the description of the branching Brownian motion and its link with elliptic
non-linear PDEs. Our algorithms are then described in Subsection 3.2, and numerical experiments are
described in Subsection 3.3.

3.1. Quasi-linear elliptic PDEs and Branching Brownian motion

3.1.1. Branching Brownian motion

Let us construct a branching Brownian motion (denoted BBM below) in Ωout by defining the dates
of birth (θ) and death (σ) of each particle and the positions of the particles between their birth and
death times. We use the classical Ulam-Harris-Neveu labelling for individuals, i.e. each individual is
labeled by an element of H =

⋃
n≥0 Nn. The ancestor is denoted by ∅ (= N0 by convention), and the

j-th child of an individual u ∈ H is denoted by uj, where uj stands for the concatenation of the vector
u and the number j. Some of the particles of H never appear in the population, so we need to introduce
a cemetery point ∂ to code for those individuals. More precisely, when v ∈ H satisfies θv = σv = ∂, it
means that the individual v never lived in the BBM.

We now introduce the following independent stochastic objects:

• let (Bvt , t ≥ 0)v∈H be i.i.d. Brownian motions;
• let (Ev)v∈H i.i.d. exponential r.v. of parameter λ;
• let (Kv)v∈H i.i.d. r.v. in N with distribution (pk)k≥0,

the parameters λ and pk, k ≥ 0, will be chosen later.
Fix x ∈ Ωout. We construct the BBM started from x (i.e. the r.v. θv, σv in [0,+∞) ∪ {∂} and

Xv
t ∈ Ωout for t ∈ [θv, σv) for all v ∈ H) as follows:

(1) The initial particle has position x ∈ Ωout; its label is ∅, θ∅ = 0, σ∅ = inf{t ≥ 0 : x+B∅t ∈ Γ}∧E∅
and X∅t = x+B∅t for all t ≤ σ∅.

(2) Suppose that the r.v. θv (birth time of individual v) and σv (death time of individual v) and
Xv
t , t ∈ [θv, σv] are constructed

(a) If σv 6= ∂ and Xv
σv 6∈ Γ, then for all 1 ≤ i ≤ Kv, θvi = σv, and for all i > Kv, θvi = σvi = ∂,

for all 1 ≤ i ≤ Kv, we also define

σΓ
vi = inf{t ≥ θvi : Xv

σv +Bvit −Bviθvi ∈ Γ},
σvi = (θvi + Evi) ∧ σΓ

vi, and

Xvi
t = Xv

σv +Bvit −Bviθvi

for all t ∈ [θvi, σvi].
(b) If σv 6= ∂ and Xv

σv ∈ Γ, then θvi = σvi = ∂ for all i ≥ 1.
(c) If σv = ∂, then θvi = σvi = ∂ for all i ≥ 1.

We denote by Px the law of the BBM when the first particle has initial position x, and Ex the corre-
sponding expectation.

Note that, in the case where Ωout = R3, we obtain the standard branching Brownian motion (cf.
e.g. [28]), in which the number of particles is a continuous-time branching process (Zt, t ≥ 0) with
branching rate λ and offspring distribution (pk)k≥0. For general Ωout, the BBM process can be coupled
with the standard one such that the number of particles alive at time t is smaller than Zt for all t ≥ 0.



432 ESAIM: PROCEEDINGS AND SURVEYS

In particular, in the case where
∑
k≥0 kpk ≤ 1, the branching process Z is sub-critical or critical and

hence all the particles of the BBM process either die or reach Γ after an almost surely finite time.

3.1.2. A general probabilistic interpretation of quasi-linear elliptic PDEs in terms of BBM

The general link between branching Markov processes and non-linear parabolic PDEs is known
since [19, 33]. The particular case of the binary branching Brownian motion (with p2 = 1 and pk = 0
for all k 6= 2) has been particularly studied because of its link with the Fisher-Kolmogorov-Petrovskii-
Piskunov PDE [8, 28]. This approach has been also used to give a probabilistic interpretation of the
Fourier transform of Navier-Stokes equation [21]. In contrast, the link between branching diffusions
and elliptic PDEs like Poisson-Boltzmann equation has not been exploited a lot in the literature.
Surprisingly, the probabilistic interpretations of parabolic or elliptic non-linear PDEs seem not to have
been used a lot for numerical purpose either (see e.g [16,17,29,34]). The general result we present here
about the link between non-linear elliptic PDEs and the BBM, and our method of proof, are original
(as far as we know).

Let g : Z+ → R and h : Γ→ R be bounded functions and assume that the power series
∑
k≥0 pkg(k)xk

has infinite radius of convergence. We consider the following quasi-linear elliptic PDE:

− 1

2
∆u(x) + λu(x)− λ

∑
k≥0

pkg(k)u(x)k = 0, x ∈ Ωout, (3.2)

with boundary condition u(x) = h(x) for all x ∈ Γ.

