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Abstract

We study strong existence and pathwise uniqueness for stochastic
differential equations in Rd with rough coefficients, and without as-
suming uniform ellipticity for the diffusion matrix. Our approach re-
lies on direct quantitative estimates on solutions to the SDE, assuming
Sobolev bounds on the drift and diffusion coefficients, and Lp bounds
for the solution of the corresponding Fokker-Planck PDE, which can be
proved separately. This allows a great flexibility regarding the method
employed to obtain these last bounds. Hence we are able to obtain
general criteria in various cases, including the uniformly elliptic case
in any dimension, the one-dimensional case and the Langevin (kinetic)
case.
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1 Introduction

We investigate the well posedness of the Stochastic Differential Equation
(SDE) in Rd, d ≥ 1,

dXt = F (t,Xt) dt+ σ(t,Xt) dWt, X0 = ξ, (1.1)

where F : R+ × Rd → Rd and σ : R+ × Rd → Rd × Rr are Borel mea-
surable function, (Wt, t ≥ 0) is a r-dimensional standard Brownian motion
on some given complete filtered probability space (Ω, (Ft)t≥0,P), and ξ is a
F0-measurable random variable.

When σ and F are bounded, the law u(t, dx) of Xt belongs to the set
M1 of functions from R+ with value in the set P1 of probability measures
on Rd such that, for all Borel subset Γ of Rd, t 7→ u(t,Γ) is measurable. It
is standard to deduce from Itô’s formula that u(t, dx) is a (weak, measure)
solution to the Fokker-Planck PDE on R+ × Rd

∂tu+∇x · (Fu) = ∇2
x : (au) =

∑
1≤i,j≤d

∂2(aiju)

∂xi∂xj
, u(t = 0, dx) = u0, (1.2)

where a = 1
2σ σ

∗ and u0 is the law of the initial r.v. ξ.
We first recall some classical terminology: weak existence holds for (1.1)

if one can construct a filtered probability space (Ω, (Ft)t≥0,P), an adapted
Brownian motion W and an adapted process X on this space solution
to (1.1). Uniqueness in law holds if every solution X to (1.1), possibly on dif-
ferent probability space, has the same law. Strong existence means that one
can find a solution to (1.1) on any given filtered probability space equipped
with any given adapted Brownian motion. Finally, pathwise uniqueness
means that, on any given filtered probability space equipped with any given
Brownian motion, any two solutions to (1.1) with the same given F0-measu-
rable initial condition ξ coincide. Our goal is to study strong existence and
pathwise uniqueness for rough σ and F , through quantitative estimates on
the difference between solutions and a priori bounds on the solutions to (1.2).

This question has been the object of many works aiming to improve
the original result of Itô [14]. Veretennikov [32] proved strong existence
and pathwise uniqueness for bounded measurable drifts F and certain non-
degenerate diffusion matrices like a = Id. The case of unbounded drifts
was then studied by Krylov and Röckner [20] under the assumption that
F ∈ Lqt,loc(L

p
x) with d/p + 2/q < 1, and the case where σ(t, x) is uniformly

continuous with respect to x and ∇σ also belongs to Lqt,loc(L
p
x) by Zhang [34,

37]. All these works assume that the matrix a is uniformly elliptic, i.e. that
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a(x) − c Id is positive definite for all x for some constant c > 0. The time-
independent one-dimensional case was also deeply studied by Engelbert and
Schmidt [8] (see also [33, 25]).

The main tools used in all the previous works are Krylov’s inequality [16]
and its extensions (see for example [7, 20, 21, 37]), Zvonkin’s transforma-
tion [38] to remove the drift, and a priori estimates on solutions of the back-
ward Kolmogorov equation or Fokker-Planck PDE (1.2) [31, 19, 20, 34]. Of
great importance is also the result of Yamada and Watanabe [33], which
proves that strong existence holds as soon as pathwise uniqueness and weak
existence hold for all initial condition. Since general conditions for weak ex-
istence are well-known (see [17, 30, 28, 7, 21, 9, 24]), one only has to prove
pathwise uniqueness to obtain strong existence. In dimension one, a key
tool to prove pathwise uniqueness is the local time.

Most of these works also use estimates on functionals of the difference
between two solutions of (possibly regularizations of) (1.1). Recently, a
particular form of functional, inspired by the method of Crippa and De
Lellis [5] to obtain an alternative proof of the results of Di Perna and Lions [6]
on well-posedness for ODEs, has been used in [27, 35, 36]. The functional
of [5] was originaly used and adapted to obtain several extensions [15, 4] of
the result of DiPerna and Lions for deterministic systems.

Other approaches also exist, like the one of Le Bris and Lions in [22, 23,
24], based on well-posedness and stability properties for the backward Kol-
mogorov equation and the Kolmogorov equation obtained from a doubling
of variable technique. This approach gives different criteria for strong ex-
istence and pathwise uniqueness, involving boundedness conditions on divσ
and (Dσ)2. Several works also studied the existence of a stochastic flow for
the SDE [10, 11, 12, 26] (for example, [26, 11, 12] prove regularity proper-
ties of the flow in the settings of [32, 20, 34], respectively), or a (weaker)
almost-everywhere stochastic flow [23, 35].

In this work, we make use of simple quantitative estimates on functionals
of solutions to (1.1) following the estimates for the deterministic ODE’s in
Crippa and DeLellis [5] , which already inspired the works in [27, 35, 36] for
the uniformly elliptic cases. A main difference with our current work is in
the way we use the Crippa-DeLellis ideas. We show how those estimates can
be used to prove directly strong existence and pathwise uniqueness (without
making use of Yamada-Watanabe classical results). This lets the method be
used in more general settings, such as cases where pathwise uniqueness can
be proved only for particular initial conditions (e.g. with bounded density)
or with hypo-elliptic diffusions, where weak existence has been less studied
(note that the two probabilistic notions of strong and weak existence coincide
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when σ = 0).
The originality of the method we develop here is that it allows to de-

couple the various questions involved in well-posedness. We do not prove
any bounds on the solution u of the PDE (1.2) . Instead assuming that
such bounds have already been obtained through other means, we show how
to use the Crippa-DeLellis estimates to directly prove strong existence and
pathwise uniqueness for (1.1) without using any other probabilistic ideas or
methods.

This leads to very explicit and constructive proofs, based on quantitative
stability estimates. The first advantage is to offer a simple and unifying
framework to formulate our assumptions. We are able to identify explicit
norms, whose definition depends on u, s.t. one has well-posedness if the
drift F and diffusion σ are bounded in those norms. This does not require
any ellipticity assumptions on σ and is compatible with degenerate diffusion
or even with the deterministic theory for σ = 0.

As a good illustration of this unified framework, we want to emphasize
also the results that we obtain in dimension 1. By using suitable, and new,
modified estimates, we are able to obtain the currently optimal 1d result
(with σ ∈ H1/2 for instance) through essentially the same procedure.

The second main advantage is the flexibility that one then enjoys as
it is possible to choose the best method to deal with (1.2) according to
any additional structure. If σ satisfies an ellipticity condition, we can then
recover now classical results. But depending on the precise structure of Eq.
(1.2), one can have much better results. A very good example is second
order equations with degenerate diffusion, as shown in Corollary 1.4.

The final advantage of the method is its simplicity as it relies on some
direct and self-contained quantitative estimates on the solutions.

To give a better idea let us present a typical result that we obtain. For
existence we consider sequence of approximations to (1.1)

dXn
t = Fn(t,Xn

t ) dt+ σn(t,Xn
t ) dWt, Xn

0 = ξ, (1.3)

with the same Brownian motion Wt for any n. And we introduce the corre-
sponding approximation for (1.2)

∂tun +∇x · (Fnun) =
∑

1≤i,j≤d

∂2

∂xi∂xj
(anij(t, x)un(t, x)), un(t = 0, dx) = u0,

(1.4)
with an = σn σ

∗
n and un ∈M1.

The next result is not the most general we obtain, but it does not require
any additional definition and illustrates the type of assumptions we need. We
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use the classical notations for Lp and Sobolev spaces with different exponents
for space and time. For example, Lqt,loc(W

1,p
x ) for 1 ≤ p, q ≤ ∞ is the set

of measurable functions f of the variables (t, x) ∈ R+ × Rd, such that, for
almost all t ≥ 0, f(t, ·) ∈ W 1,p(Rd) and t 7→ ‖f(t, ·)‖W 1,p(Rd) ∈ Lq([0, T ])
for all T > 0. We also call weak topology on the set M1 of measurable
functions of time with values in the set P1 of probability measures on Rd, the
topology of weak-* convergence in time for the tight topology of probability
measures on Rd. In other words, un → u for the weak topology of M1 iff
〈un, f〉 → 〈u, f〉 for all bounded continuous function f on R+ × Rd with
support included in [0, T ]× Rd for some T > 0.

Theorem 1.1 Assume d ≥ 2. One has

(i) Existence: Assume that there exists a sequence of smooth Fn, σn ∈ L∞
converging in the sense of distributions to F and σ respectively, such
that the solution un ∈ M1 to (1.4) satisfies for 1 ≤ p, q ≤ ∞, with
1/p′ + 1/p = 1, 1/q + 1/q′ = 1

σn − σ −→ 0 in Lqt,loc(L
p
x) and Fn − F −→ 0 in Lqt,loc(L

p
x),

sup
n

(
‖σn‖L2q

t,loc(W 1,2p
x )

+ ‖Fn‖Lqt,loc(W 1,p
x )

+ ‖Fn‖L∞ + ‖σn‖L∞
)
<∞,

sup
n
‖un‖Lq′t,loc(Lp

′
x )
<∞, un −→ u in the weak topology of M1.

Then there exists a strong solution Xt to (1.1) and (Xn
t −ξ, t ∈ [0, T ])n

converges in Lp(Ω, L∞([0, T ])) for all p > 1 and T > 0 to (Xt − ξ, t ∈
[0, T ]), with Xn

t the solutions to (1.3). In addition, u(t, dx) is the law
of Xt for almost all t ≥ 0.

(ii) Uniqueness: Let X and Y be two solutions to (1.1) with one-dimensional

time marginals uX(t, x)dx and uY (t, x)dx both in Lq
′

t,loc(L
p′
x ). Assume

that F, σ ∈ L∞, X0 = Y0 a.s. and that

‖F‖
Lqt,loc(W 1,p

x )
+ ‖σ‖

L2q
t,loc(W 1,2p

x )
<∞

with 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1. Then one has pathwise
uniqueness: supt≥0|Xt − Yt| = 0 a.s.

We obtain better results in the one-dimensional case.

Theorem 1.2 Assume d = 1.
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(i) The existence result of Theorem 1.1 (i) holds under the same assumptions
on Fn, σn, un, except that the assumption supn ‖σn‖L2q

t,loc(W 1,2p
x )

< ∞
can be replaced by

sup
n
‖σn‖L2q

t,loc(W
1/2,2p
x )

<∞

and in the case p = 1, the assumption supn ‖Fn‖Lqt,loc(W 1,p
x )

<∞ must

be replaced by
sup
n
‖Fn‖Lqt,loc(W 1,1+ε

x )
<∞

for some ε > 0.

(ii) The uniqueness result of Theorem 1.1 (ii) holds true under the same
assumptions on F, σ, uX , uY , except that ‖σ‖

L2q
t,loc(W 1,2p

x )
< ∞ can be

replaced by
‖σ‖

L2q
t,loc(W

1/2,2p
x )

<∞.

and in the case p = 1, the assumption ‖F‖
Lqt,loc(W 1,p

x )
< ∞ must be

replaced by
‖F‖

Lqt,loc(W 1,1+ε
x )

<∞

for some ε > 0.

Note that no assumption of uniform ellipticity is needed in Theorems 1.1
and 1.2, provided one can prove a priori estimates on the various solutions
un, uX , uY to (1.4) and (1.2). Note also that pathwise uniqueness is proved
only for particular solutions to (1.1), so we cannot use directly the result
of Yamada and Watanabe to deduce strong existence. Hence our method
proves separately strong existence and pathwise uniqueness.

Of course, as they are laws, un, uX and uY all have bounded mass so
Theorems 1.1 and 1.2 really depend on whether it is possible to obtain higher
integrability for a solution of (1.2). From Theorem 1.1 we may for instance
simply deduce

Corollary 1.3 Assume that d ≥ 2, u0 ∈ L1 ∩ L∞, F, σ ∈ L∞, F ∈
L1
t,loc(W

1,1
x ) and ∇σ ∈ Lqt,loc(L

p
x), where 2/q + d/p = 1 with p > d. Assume

as well that σ is uniformly elliptic. Then one has existence of a strong solu-
tion to (1.1) with marginal distributions u(t, dx) in L∞t,loc(L

∞
x ). In addition,

pathwise uniqueness holds among all solutions with marginal distributions
in L∞t,loc(L

∞
x ).
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Hence, we recover similar (actually, slightly better) assumptions on σ as
in [34], but different assumptions on F (neither stronger nor weaker since
the sets L1

t,loc(W
1,1
x ) and Lpt,loc(L

q
x) are not included in one-another). This

difference comes from the fact that our general method does not assume
a priori that σ is uniformly elliptic. Hence the minimal conditions on F
we can expect are those under which existence and uniqueness hold in the
case σ = 0, i.e. those of DiPerna and Lions [6]: F ∈ L1

t,loc(W
1,1
x ) and some

bounds on divF . (Actually, F ∈ L1
t,loc(BVx) was shown to be sufficient by

Ambrosio [2], but we do not consider this case.)
However in many physical cases, uniform ellipticity is not necessary. For

instance in the phase space problem

dXt = Vt, dVt = F (t,Xt)dt+ σ(t,Xt) dWt, X0 = x, V0 = v.

one obtains an even better result.