Theorem 2. Consider the BBM of the previous subsection and assume that the PDE (3.2) has a C2

solution u, bounded and with bounded first-order derivatives. For all n ≥ 0, let τn be the first time where
the BBM had n alive particles in the whole elapsed time. Then, for all n ≥ 0 and x ∈ Ωout,

E(Yτn) = u(x), (3.3)

where

Yt =
∏
v∈H

[
g(Kv)1{σv≤t, Xvσv 6∈Γ} + h(Xv

σv )1{σv≤t, Xvσv∈Γ} + u(Xv
t )1{θv≤t<σv}

]
=
∏
v∈H

[
g(Kv)1{σv≤t, Xvσv 6∈Γ} + u(Xv

σv∧t)1{Xvσv∈Γ or θv≤t<σv}

]
and Y∞ = limt→∞ Yt is well-defined on the event {τn =∞}.

Assume further that
∑
k≥0 kpk < 1. Then, P(τn <∞)→ 0 when n→∞ and Y∞ is well-defined a.s.

Then, in the case where E(|Y∞|) <∞, we have, for all x ∈ Ωout,

u(x) = Ex

 ∏
v∈H:σv 6=∂

[
1{Xvσv 6∈Γ} g(Kv) + 1{Xvσv∈Γ} h(Xv

σv )
] . (3.4)

The last formula extends the classical Feynman-Kac formula to a class of non-linear elliptic PDEs.
Note that the existence of a C2 solution to (3.2) holds for example if Γ and h are C∞ [15]. In the

case of Poisson-Boltzmann PDE, a PDE of the form (3.2) is coupled with a PDE in Ωin. In this case,
on can also prove that u is C2 on Ωout if Γ is C∞ [9].

A simple way to get the heuristics behind the probabilistic interpretation is the following. If we
assume that the r.h.s. of (3.4), denoted below by û(x), is well-defined and smooth, then we can use
the following standard technique for branching processes: distinguish between the different events that
may occur between time 0 and h, apply the Markov property, and let h converge to 0. More precisely,
let us denote by Z the r.v. in the expectation in the r.h.s. of (3.4). First, we have of course û(x) = h(x)
for all x ∈ Γ. Next, for x ∈ Ωout, we can write

û(x) = Ex
[
1{σ∅≤h} g(K∅) û(X∅σ∅

)K∅
]

+ Ex
[
1{σ∅>h} û(X∅h)

]
.
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Now, since x 6∈ Γ, the first hitting time τΓ of Γ by (x+B∅t , t ≥ 0) satisfies P(τΓ ≤ h) = o(h) at least for
smooth Γ (it actually decreases exponentially in 1/h, since τΓ is larger than the exit time of a Brownian
motion from a fixed ball, the distribution of which is known [6]). Therefore, except on an event of
probability o(h), σ∅ = E∅ on the event {σ∅ ≤ h}, and

Ex
[
1{σ∅≤h} g(K∅) û(X∅σ∅

)K∅
]

= Ex
[
1{E∅≤h} g(K∅) û(X∅σ∅

)K∅
]

+ o(h)

= (1− e−λh)
∑
k≥0

pkg(k)E[û(x+B∅
E(h))

k] + o(h),

where E(h) is an exponential r.v. with parameter λ, conditioned to be smaller than h, independent of
B∅. Note that, in the last equation, we implicitly extended the function û as a bounded function on
R3. Under the assumption that û is bounded and continuous, and the power series

∑
k pkg(k)xk has

an infinite radius of convergence, it is elementary to prove that

lim
h→0

∑
k≥0

pkg(k)E[û(x+BE)k] =
∑
k≥0

pkg(k)û(x)k.

Similarly,

Ex
[
1{σ∅>h} û(X∅h)

]
= Ex

[
1{E∅>h} û(x+B∅h)

]
+ o(h).

Since E∅ is independent of (B∅t ) and û has been assumed to be twice continuously differentiable, Itô’s
formula gives

Ex
[
1{σ∅>h} û(X∅h)

]
= e−λh

(
û(x) +

1

2

∫ h

0

E[∆û(x+B∅s )]ds

)
+ o(h).

Again, if ∆û is bounded and continuous, one has

lim
h→0

1

h

∫ h

0

E[∆û(x+B∅s )]ds = ∆û(x).

Combining all the previous estimates, we obtain

û(x) = λh
∑
k≥0

pkg(k)û(x)k + (1− λh)

(
û(x) + h

∆û(x)

2

)
+ o(h),

which entails (3.2) in the limit h→ 0.

The last argument, although intuitive, requires a priori regularity for the function û(x). In addition,
this method does not allow to obtain results in cases where the expectation in the right-hand side
of (3.4) is not finite. This is why we prefer to give a new proof extending the classical method of
proof of Feynman-Kac formula [14] to the case of branching diffusions. The idea is to compute the
semimartingale decomposition of the process (Yt, t ≥ 0).