Corollary 1.4 Assume that σ ∈ L∞ ∩ L2
t,loc(H

1
x) and F ∈ L1

t,loc(W
1,1
x ).

Assume also that the law u0 ∈ L∞. Then one has both existence of a strong
solution to (2.25) and pathwise uniqueness among all solutions with marginal
distributions in L∞t,loc(L

∞
x ).

The goal of Section 2 is to give the statement of all our results. We
start in Subsection 2.1 by defining the norms and Banach spaces needed
to state our most general results in Subsection 2.2. Theorems 1.1 and 1.2
are then obtained as corollaries of these general results. In Subsection 2.3,
several corollaries of Theorems 1.1 and 1.2 are stated in various situations,
including the uniformly elliptic case (Corollary 1.3), the non-degenerate one-
dimensional case and the kinetic (Langevin) case (Corollary 1.4). The rest
of the paper is devoted to the proofs of all the results stated in Section 2,
and the organization of the rest of the paper is given in the end of Section 2.

2 Statement of the results

As usual one needs regularity assumptions on F and σ to ensure strong
existence and pathwise uniqueness for (1.1). In our case, these are Sobolev
norms with respect to some u ∈M1, defined in Subsection 2.1. Our general
results are then stated in Subsection 2.2, and several consequences of these
results are discussed in Subsection 2.3.

7



2.1 Norms and Banach spaces

The conditions we shall impose on F and σ can be roughly described as
follows. We need σ to be L2 in time and H1 in space (in dimension d ≥ 2) or
H1/2 in space (in dimension d = 1) w.r.t. the measure u solution to (1.2), and
F to be L1 in time and W 1,1 in space w.r.t. the measure u. Weighted Sobolev
spaces have been extensively used and studied, but the key difference here is
that no regularity is known on the weight u. It could very well be a sum of
Dirac masses. This is why one must be careful and why maximal functions
are required.

The goal of the next Subsections is to give the precise definitions and
basic properties of our spaces.

2.1.1 The space H1
T (u)

Fix first v ∈ P1. We start with the following definition.

Definition 2.1 The space H1(v) is defined as the subspace of functions
f ∈ BVloc(Rd), the space of functions on Rd with locally bounded variations,
such that

‖f‖2H1(v) :=

∫
Rd

(
(M |f |(x))2 + (M |∇xf |(x))2

)
v(dx) <∞, (2.1)

where M is the usual maximal operator.

First of all, observe that the definition makes perfect sense. If f ∈
BVloc(Rd) then |∇f | is a locally finite measure. This allows to define M |∇f |
per

M |∇f |(x) = sup
r>0

1

|B(0, r)|

∫
B(0,r)

|∇f |(x+ dz), ∀x ∈ Rd.

In that case, it is well known (see [29]) that M |∇f | is a Borel function with
value in R+ ∪ {+∞}. It locally belongs in fact to the weak L1 space, that
is for any R > 0, there exists CR s.t.

|{x ∈ B(0, R), M |∇f |(t, x) > L}| ≤ CR
L
.

Therefore the integral of (M |∇f |)2 against the Borellian measure v is well
defined with value in R+ ∪ {+∞}, thus justifying the definition.

The main point of the definition is that we have a well behaved space
independently of any regularity on v.
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Theorem 2.2 Assume that v belongs to P1. Then H1(v) is a Banach space
with norm (2.1). Moreover the norm is lower semi-continuous with respect
to convergence in the sense of distribution: If fn −→ f in the sense of
distribution then

‖f‖H1(v) ≤ lim inf
n
‖fn‖H1(v). (2.2)

And if for a given f ∈ BVloc(Rd), vn converges to v in the tight topology of
probability measures then

‖f‖H1(v) ≤ lim inf
n
‖f‖H1(vn).

This result is proved in Section 3.
There are several technical reasons why we use M |∇f | in the definition

of the norm. Note however that the intuitive definition with just ∇f would
most certainly be too weak as v could for instance vanish just at the points
where ∇f is very large. In particular, without the maximal function in the
definition of the norm (2.1), it would be very easy to find counterexamples
to (2.2).

Now, given any u ∈M1, we give a second definition.

Definition 2.3 For all T > 0, the space H1
T (u) is defined as the subspace

of the set of measurable functions on [0, T ] × Rd such that, for almost all
t ∈ [0, T ], f(t, ·) ∈ H1(u(t, ·)) and

‖f‖2H1
T (u) =

∫ T

0
‖f(t, ·)‖2H1(u(t,·)) dt <∞. (2.3)

In particular, if u(t, ·) is the distribution of Xt solution to (1.1), then,
for all T > 0 and σ ∈ H1

T (u),

‖σ‖2H1
T (u) = E

(∫ T

0
M |σ|2(t,Xt)dt

)
+ E

(∫ T

0
(M |∇σ|(t,Xt))

2dt

)
. (2.4)

We then have the following immediate consequence of Th. 2.2.

Corollary 2.4 Fix T > 0. Assume u belongs to M1. Then H1
T (u) is a

Banach space with norm (2.3). Moreover the norm is lower semi-continuous
with respect to convergence in the sense of distribution: If fn −→ f in the
sense of distribution then

‖f‖H1
T (u) ≤ lim inf

n
‖fn‖H1

T (u). (2.5)
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And if for a given f measurable on R+ × Rd with f(t, ·) ∈ BVloc(Rd) for
almost all t ≥ 0, un converges to u for the weak topology in M1, then

‖f‖H1
T (u) ≤ lim inf

n
‖f‖H1

T (un).

2.1.2 The space H
1/2
T (u)

In the one dimensional case, we can prove strong existence and pathwise
uniqueness using H1/2 type of assumptions on σ. The definitions and prop-

erties of the spaces H
1/2
T (u) follow exactly the same steps as before. We first

fix v ∈ P1.

Definition 2.5 For any function f ∈ L1
loc(Rd), one defines

∂1/2
x f = F−1 |ξ|1/2F f,

with F the Fourier transform in Rd. The space H1/2(v) is defined as the

subspace of functions f ∈ L1
loc(Rd) s.t. ∂

1/2
x f is a locally finite Radon measure

and

‖f‖2
H1/2(v)

=

∫
Rd

(
(M |f |(x))2 + (M |∂1/2

x f |(x))2
)
v(dx) <∞.

As for H1(v), the maximal function can be extended to measures by

M |∂1/2
x f |(x) = sup

r>0

1

|B(0, r)|

∫
B(0,r)

|∂1/2
x f |(x+ dz), ∀x ∈ Rd.