Proof of Theorem 2. It is more convenient to use an equivalent construction of the BBM: let us consider
the following independent stochastic objects:

• let (Bvt , t ≥ 0)v∈H be i.i.d. Brownian motions;
• let (Nv(dt, dk))v∈H be i.i.d. Poisson point measures on [0,∞) × Z+ with intensity measure
q(dt, dk) = λ

∑
i≥0 piδi(dk)dt, where δi is the Dirac measure at the point i.

The following construction of the BBM amounts to define Ev as the time before the first atom of Nv

after θv, and Kv as the second coordinate of this atom. The state of the BBM will be represented as
the counting measure

νt =
∑
v∈H

1{θv≤t<σv}δ(Xvt ,v),
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constructed as follows: for all bounded function f : R3×H → R, twice continuously differentiable w.r.t.
the first variable with uniformly bounded derivatives, the measure νt satisfies

〈νt, f〉 = f(x, ∅) +

∫ t

0

∑
v∈H
〈νs−,∇fev〉dBvs +

1

2

∫ t

0

∑
v∈H
〈νs−,∆fev〉ds

+

∫ t

0

∫
N

∑
v∈H

 k∑
j=1

〈νs−, f( · , vj)ev〉 − 〈νs−, fev〉

Nv(ds, dk),

where 〈ν, f〉 stands for
∫
R3×H f(x, v)ν(dx, dv) and ev(x,w) = 1{x∈Ωout}1{w=v}, so that 〈νs, ev〉 =

1{θv≤t<σv}. These equations characterize the measure νt for all t ≥ 0, and they simply rephrase
the algorithmic construction of the BBM given above.

Introducing the compensated Poisson point measures Ñv(ds, dk) = Nv(ds, dk) − q(ds, dk), the last
formula immediately gives the semimartingale decomposition of functionals of νt of the form 〈νt, f〉:

〈νt, f〉 = f(x)+
1

2

∫ t

0

∑
v∈H
〈νs−,∆fev〉ds+λ

∫ t

0

∫
N

∑
v∈H

∑
k≥0

pk

k∑
j=1

〈νs−, f( · , vj)ev〉 − 〈νs−, fev〉

 ds+Mf
t ,

where Mf
t is the local martingale

Mf
t =

∫ t

0

∑
v∈H
〈νs−,∇fev〉dBvs +

∫ t

0

∑
v∈H

 k∑
j=1

〈νs−, f( · , vj)ev〉 − 〈νs−, fev〉

 Ñv(ds, dk).

Of course, the semimartingale decomposition of other functionals of (νt, t ∈ [0, T ]) can be obtained
in a similar way. Given x ∈ Ωout, under Px, we obtain for the process Yt

Yt = u(x) +

∫ t

0

Ys−
∑
v∈H
〈νs−,

∇u
u
ev〉dBvs +

1

2

∫ t

0

Ys−
∑
v∈H
〈νs−,

∆u

u
ev〉ds

+

∫ t

0

∫
N
Ys−

∑
v∈H

(
〈νs−, uk−1g(k)ev〉 − 〈νs−, ev〉

)
Nv(ds, dk)

= u(x) +

∫ t

0

Ys−
∑
v∈H
〈νs−,

ev
u

1

2
∆u+ λ

∑
k≥0

pkg(k)uk−1 − λu

〉ds+Mt

= u(x) +Mt,

where

Mt =

∫ t

0

Ys−
∑
v∈H
〈νs−,

∇u
u
ev〉dBvs +

∫ t

0

∫
N
Ys−

∑
v∈H

(
〈νs−, uk−1g(k)ev〉 − 〈νs−, ev〉

)
Ñv(ds, dk)

is a local martingale. Note that in the previous computation, we made the convention that, for any
t ≥ 0, v ∈ H and x s.t. νt({(x, v)}) = 1,

Yt/u(x) =
∏

w∈H, w 6=v

[
g(Kw)1{σw≤t, Xwσw 6∈Γ} + u(Xw

σw∧t)1{Xwσw∈Γ or θw≤t<σw}

]
.

Since u and ∇u are bounded functions, we have of course that (Mt∧τn , t ≥ 0) are martingales for all
n ≥ 0, and so

E(Yt∧τn) = u(x)
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for all t ≥ 0 and n ≥ 1. Since (Yt∧τn , t ≥ 0) is uniformly bounded, we obtain (3.3).
In the case where

∑
k≥0 kpk < 1, the number of particles in the BBM is smaller than the number of

particles in a sub-critical continuous-time branching process defined as Zt = 〈µt,1〉, where

µt = δ∅ +

∫ t

0

∫
N

∑
v∈H

 k∑
j=1

δvj − δv

µs−({v})Nv(ds, dk).