One has again that M |∂1/2
x f | is a Borel function with value in R+ ∪ {+∞}

belonging to the local weak L1 space. The integral against the Borellian
measure v is hence well defined in R+ ∪ {+∞}, independently of the regu-
larity of v.

The next result is proved in Section 3.

Theorem 2.6 Assume that v belongs to P1. Then H1/2(v) is a Banach
space with norm (2.8). Moreover the norm is lower semi-continuous with
respect to convergence in the sense of distribution: If fn −→ f in the sense
of distribution then

‖f‖H1/2(v) ≤ lim inf
n
‖fn‖H1/2(v). (2.6)
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And if, for a given f ∈ L1
loc(Rd) s.t. ∂

1/2
x f is a locally finite Radon measure,

vn converges to v in the tight topology of probability measures on Rd, then

‖f‖H1/2(v) ≤ lim inf
n
‖f‖H1/2(vn).

Given any u ∈M1, we give a second definition.

Definition 2.7 For all T > 0, the space H
1/2
T (u) is defined as the subspace

of the set of measurable functions on [0, T ] × Rd such that, for almost all
t ∈ [0, T ], f(t, ·) ∈ H1/2(u(t, ·)) and

‖f‖2
H

1/2
T (u)

=

∫ T

0
‖f(t, ·)‖2

H1/2(u(t,·)) dt <∞. (2.7)

In particular, if u(t, ·) is the distribution of Xt solution to (1.1), then,

for all T > 0 and σ ∈ H1/2
T (u),

‖σ‖2
H

1/2
T (u)

= E
(∫ T

0
M |σ|2(t,Xt)dt

)
+ E

(∫ T

0
(M |∂1/2

x σ|(t,Xt))
2dt

)
.

(2.8)
Again, one has the following immediate consequence of Th. 2.6.

Corollary 2.8 Fix T > 0. Assume u belongs to M1. Then H
1/2
T (u) is a

Banach space with norm (2.7). Moreover the norm is lower semi-continuous
with respect to convergence in the sense of distribution: If fn −→ f in the
sense of distribution then

‖f‖
H

1/2
T (u)

≤ lim inf
n
‖fn‖H1/2

T (u)
. (2.9)

And if for a given f ∈ L1(R+ × Rd) s.t. ∂
1/2
x f(t, ·) is a locally finite Radon

measure for almost all t ∈ [0, T ], un converges to u for the weak topology in
M1, then

‖f‖
H

1/2
T (u)

≤ lim inf
n
‖f‖

H
1/2
T (un)

.

Let us emphasize here that, as it may already be clear from the definition

and as it will be seen in the proof, the space H
1/2
T (u) is much more intricate

than the previous space H1
T (u). Using this space is key to our improved

1-dimensional result. However it does require the development of new tech-
niques to make the estimates compatible with this weaker norm.
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2.1.3 The space W φ,weak
T (u)

We also need some similar W 1,1 assumptions on F . Following the definition
of H1(u), a first attempt would be

‖F‖
W 1,1
T (u)

=

∫ T

0

∫
Rd

(M |F |(t, x) +M |∇F |(t, x))u(t, dx) dt. (2.10)

Unfortunately, while this definition would work, it is too strong in some
cases. This is due to the fact that the maximal operator M is bounded on
Lp, p > 1, but not on L1. In particular if u ∈ L∞ then the norm defined
in (2.4) would automatically be finite if σ is in the usual H1 space but the
norm defined in (2.10) would not be finite if F ∈W 1,1 in general.

Therefore in order to obtain better assumptions we have to work with
a more complicated space. We proceed as before and fix v ∈ P1. We also
introduce a super-linear function φ, i.e. a function φ on [1,∞) such that
φ(ξ)/ξ is non-decreasing and converges to ∞ as ξ →∞.

Definition 2.9 For any locally finite Radon measure µ, decomposing µ into
a part absolutely continuous with respect to the Lebesgue measure µa and the
singular part µs, one defines

MLµ =
√

logL+

∫
Rd

|µa|(z)1|µa(z)|≥
√

logL dz + |µs|(dz)
(L−1 + |x− z|) |x− z|d−1

.

For any function f ∈ BVloc(Rd), the decomposition of ∇f , into a part abso-
lutely continuous with respect to the Lebesgue measure ∇af and the singular
part ∇sf , makes ML∇f well defined.

The space W φ,weak(v) is hence defined as the subspace of functions f ∈
BVloc(Rd) s.t.

‖f‖Wφ,weak(v) =

∫
Rd
M |f |(x) v(dx) + sup

L≥1

φ(L)

L logL

∫
Rd
ML∇f v(dx) <∞.

In this definition the maximal function is regularized so that ML∇f is
locally integrable for any fixed L. The supremum is then taken outside.

Obviously the space heavily depends on the choice of φ. Note that
ML∇f ≥

√
logL so that

‖f‖Wφ,weak(v) ≥ sup
L≥1

φ(L)

L
√

logL
.

12



In particular ‖f‖Wφ,weak(v) = +∞ for all f if φ(L) � L
√

logL asymptoti-
cally as L → +∞. On the other hand we want to choose φ superlinear as
we need to control the integrability of |∇f |. This leads to the assumptions

φ(L)

L
−→ +∞, φ(L)

L
√

logL
−→ 0, as L→ +∞. (2.11)

Even with this assumption, W φ,weak(v) is not a Banach space and in partic-
ular ‖ · ‖Wφ,weak(v) is not a norm. Of course ‖0‖Wφ,weak(v) 6= 0 but this could
easily be remedied by considering ‖ · ‖Wφ,weak(v) − αφ instead, for the right
constant αφ.

The main problem is that ‖λ f‖Wφ,weak(v) 6= |λ| ‖f‖Wφ,weak(v) and this
cannot easily be corrected. It is in fact the same kind of issue that one has
with the definition of so-called Orlicz spaces such as L logL. The solution
is similar and would consist in constructing the right norm by duality.

We did not feel that it was appropriate in this article however. Such a
construction in the present case would be considerably more complex than
for classical Orlicz space. It would also distract from our main goal while
bringing very little to our results. It is worth recalling the main reason why
we introduce the space W φ,weak: it is a compromise between two require-
ments.

• The estimates that we perform later in the text would not work for
instance with the simple requirement that∫

(|f |+ |∇f |) v(dx) <∞,

so the maximal operator is needed.

• We want to recover the classical assumption if v is bounded from below
and above. That means that if 1/C ≤ v ≤ C, then any f ∈W 1,1 must
be included in W φ,weak(v) for some well chosen φ (depending on f).
This is in particular why we do not use the direct extension W 1,1(v)
of the space H1(v), given by (2.10).

The above definition of W φ,weak(v) fulfills those two goals and therefore we
study further this space.