Then of course P(τn <∞)→ 0 when n→ 0, Y∞ is a.s. well-defined, and (3.4) is clear if E|Y∞| <∞. �

3.1.3. A probabilistic interpretation of the nonlinear Poisson-Boltzmann equation

The last theorem gives a probabilistic interpretation of PDEs of the form of Poisson-Boltzmann
equation (outside the molecule), which suggests to use again a Monte-Carlo method to estimate u(x).
The difficulty is to find the good probabilistic interpretation allowing to use (3.4) rather than (3.3)
which involves the unknown function.

One possible choice of the function g and the probability distribution (pk)k≥0 to recover the PDE (3.1)
is as follows: 

λ = λ0;

g(k) = −1 for all k ≥ 1, g(0) = 0;

p2k+1 =
1

(2k + 1)!
and p2k = 0 for all k ≥ 1, p1 = 0;

p0 = 1−
∑
k≥1

p2k+1 = 2− sinh 1 > 0.

(3.5)

With these parameters, we have
∑
k≥0

kpk = cosh 1− 1 < 1, so the BBM goes extinct after an a.s. finite

time.
In this case, Theorem 2 gives the following probabilistic interpretation for the Poisson-Boltzmann

PDE.

Corollary 3. Let u be the solution of the PDE (3.1): provided that the expectation is well-defined, for
all x ∈ Ωout,

u(x) = Ex

(−1)#{v:Xvσv 6∈Γ}
∏

v:σv 6=∂

[
1{Xvσv 6∈Γ} 1{Kv≥1} + 1{Xvσv∈Γ} u(Xv

σv )
] , (3.6)

where the BBM (Xv
t , t ≥ 0, v ∈ H) has parameters (3.5).

In view of the last formula, it is clear that the expectation in the right-hand side is finite if u is
bounded by 1 on Γ. When u takes larger values on Γ, the product involved in (3.6) can be bounded by
some exponential moment of the total number of particles which hit Γ in the BBM, but this bound is
not finite in general. Therefore, we cannot ensure in general that the expectation is well-defined with
so simple estimates. Note that the random variable inside the expectation in (3.6) is zero when one
of the particles in the BBM dies before hitting Γ and gives birth to no children, so one can expect
better bounds on the expectation, but such bounds seem very delicate to obtain. We will not study
this question here.

Remark 4. In this work, we concentrate on the characterization of the solution of Poisson-Boltzmann
equation as the expectation of a random variable Z defined from a BBM as in (3.6). We do not provide
a complete study of the variance of Z, which requires a deeper analysis. One can give an idea of the
possible difficulties with the previous tools as follows: because Z is defined as a product, it can be seen
from Theorem 2, using the parameter values (3.5), that v(x) = Ex(Z2) should be (at least formally)
solution to the PDE {

− 1
2∆v(x) + 3λv(x)− λ sinh v(x) = 0,

v|Γ = u2
|Γ.

(3.7)
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This elliptic PDE has a non-linear term which is concave where the classical theory would require it to
be convex (as in Poisson-Boltzmann equation). In particular, this prevents to use classical convexity
arguments to characterize the solution of this PDE as the solution of a variational problem (see for
example [9] for the application of these arguments for Poisson-Boltzmann PDE). This problem will be
crucial if the solution takes large values, typically when the boundary condition is too large, because then
one cannot expect a good approximation of v by the linearization of (3.7), and the classical arguments
cannot ensure that a solution to this PDE exists.

3.2. The main steps of the Monte-Carlo algorithm

3.2.1. Outside the molecule: branching walk on spheres (BWOS) algorithm

The walk on spheres (WOS) algorithm of Section 2.2.1 can be extended in order to deal with possible
branching. The only difference is that the precise location of death of the particle must be simulated
to obtain the initial position of its daughters.

Consider y ∈ Ωout and a radius R such that B(y,R) ⊂ Ωout. Consider also a Brownian motion
(Bt, t ≥ 0) such that B0 = y and let τR be the first hitting time by Bt of the sphere ∂B(y,R). A
WOS algorithm sampling the system of branching Brownian particles requires to simulate the position
of BτR∧E , where E is an independent exponential random variable of parameter λ. Because of the
spherical symmetry of the Brownian path, the only relevant information is the p.d.f. of RτR∧E , where
Rt = |Bt−y| is a Bessel process of dimension 3. This p.d.f. can be computed from the formula [6, Ch. 5,
Formula 1.1.6]

P0

(
sup

0<s<E
Rs < R, RE ∈ dr

)
=

2λr sinh
[
(R− r)

√
2λ
]

sinh
(
R
√

2λ
) , ∀0 ≤ r ≤ R,

where, under P0, B is a standard Brownian motion started from 0. From this, we obtain for all 0 ≤ r ≤ R

P0

(
sup

0<s<E
Rs < R, RE ≤ r

)
= 1−

r
√

2λ cosh
[
(R− r)

√
2λ
]

+ sinh
[
(R− r)

√
2λ
]

sinh
(
R
√

2λ
) .

Note that, by taking r = R, we recover the death probability given in the WOS algorithm of Sec-
tion 2.2.1, as expected. Hence, we obtain the explicit cumulative distribution function of RE condition-
ally on {E < τR}

F (r) = P
(
RE ≤ r | sup

0<s<R
Rs < R

)
=

sinh[r
√

2λ]− r
√

2λ cosh[(R− r)
√

2λ]− sinh[(R− r)
√

2λ]

sinh[R
√

2λ]−R
√

2λ
.

(3.8)
One can sample from this distribution by several ways, among which we tested acceptance-rejection
methods with several proposition distributions (among which the Beta(2, 2) distribution), and Newton’s
algorithm to invert the cumulative distribution function. It appears that Newton’s algorithm gives a
precise sampling and is much faster than acceptance-rejection algorithms, so we use this method in our
code. More precisely, we will denote by split(y,R) the random variable uniformly distributed on the
sphere of center y and radius r obtained by applying Newton’s method with 4 iterations to approximate
F−1(U), where U is a uniform r.v. on [0, 1] and F is given by (3.8).

The BWOS algorithm started at x ∈ Ωout returns a random position which belongs to Γ∪Ωout. This
random variable is an approximation of Bτ∧E , where B is a standard Brownian motion started from x,
τ its first hitting time of Γ, and E an independent exponential r.v. of parameter λ.

BWOS Algorithm
Given x ∈ Ωout, λ ≥ 0, and ε > 0

(1) Use the WOS algorithm.

(2) IF the particule is not alive, THEN
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(a) Denote y the last known position of the particle before the death, given by

the WOS algorithm,

(b) let S(y, r) be the largest open sphere included in D centered at y,
(c) return an independent copy of split(y).

(3) ELSE return exit(x) simulated by WOS algorithm.

END.

We denote by split or exit(x) the position returned by this algorithm.

3.2.2. Branching Algorithm

The idea of our algorithm is to use the double randomization technique, as in the linear case and
as in [27], that consists to use the approximations (2.7), (2.8) and (3.6) recursively to estimate the
unknown function u appearing on the right-hand side of each of these formulas.

Therefore, the method consists when the initial particle starts in Ωin to use the UWOS algorithm
to simulate its first hitting point of Γ, or when the initial particle starts in Ωout the WOS algorithm,
then use a jump method as in Section 2.2.4 to move the particle away from Γ, and continue to use
inductively the UWOS and WOS algorithm depending whether the particle entered inside the molecule
or exited outside the molecule. This part is exactly the same as in the linear case, and stops when the
particle is killed outside the molecule. This time of killing is actually a branching time, since a random
number of new particles, with distribution (pk)k≥0, appears at the death position of the initial particle,
and each new particle continues to evolve independently as the first one.

As in the linear case, we can use the SNJ and ANJ jump methods to move a particle after it reaches
Γ. Therefore, we set p(x) = pSNJ(x) (2.9) or pANJ(x) (2.10) depending on the method chosen. Because
of the non-linearity, as explained in Section 2.2.4, one cannot expect a better precision for the TAJ

method, which is therefore not used here.
One of the difficulties of the algorithm consists in the computation of the global score of the algorithm.

Before the first particle is killed, the score is computed exactly as in the linear case. Then, if this particle
has daughters, because of (3.6), we need to add to the score of the first particle minus the product of

the scores of its daughters (the minus comes from the term (−1)#{v:Xvσv 6∈Γ} in the r.h.s. of (3.6)).
These scores might be 0 if the daughter dies before hitting Γ and gives birth to no children, or might be
different from zero if the particle hits Γ. Indeed, in this case, the particle first jumps according to (2.8)
and then scores some value if it jumps inside the molecule, according to (2.7). But its score might also
involve the scores of its own daughters if it is non-zero. Therefore, the convenient way to formulate our
algorithm is by a recursive procedure.

Let M be a r.v. distributed according to the offspring distribution of the BBM:

M =

0 with probability 2− sinh 1

2k + 1 with probability
1

(2k + 1)!
, for all k ≥ 1.

(3.9)

Given x0 6∈ {c1, . . . , cN}, our branching algorithm can be described recursively as follows.

BA(x0) algorithm.
Set k = 0 and score = u0(x0) if x0 ∈ Ωin or score = 0 otherwise

(1) IF xk ∈ Ωin

(a) THEN

(i) Use the UWOS algorithm to simulate exit(xk)
(ii) Set score = score− u0(exit(xk))
(iii) Set xk+1 equal to an independent copy of p(exit(xk))

(b) ELSE

(i) Use the BWOS algorithm with λ = κ̄2/2εout to simulate split or exit(xk)
(ii) IF split or exit(xk) ∈ Ωout

(iii) THEN

(A) Sample m as an independent copy of M.
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(B) Let score1, . . . , scorem be the scores returned by m independent runs of

the BA(split or exit(xk)) algorithm.