Theorem 2.10 Assume that v belongs to P 1, that φ is super-linear and
continuous and that (2.11) holds. Then W φ,weak(v) is well defined and ‖ ·

13



‖Wφ,weak(v) is lower semi-continuous with respect to convergence in the sense
of distribution: If fn −→ f in the sense of distribution then

‖f‖Wφ,weak(v) ≤ lim inf
n
‖fn‖Wφ,weak(v). (2.12)

And if for a given f ∈ BVloc(Rd), vn converges to v in the tight topology of
probability measures then

‖f‖Wφ,weak(v) ≤ lim inf
n
‖f‖Wφ,weak(vn).

Moreover if v ≥ 1/C over a smooth open set Ω and f ∈ W φ,weak(v) then
f ∈W 1,1(K) for any compact set K ⊂ Ω. Reciprocally if v ≤ C over Ω and
f ∈ W 1,1(Ω) with compact support in Ω, then there exists a super-linear φ
satisfying (2.11) s.t. f ∈W φ,weak(v).

Now, given u ∈M1 and a super-linear function φ, we define

Definition 2.11 For all T > 0, the space W φ,weak
T (u) is defined as the set

of measurable f on [0, T ]×Rd such that f(t, ·) ∈W φ,weak
T (u(t, ·)) for almost

all t ∈ [0, T ] and

‖f‖
Wφ,weak
T (u)

=

∫ T

0
‖f(t, ·)‖Wφ,weak(u(t,·)) dt <∞.

In particular, if u(t, ·) is the distribution of Xt solution to (1.1), then,

for all T > 0 and F ∈W φ,weak
T (u),

‖F‖2
Wφ,weak
T (u)

= sup
L≥1

φ(L)

L logL
E
(∫ T

0
(M |F |(t,Xt) +ML|∇F |(t,Xt)) dt

)
.

(2.13)

Then we have

Corollary 2.12 Fix T > 0, assume u belongs to M1, and that φ is super-
linear, continuous and satisfies (2.11). Then W φ,weak

T (u) is well-defined and
‖ · ‖

Wφ,weak
T (u)

is lower semi-continuous with respect to convergence in the

sense of distribution: If fn −→ f in the sense of distribution then

‖f‖
Wφ,weak
T (u)

≤ lim inf
n
‖fn‖Wφ,weak

T (u)
. (2.14)

And if for a given f measurable on R+ × Rd with f(t, ·) ∈ BVloc(Rd) for
almost all t ∈ [0, T ], un converges to u for the weak topology in M1, then

‖f‖
Wφ,weak
T (u)

≤ lim inf
n
‖f‖

Wφ,weak
T (un)

.
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Moreover if u ≥ 1/C over [0, T ]×Ω where Ω ⊂ Rd is a smooth open set and

f ∈ W φ,weak
T (u) then f ∈ L1

t ([0, T ],W 1,1(K)) for any compact set K ⊂ Ω.
Reciprocally if u ≤ C over [0, T ]× Ω and f ∈ L1

t ([0, T ],W 1,1(Ω)) with com-
pact support in [0, T ]×Ω, then there exists a super-linear φ satisfying (2.11)

s.t. f ∈W φ,weak
T (u).

The first two points of Cor. 2.12 are direct consequences of Th. 2.10,
and the last statements about the cases where u is bounded from above or
below can be proved exactly as the similar statement of Th. 2.10 is proved
in Section 3.

Theorem 2.10 and Corollary 2.12 support the introduction of the semi-
norm and the space W φ,weak

T . We point out in particular the conclusion of
both results (in the time independent and time dependent case) that if the

law u is bounded, then any W 1,1 function belongs to some W φ,weak
T .

This will allow us to obtain the critical W 1,1 assumption for the drift.
However it leads to difficulties in the proof. Typically Crippa-DeLellis esti-
mates naturally work if the drift satisfies an estimate like

|F (x)− F (y)| ≤ C (h(x) + h(y)) |x− y|, (2.15)

with h in L1(u). Such an estimate is essentially equivalent to an L1 control
on the maximal function as in (2.10) and therefore not compatible with F
only in W 1,1.

In the purely deterministic case where σ = 0, well-posedness can be ob-
tained for F ∈W 1,1 by interpolation but this seems to be more complicated
if some stochasticity is involved.

Because we work in a weaker space, a direct pointwise bound like (2.15)
is not available to us (see Lemma 3.2 in section 3) and this forces us to work
the estimates in a different manner.

Let us finally note that the pointwise bound (2.15) is very close to the
assumption found in [27] for uniqueness, which reads

(F (x)− F (y)) · (x− y) ≤ C (h(x) + h(y)) |x− y|2, (2.16)

again for h in L1(u). Just as for (2.15), (2.16) is in general not satisfied for
F ∈ W 1,1 even if u is bounded. But obviously, and contrary to our space
W φ,weak
T , (2.16) is only a one-sided bound.

Just as for ODE’s, only a one-sided bound is needed for pathwise unique-
ness. However to obtain strong existence as well without any ellipticity as-
sumption, the other one-sided bound is required as well. This is quite similar
to the usual well-posedness conditions on ODE’s, which is rather natural: If
no ellipticity assumptions are made then the proofs have to be compatible
with the deterministic case.
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2.2 General results on strong solutions to (1.1)

In the multi-dimensional case, our most general result is the following one,
proved in Section 4.

Theorem 2.13 Assume that d ≥ 2. One has

(i) Existence: Fix T > 0 and assume that there exists a sequence of smooth
Fn, σn ∈ L∞ converging in the sense of distribution to F and σ re-
spectively, such that the solution un ∈ M1 to (1.4) satisfies for some
super-linear φ∫ T

0

∫
Rd

(|σn − σ|+ |Fn − F |) dun dt −→ 0, (2.17)

sup
n

(
‖F‖

Wφ,weak
T (un)

+ ‖σ‖H1
T (un) + ‖Fn‖L∞ + ‖σn‖L∞

)
<∞, (2.18)

un −→ u for the weak topology of M1. (2.19)

Then there exists a strong solution Xt to (1.1) s.t. (Xn
t −ξ, t ∈ [0, T ])n

converges in Lp(Ω, L∞([0, T ])) for all p > 1 to (Xt−ξ, t ∈ [0, T ]), with
Xn
t the solutions to (1.3). In addition, u(t, dx) is the law of Xt for

almost all t ∈ [0, T ].

(ii) Uniqueness: Let X and Y be two solutions to (1.1) with one-dimensional
time marginals uX(t, ·) and uY (t, ·) on [0, T ]. Assume that F, σ ∈ L∞,
X0 = Y0 a.s. and that

‖F‖
Wφ,weak
T (uX)

+‖F‖
Wφ,weak
T (uY )

+‖σ‖H1
T (uX) +‖σ‖H1

T (uY ) <∞ (2.20)

for some super-linear function φ. Then one has pathwise uniqueness
on [0, T ], i.e. supt∈[0,T ]|Xt − Yt| = 0 a.s.