(C) Return score−
∏m
j=1 scorej if m 6= 0, or score if m = 0.

(D) Goto END.

(iv) ELSE set xk+1 equal to an independent copy of p(split or exit(xk)).
(2) IF xk+1 ∈ Ωin, THEN set score = score+ u0(xk+1).
(3) Set k = k + 1 and return to Step (1).

END.

As in the linear case, the approximation of u(x0) is obtained by computing the Monte-Carlo average
of the score returned by the BA(x0) algorithm.

The convergence of our algorithm could be analyzed following exactly the same lines as Thm. 4.7
of [7], giving an error of the same order as the SNJ and ANJ algorithms of Section 2.2.4, provided one
could ensure that all the expectations involved in this algorithm are finite. Contrary to the linear case,
because of the products involved in Substep (C) above, this is not obvious at all, even if the function u
is bounded by 1, so we leave aside this question for a future work.

3.3. Numerical experiments

3.3.1. Implementation

As in the linear case, the localization of the closest atom from the particle is done using CGAL
library, and the parallelization of the code is done using MPI and SPRGN libraries.

Note that, since the number of children of all particles are i.i.d. and independent of their positions
of death, the set of particles simulated in our algorithm and their genealogical relations are the same
as those of a Galton-Watson process with reproduction distribution (pk)k≥0, the distribution of the r.v.
M of (3.9).

Hence, for the practical implementation of the algorithm, we started by sampling first a Galton-
Watson tree with offspring distribution (pk)k≥0 conditioned to be smaller than 10 (the probability to
have 11 children or more is smaller than 5 · 10−8). Then, we simulate the trajectory of each particle as
above and we follow the genealogical structure of the tree previously sampled when a particle is killed.

To avoid the use of recursive functions, which can be time consuming, the simulation of the trajec-
tories of each particle and the scores obtained along each of these trajectories is done first by exploring
the Galton-Watson tree forward in time (from the root to the leaves), whereas the computation of the
score is done in the end by exploring the tree backward in time (from the leaves to the root).

Since after a branching the score is evaluated as a product of scores of daughters, it is important to
detect fast when one of these scores is zero, which happens for example when one of the daughters dies
without children before hitting Γ. Hence, when exploring the Galton-Watson tree forward in time, at
each birth event, it is more advantageous in terms of computational time to deal first with daughters
particles that have no children.

The fact that the genealogical tree of our particles is sampled before the simulation of the particles’
motion allows us to easily implement a stratification Monte-Carlo algorithm to reduce the variance of
the method. Each stratum is a given Galton-Watson genealogical tree. Its probability of occurrence is
easy to compute. We restricted in our simulation to trees of height 2 or less, because the probability
that the Galton-Watson tree has depth 3 or more is less than 1.3 · 10−4. We run 500 trajectories for
each stratum to estimate the variance within each stratum and allocate the number of runs in a given
stratum proportionally to the probability of the stratum times the empirical standard deviation within
the stratum.

3.3.2. The single atom case

To evaluate the convergence and the efficiency of the previous algorithm, we made some simulations
with a monoatomic molecule. Indeed an approximation of the exact solution of the non-linear Poisson-
Boltzmann equation (1.1) can be easily computed in this case. Assuming the unique atom is centered
at 0, the solution u(x) to the Poisson-Boltzmann equation can be written as v(‖x‖) for some function v
because of the spherical symmetry of the problem. Now, u− u0 is harmonic in B(0, r), with a constant
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Dirichlet boundary condition thanks again to the spherical symmetry of the problem. Hence u− u0 is
constant in B(0, r), so that v − v0 is constant in [0, r], where v0(‖x‖) = u0(x) for all x ∈ R3. Using a
spherical coordinates change of variables in spherical coordinates, the transmission problem (2.1), (2.3)
and (3.1) can be written as

v′′(x) +
2

x
v′(x) = κ2

out sinh v(x) = 0, for all x ∈ (r,+∞), (3.10)

with boundary conditions εoutv
′(r) = εinv

′
0(r) and v(x) → 0 when x → +∞. We approximate this

function as the solution of the same differential equation on [r,R] for a large R with u(R) = 0.
The numerical results presented here are obtained using the branching algorithm with jump methods

SNJ and ANJ (α = 3 and 10), taking the same number of Monte-Carlo simulations (1 · 105) for each run,
with a value of h varying from 0.003 to 0.9, and with ε = 10−5. The reference values are computed with
h = 0.001 and 1 · 106 Monte-Carlo simulations. We take a radius r = 1 Å for the atom centered at zero,
and we compute the value of (u − u0)(0) using our method and compare it to the value v(r) − v0(r)
computed above.

We have tested different values of the charge z, and it appears that the variance of the algorithm
is very sensitive to this parameter. As explained above, this can be understood from formula (3.6)
when |v(r)| > 1, since then the value computed is similar to an exponential moment of the number of
individuals in a sub-critical Galton-Watson tree. In practice, above some threshold on the parameter
z, the convergence of the algorithm is much slower. A finer numerical analysis reveals that this is due
to very unprobable Galton-Watson trees, with several large numbers of offsprings, which contribute for
an important part to the empirical variance. Because of the large value of the constant in front of the
Dirac masses in (1.3), the threshold above which the variance starts to increase drastically is slightly
larger than z = 1.

(a) Monte-Carlo average of the 3 jump methods as a

function of h (Log scale).
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(b) Error (Log scale) of the 3 jump methods w.r.t. the

reference value given by (3.10) as a function of h (Log
scale).

Figure 5. Convergence and error of the branching algorithm with jump methods SNJ
and ANJ (α = 3 and α = 10) in the case of a single atom with charge z = 0.2.

This is an important issue of our algorithm, which needs some new ideas to be solved (see the
perspectives of Section 4). However, for small enough values of z, the algorithm behaves very well.
We present the numerical results for a much smaller value z = 0.2 in Figure 5, which show a good
performance of the algorithm. Figure 3.10 confirms our conjecture that the error is of the order of h.
The performance plots in Figure 6 indicate that the value of α has a negligible influence on the error of
the algorithm for a given CPU time. Note also that the confidence intervals shown in Figure 5(a) are
very small, despite the relatively small number of Monte-Carlo simulation we used (3 · 104).
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Figure 6. Performance of the branching algorithm with 3 jump methods for a single
atom with z = 0.2: error (Log scale) as a function of CPU time (Log scale).

The value z = 1 (which corresponds to a monoatomic ion of valence ±1) also has a satisfactory
behavior, shown in Fig 7, although the convergence is not as good as for z = 0.2, as appears in
Figure 7(a) for h = 0.003 and in Figure 7(b). We also observe a very unstable behavior of the ANJ
method with α = 3 for large values of h. Still, for all values of h between 0.003 and 0.1, the relative error
of the algorithm is less than 1%. Note that the same simulation, run without stratified Monte-Carlo,
gives a very large variance of the result. According to our tests, the stratification method allowed to
increase the threshold of variance explosion from roughly z = 0.3 to more than z = 1.

(a) Monte-Carlo average of the 3 jump methods as a

function of h (Log scale).
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(b) Error (Log scale) of the 3 jump methods w.r.t. the

reference value given by (3.10) as a function of h (Log
scale).

Figure 7. Convergence and error of the branching algorithm with jump methods SNJ
and ANJ (α = 3 and α = 10) in the case of a single atom with charge z = 1.

If one takes a larger value for z, the variance starts increasing drastically and the method no longer
converges for h small. A finer analysis of the results of the algorithm shows that the variance is
extremely large in a few very unlikely strata, corresponding to genealogical trees with many children
at each generation. Some other runs show a very small empirical variance, because the very unlikely
trajectories with a very large score did not occur by chance.
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3.3.3. The case with two atoms close with opposite charges

It is generally accepted (cf. e.g. [2]) that for uncharged molecules, the approximation of the non-linear
Poisson-Boltzmann equation by the linear one is not too bad, meaning that the potential u does not
take too large values in Ωout, and in particular close to Γ. Since the explosion of the variance observed
in the last test case for large values of z seems to be related to the fact that u takes too large values
on Γ, this suggests to look at uncharged molecules. The simplest uncharged molecules with non-trivial
electrostatic potential u are composed of N = 2 atoms with opposite charges. We focus here on this
situation, assuming that the two atoms have same radius r1 = r2 = 1 Å and opposite charges z1 = 1
and z2 = −1. We denote by a the distance between the centers of the two atoms (in Å).

As in the first case, assuming a too large value of a increases the values of u on Γ and hence produce
variance explosion of the method.

(a) Monte-Carlo average for the 3 jump methods as a

function of h (Log scale).
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(b) Error (Log scale) of the 3 jump methods as a func-

tion of h (Log scale).

Figure 8. Convergence and error of the branching algorithm with jump methods SNJ
and ANJ (α = 3 and α = 10) in the case of two atoms with distance a = 0.2.

We run similar tests as in the previous example, with 105 Monte-Carlo simulations for several values
of h between 0.003 and 0.9. We take ε = 10−5 and we run our branching algorithm to compute u at a
point x0 on the line linking the centers of the two atoms, at a distance 1.5 Å from the closest center.
We used the SNJ jump method, and the ANJ jump method for α = 3 and α = 10.