Note that we do not require any ellipticity on σ for this result. In that sense
we cannot hope to have any smoothing effect from the Wiener process and
the assumption on F must be enough to provide well posedness in the purely
deterministic setting (σ = 0). In this case, taking any u0 ∈ L∞, our result
gives that there exists a unique solution of Ẋt = F (t,Xt) with X0 = ξ and
with law u ∈ L∞ provided that there exists a sequence of regularized Fn s.t.
un → u for the weak-∗ topology with u ∈ L∞ and a super-linear φ s.t.

sup
L≥1

φ(L)

L logL
‖F +ML∇F‖L1([0,T ]×Rd) <∞.
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The first point is for example implied by the assumption divF ∈ L∞ and the
second one can be proved to hold if F ∈ L1

t,loc(W
1,1
x ) as in the proof of Corol-

lary 1.1 in the Appendix. Hence, we recover the classical results of DiPerna
and Lions [6] but not the optimal BV assumption from Ambrosio [2].

Remark 2.14 In the last result, the law of the diffusion u needs not be
absolutely continuous with respect to Lebesgue’s measure, so the value of
the coefficients F and σ on sets of Lebesgue’s measure zero may have some
importance. Our assumptions in fact ensures that all points where u is con-
centrated are automatically Lebesgue points for F and σ. For this reason,
it is straightforward to choose the right representative for the almost every-
where defined functions F and σ (see Remark 3.3 in Section 3.1).

In dimension 1, the result is even better: we recover the H1/2 type of as-
sumption from [33, 25, 8], but we lose a little bit on F (we have to use (2.10)
instead of (2.13)).

Theorem 2.15 Assume that d = 1. One has

(i) Existence: Fix T > 0 and assume that there exists a sequence of smooth
Fn, σn ∈ L∞ converging in the sense of distribution to F and σ respec-
tively, such that the solution un to (1.4) satisfies∫ T

0

∫
R

(|σn − σ|+ |Fn − F |) dun dt −→ 0,

sup
n

(‖F‖
W 1,1
T (un)

+ ‖σ‖
H

1/2
T (un)

+ ‖Fn‖L∞ + ‖σn‖L∞) <∞,

un −→ u for the weak topology of M1.

Then there exists a strong solution Xt to (1.1) s.t. (Xn
t −ξ, t ∈ [0, T ])n

converges in Lp(Ω, L∞([0, T ])) for all p > 1 to (Xt−ξ, t ∈ [0, T ]), with
Xn
t the solutions to (1.3). In addition, u(t, dx) is the law of Xt for

almost all t ∈ [0, T ].

(ii) Uniqueness: Let X and Y be two solutions to (1.1) with one-dimensional
time marginals uX(t, ·) and uY (t, ·) on [0, T ]. Assume that F, σ ∈ L∞,
X0 = Y0 a.s. and that

‖F‖
W 1,1
T (uX)

+ ‖F‖
W 1,1
T (uY )

+ ‖σ‖
H

1/2
T (uX)

+ ‖σ‖
H

1/2
T (uY )

<∞.

Then pathwise uniqueness holds on [0, T ], i.e. supt∈[0,T ]|Xt − Yt| = 0
a.s.
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Of course, while precise, the norms given by (2.4)–(2.13) or (2.8)–(2.10)
are not so simple to use. However it is quite easy to deduce more intuitive
results with the more usual W 1,p norms. We recall that M is continuous
onto every Lp space for 1 < p ≤ ∞ and hence the norms ‖ · ‖H1

T (u) and

‖ · ‖
W 1,1
T (u)

are controlled by appropriate Sobolev norms if some Lq estimate

is available on the law u.
One complication occurs when uX ∈ L∞ and one wants to obtain the

close to optimal W 1,1 assumption on F (instead of W 1,p for some p > 1) as
the maximal function is not bounded onto L1. This is the reason why we
defined (2.13), which can be used following [15] (we recall the main steps in
the appendix).

Therefore, Theorems 1.1 and 1.2 are simple corollaries of Theorems 2.13
and 2.15, respectively, except for the previous complication for Theorem 1.1.

In order to apply Theorems 1.1 and 1.2, we need to consider cases where
it is possible to obtain better integrability than L1 bounds for a solution to
(1.2). This occurs in various situations, some of which will be studied in
the next Subsection. One difficulty to apply Theorems 1.1 (ii) and 1.2 (ii)
is to obtain pathwise uniqueness without restriction on the set of solutions
considered. This will of course be ensured if uniqueness in law is known
for (1.1). More precisely, if the conclusion of Theorem 1.1 (i) or Theo-
rem 1.2 (i) holds, then either ‖F‖

Wφ,weak
T (u)

+ ‖σ‖H1
T (u) < ∞ (if d ≥ 2) or

‖F‖
W 1,1
T (u)

+ ‖σ‖
H

1/2
T (u)

< ∞ (if d = 1) by Cor. 2.4, 2.8 and 2.12. Since

there is uniqueness in law for (1.1), then uX = uY = u for all solutions X
and Y to (1.1) as in Theorem 1.1 (ii) or Theorem 1.2 (ii) and hence path-
wise uniqueness holds. This argument will be used repeatedly in the next
subsection. Note however that condition (2.20) may impose restrictions on
the initial distribution. This issue will be studied in Prop. 2.24.

2.3 Consequences

Let us first consider the case where σ is uniformly elliptic: for all t, x,

1

2
σ σ∗(t, x) = a(t, x) ≥ c I (2.21)

for some c > 0. For example if F = 0 and σ does not depend on time,
then there exists a corresponding stationary measure ū > 0 in Ld/(d−1) as
per Aleksandrov [1]. In that case, when u0 ≤ Cū, then the unique solution
u of (1.2) in L2

t,loc(H
1
x) satisfies u(t, dx) ≤ Cū(x)dx for all t ≥ 0 by the

maximum principle.
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Corollary 2.16 Assume that F = 0 and σ(x) satisfies (2.21) and belongs

to L∞∩W 1,2d
x (or L∞∩H1/2 if d = 1). Assume also that u0 ≤ Cū for some

constant C > 0. Then one has both existence of a strong solution to (1.1)
and pathwise uniqueness.

Note that pathwise uniqueness holds without additional assumption since
σ ∈W 1,2d implies that σ is continuous, and uniqueness in law holds in this
case since σ is bounded and uniformly elliptic [30, Thm. 7.2.1].

Those results were later extended by Krylov in the parabolic, time de-
pendent case [16, 18]. We may for example use the following version found
in [37].

Theorem 2.17 Assume that F and σ are bounded and σ satisfies (2.21).
Then, for all solution X of (1.1) with any initial distribution, for all T > 0
and p, q > 1 such that

d

p
+

2

q
< 2,

there exists a constant C such that for all f ∈ Lqt (L
p
x)

E
[∫ T

0
f(t,Xt)dt

]
≤ C‖f‖Lqt (Lpx).