The reference value involved in the error estimate cannot be computed as above because the spherical
symmetry is broken. We could use APBS to solve the nonlinear Poisson-Boltzmann PDE, but our tests
in the linear case show that the adaptive finite element method of this solver can produce small errors
which could prevent us from observing the convergence of our methods. This is why we use a reference
value computed with the ANJ jump method (α = 10) with a large number of Monte-Carlo simulations
(106), h = 0.001 and ε = 10−6.

We tested several values of a. The results are very similar to those obtained in the case of a single
atom.

The results for a small value a = 0.2 Å are shown in Figure 8. As in the case of a single atom
for z = 0.2, the algorithm behaves nicely. We observe as before small confidence intervals and a
convergence of the error to 0 at a speed of the order of h. The performance plot of Figure 9 shows
similar performances for the three values of α, with a slight advantage for the largest value of α, which
gives the better error for a given CPU time and an appropriate value of h.

The value a = 0.5 Å also has a relatively good behavior, shown in Figure 10, although the convergence
is not as good as for a = 0.2 Å, similarly as for z = 1 in the case of a single atom. In particular, the
convergence for small h is not as clear as for a = 0.2 Å, but, again, for h between 0.003 and 0.1, the
relative error of the method is smaller than 2%.
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Figure 9. Performance of the branching algorithm with 3 jump methods for two atoms
with a = 0.2 Å: error (Log scale) as a function of CPU time (Log scale).

As in the case of a single atom, higher values of a lead to larger values of the variance and the error
of the algorithm and the convergence fails.

(a) Monte-Carlo average of the 3 jump methods as a

function of h (Log scale).
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Figure 10. Convergence and error of the branching algorithm with jump methods
SNJ and ANJ (α = 3 and α = 10) in the case of two atoms with distance a = 0.5.

4. Conclusion and perspectives

Our numerical experiments on the linear case show that the TAJ jump method can be used without
significant increase in computational time, and with a slightly improved expected error. Therefore, it
allows to take a larger value of h for a given error threshold, hence actually reducing the computational
time. This is a new argument which, together with those developed in [23], allows to expect that
optimized walk-on-spheres Monte-Carlo solvers for the linear Poisson-Boltzmann equation can be made
competitive in terms of computational time with respect to classical deterministic methods.

Our preliminary tests to solve the nonlinear Poisson-Boltzmann PDE using branching particle sys-
tems show that our method has roughly equivalent performances than the walk-on-spheres solver in the
linear case (with SNJ and ANJ methods). However, in some situations, typically when the electrostatic
potential u is large on Γ, the variance of the method might explode. This issue requires to develop
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adequate variance reduction techniques, to be discussed in future work. We have already tested a strat-
ification technique, which is quite efficient in reducing the variance of the method and make it converge
in cases where the unstratified algorithm shows variance explosion. However, this method fails again
for too large values of u on Γ.

First, a deeper theoretical analysis of the variance of the algorithm is needed. In particular, a
study of the influence of the parameters and the boundary conditions (see Remark 4) on the variance
can give insights on adequate variance reduction techniques or on appropriate values of the parameters
λ, g(k), pk for the stratified Monte-Carlo method. The parameter values (3.5) proposed in Section 3.1.3
are one possible choice, but other possibilities might be considered and tuned in order to optimize the
variance.

Additional variance reduction techniques have to be explored. For example, one could try to reduce
the variance of the score within each stratum. To undertake this, we can analyze the probabilistic
interpretation (3.6). Let us denote by X the r.v. inside the expectation in the r.h.s. of this equation.
X might be 0 if one of the particles dies without children before leaving Ωout, or might be a product of
values of u on Γ if all the particles hit Γ before dying. If u takes large values on Γ, this product might
be very large, and hence the variance of X is very large. One could reduce this variance by reducing
the probability that X = 0. This could be done using importance sampling techniques, for example by
adding to the Brownian motion of each particle a drift towards the center of the molecule.

We can also study pruning techniques in the spirit of [5], where pruning of genealogical trees of
branching particle systems is used to study the probabilistic interpretation of the Fourier transform of
Navier-Stokes equation.
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Appendix

A. Values of constants

The following table gives the values of the constants involved in the Poisson-Boltzmann PDEs we
consider in this work.

symbol value
Boltzmann constant kB 1, 3806488× 10−23 m2 kg s−2 K−1

Charge of an electron ec 1, 602176565× 10−19 C
Temperature T 298 K
Vacuum permittivity ε0 8, 854187817× 10−12 F m−1

Avogadro constant NA 6, 02214129× 1023 mol−1

Molecule relative permittivity εin 2 (dimensionless)
Solvent relative permittivity εout 80 (dimensionless)
Solvent ion concentration c 1 mol L−1

Solvent ion relative charge z ±1 (dimensionless)

Inverse Debye length (1.4) κ̄ 2.9132 Å
−1

Table 1. The physical constants used in the simulations in the the International Sys-
tem of Units.
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