This result means that
u ∈ Lq

′

t (Lp
′
x ),

where 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1, and we obtain the following
corollary.

Corollary 2.18 (i) Assume that d ≥ 2, F, σ ∈ L∞, σ satisfies (2.21),

F ∈ Lq/2t,loc(W
1,p/2
x ) and σ ∈ Lqt,loc(W

1,p
x ) with 2/q+ d/p < 1. Then one

has both existence of a strong solution to (1.1) and pathwise uniqueness
for any initial condition ξ.

(ii) Assume that d = 1, F, σ ∈ L∞, σ satisfies (2.21), σ ∈ Lqt,loc(W
1/2,p
x )

with 2/q+ 1/p < 1 and F ∈ Lq/2t,loc(W
1,p/2
x ) if p > 2, F ∈ Lq/2t,loc(W

1,1+ε)
for some ε > 0 if p ≤ 2. Then one has both existence of a strong
solution to (1.1) and pathwise uniqueness for any initial condition ξ.

Note that in this case, pathwise uniqueness holds without additional as-

sumption since Krylov’s inequality implies that u ∈ Lq
′

t (Lp
′
x ) for all solutions

to (1.1).
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In our setting, since we need additional regularity on σ, it is easy to
obtain better a priori estimates for u than those given by Krylov’s inequality.
For instance:

Proposition 2.19 For any d ≥ 1, assume u0 ∈ L1 ∩ L∞, F, σ ∈ L∞, σ
satisfies (2.21) and ∇σ ∈ Lqt,loc(L

p
x) satisfying 2/q + d/p = 1 with p > d.

Then any u solution to (1.2), limit for the weak topology in M1 of smooth
solutions, belongs to L∞t (Lrx) for any 1 ≤ r ≤ ∞.

This proposition is based on classical energy estimates and hence we just give
a very short proof of it in Section 6. Combined with Theorem 1.1 this gives
slightly better conditions for σ and much better conditions for F , assuming
additional conditions on the initial distribution. We obtain Corollary 1.3,
restated here

Corollary 2.20 Assume that d ≥ 2, u0 ∈ L1 ∩ L∞, F, σ ∈ L∞, F ∈
L1
t,loc(W

1,1
x ) and ∇σ ∈ Lqt,loc(L

p
x), where 2/q + d/p = 1 with p > d. Assume

as well that σ satisfies (2.21). Then one has existence of a strong solu-
tion to (1.1) with marginal distributions u(t, dx) in L∞t,loc(L

∞
x ). In addition,

pathwise uniqueness holds among all solutions with marginal distributions
in L∞t,loc(L

∞
x ).

As above, the pathwise uniqueness property could be improved if we could
prove uniqueness in law. If d = 2, uniqueness in law holds when σ and
F are bounded and σ is uniformly elliptic [17]. When d ≥ 3, by Sobolev
embedding, the assumption ∇σ ∈ Lqt,loc(L

p
x) implies that x 7→ σ(t, x) is

continuous for almost all t ≥ 0. This condition is not exactly sufficient to
use the result of Stroock and Varadhan [30, Thm. 7.2.1], which assumes
that supt∈[0,T ] |σ(t, x) − σ(t, y)| → 0 when y → x. This is true for example
if ∇σ ∈ L∞t,loc(L

p
x) for p > d. Hence we obtain

Corollary 2.21 Assume that d ≥ 2, u0 ∈ L1 ∩ L∞, F, σ ∈ L∞, F ∈
L1
t,loc(W

1,1
x ) and ∇σ ∈ Lqt,loc(L

p
x) where 2/q + d/p = 1 with p > d. Assume

as well that σ satisfies (2.21), and if d ≥ 3 that for all x,

sup
t∈[0,T ]

|σ(t, x)− σ(t, y)| → 0 when y → x.

Then one has both existence of a strong solution to (1.1) and pathwise
uniqueness.

This result can be compared with previous works dealing with the uni-
formly elliptic case. The best result in this case seem to be the one of [37],
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where strong existence and pathwise uniqueness are proved under the as-
sumptions ∇σ ∈ Lqt,loc(L

p
x), σ(t, x) uniformly continuous with respect to x

and F ∈ Lqt,loc(L
p
x) with d/p + 2/q < 1, so we obtain a slightly better con-

dition on σ (we can handle the limit case d/p + 2/q = 1 and no uniform
continuity is needed for strong existence), and a condition on F which is nei-
ther stronger nor weaker, since L1

t,loc(W
1,1
x ) neither contains nor is contained

in Lqt,loc(L
p
x) with d/p+ 2/q < 1.

In dimension 1 in the stationary case, even if (2.21) is not satisfied but
instead only

1

2
σ2(x) = a(x) > 0, (2.22)

then one has the a priori bound

u(t, x) ≤ C

a(x)
e
∫ x
0
F (y)
a(y)

dy
, ∀x ∈ R,

for solutions to (1.2) again provided that u0 satisfies the same bound. There-
fore, we obtain

Corollary 2.22 Assume d = 1, σ, F ∈ L∞, σ satisfies (2.22), F/a ∈ L1,

u0(x) ≤ C

a(x)
e
∫ x
0
F (y)
a(y)

dy
, ∀x ∈ R

and ∫
R

(M |∂1/2σ|(x))2

a(x)
dx <∞ and

∫
R

M |∇F |
a(x)

dx <∞. (2.23)

Then one has both existence of a strong solution to (1.1) and pathwise
uniqueness.

Note that the assumptions (2.23) imply that a−1 ∈ L1
loc, which is a necessary

and sufficient condition for uniqueness in law when F is bounded [8].
We will prove in Lemma 3.5 of Section 3 that for all x, y

|σ(x)− σ(y)| ≤
(
M |∂1/2

x σ|(x) +M |∂1/2
x σ|(y)

)
|x− y|1/2. (2.24)

This inequality allows us to compare our result with similar results of the
literature [33, 38, 25, 8]. The best conditions in the time homogeneous case
seem to be those of [8, Thm. 4.41], where pathwise uniqueness is proved to
hold if F/a ∈ L1

loc, |σ(x)−σ(y)|2 ≤ f(x)h(|y−x|) for all x, y with f/a ∈ L1
loc
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and
∫

0+ h
−1(u)du = +∞. Our result gives worse conditions on F , and our

condition on σ is slightly worse, since we need to take h(u) = u in (2.24).
However, we improve the conditions on σ of all the other references.

We point out that, in higher dimension as well, ellipticity is not always
required for bounds on the law. We give the classical example of SDE’s in
the phase space R2d

dXt = Vt, dVt = F (t,Xt)dt+ σ(t,Xt) dWt, X0 = x, V0 = v. (2.25)

The joint law u(t, x, v) of the process (Xt, Vt)t≥0 solves the kinetic equation

∂tu(t, x, v)+v·∇xu(t, x, v)+F (t, x)·∇vu(t, x, v) =
∑

1≤i,j≤d
aij(t, x)

∂2u(t, x, v)

∂vi∂vj
.

(2.26)
Eq. (2.26) is in fact better behaved than (1.2) for rough coefficients as its
symplectic structure for instance guarantees that it satisfies a maximum
principle for all measure-valued solutions that are limit of smooth solutions.
In particular for any initial data u0 ∈ L∞(R2d), there exists a measure-
valued solution u ∈ L∞(R+ × R2d). This is true even though the diffusion
in (2.25) is degenerate (there is no diffusion in the x direction, and σ can
also be degenerate).

Hence in this situation, one may deduce as claimed Corollary 1.4 or

Corollary 2.23 Assume that σ ∈ L∞ ∩ L2
t,loc(H

1
x) and F ∈ L1

t,loc(W
1,1
x ).

Assume also that u0 ∈ L∞. Then one has both existence of a strong solu-
tion to (2.25) and pathwise uniqueness among all solutions with marginal
distributions in L∞t,loc(L

∞
x ).

Note that other hypo-elliptic situations or even sub-elliptic situations
may lead to a better integrability of the solution u to (1.2) than L1. Several
examples are given in [24, Section 4.5], each of which imply a corollary of
our result in various situations were σ is degenerate.

To conclude, let us observe that most of the previous results give strong
existence for non-deterministic initial distributions. However, one can use
the next result to obtain strong existence and pathwise uniqueness for almost
all deterministic initial conditions.

Proposition 2.24 Under the assumptions of either Cor. 2.16, Cor. 2.21 or
Cor. 2.22, for any complete filtered probability space (Ω, (Ft)t≥0,P) equipped
with a r-dimensional standard Brownian motion W , there is strong exis-
tence and pathwise uniqueness for (1.1) on (Ω, (Ft)t≥0,P,W ) for almost all
deterministic initial condition ξ = x ∈ Rd.
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The proofs of the previous results are organized as follows. We start
in Section 3 with some simple technical proofs, including those of Theo-
rems 2.2, 2.6 and 2.10, Section 4 is then devoted to the proof of Theo-
rem 2.13, Section 5 to the proof of Theorem 2.15, Section 6 to the proof of
Proposition 2.19, and Section 7 to the proof of Proposition 2.24. The proof
of Theorem 1.1 is given in the Appendix.

3 Useful technical results

The results and proofs presented in this section are mostly easy extensions
of well-known techniques, which we need in the following sections and hence
include here for the sake of completeness.

3.1 Pointwise difference estimates

We often need to estimate the difference of the coefficients σ and F at two
different points x and y during the proofs. We collect here all the results
which allow us to do so and that we later use. In all those estimates, time
is only a parameter and we accordingly omit the time variable in most
formulas.

We start by recalling the classical inequality (it is for instance a direct
consequence of [29, Thm. VII.1] and of basic properties of the Poisson Ker-
nel):

Lemma 3.1 Fix t ≥ 0 and assume that σ(t, ·) ∈ BV (Rd). Then for any
x, y ∈ Rd

|σ(t, x)− σ(t, y)| ≤ Cd(M |∇xσ|(t, x) +M |∇xσ|(t, y)) |x− y|. (3.1)

This next lemma provides an extension of (3.1) with the operator ML used
in the definition (2.13).

Lemma 3.2 Fix t ≥ 0 and assume that F (t, ·) ∈ BV (Rd). For any x ∈ Rd,
if h(t, x) < ∞ with h(t, x) = |F (t, x)| + ML∇F (t, x), then x is a Lebesgue
point of F . Then for any x, y ∈ Rd

|F (t, x)− F (t, y)| ≤ Cd(h(t, x) + h(t, y))

(
|x− y|+ 1

L

)
, (3.2)

for some constant Cd that depends only on d.
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Remark 3.3 Note that the inequalities (3.1) and (3.2) hold true for all x
and y and not only for almost every x and y. This is true if one chooses
a natural representative for the almost everywhere defined σ and F . This
is done classically as follows: recall that a simple definition of a Lebesgue
point is that, for any convolution kernel, Kε ? F (x) has a unique limit as
ε→ 0. F is not continuous at x in that case in general, only approximately
continuous in the above sense. Note that this definition is independent of
the chosen representative for F . Classically, one then chooses as the right
representative of the almost everywhere defined function F at x, the limit of
Kε?F (x) as ε→ 0. This only changes F on a negligible set since if F ∈ BV
then every point x is a Lebesgue point except on the jump set of F , which is
at most of dimension d − 1 (it is σ-finite for the Hausdorff measure Hd−1,
see [3]). As will appear in the proof, this representative satisfies (3.2) for
all Lebesgue points x, y. Since the inequality is obvious when h(t, x) =∞ or
h(t, y) =∞, it is also true when x or y is not a Lebesgue point of F .
In the sequel, we shall always assume that the functions F and σ are equal
to their natural representative as defined above.

We start with the proof of Lemma 3.2.

Proof of Lemma 3.2 First observe that by the definition of h, the result
is obvious if |x−y| ≥ 1. Assume now that |x−y| ≤ 1. We recall the Lemma
from [15].

Lemma 3.4 Assume F ∈ C1(Rd). There exists a constant C depending
only on d s.t. for any x, y ∈ Rd,

|F (x)− F (y)| ≤ C
∫
B(x,y)

(
1

|x− z|d−1
+

1

|y − z|d−1

)
|∇F |(dz), (3.3)

where B(x, y) denotes the ball of center (x+ y)/2 and diameter |x− y|.

The first point is to extend inequality (3.3) to any F ∈ BVloc. Consider a
sequence of smooth approximations Kε ?F with Kε ≥ 0 a classical convolu-
tion kernel with K(−x) = K(x) and support in B(0, 1). At every Lebesgue
point x of F , one has that Kε ? F → F and therefore if x and y are distinct
Lebesgue points apply inequality (3.3) to Kε ? F and take the limit ε → 0
to find

|F (x)− F (y)| = lim
ε→0
|Kε ? F (x)−Kε ? F (y)|

≤ C lim sup
ε→0

∫
B(x,y)

(
1

|x− z|d−1
+

1

|y − z|d−1

)
|∇Kε ? F |(dz).
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We hence have to dominate the right-hand side. First notice that since
Kε ≥ 0

|∇Kε ? F |(z) =

∣∣∣∣∫ Kε(z − w)∇F (dw)

∣∣∣∣ ≤ ∫ Kε(z − w) |∇F (dw)|

≤ Kε ? |∇F |(z).

Therefore provided ε is small with respect to |x− y|, which we may always
assume as we are considering ε→ 0, and since Kε has support in the ball of
radius ε, we have that∫

B(x,y)

(
1

|x− z|d−1
+

1

|y − z|d−1

)
|∇Kε ? F |(dz)

≤
∫
B̃(x,y)

Kε ? φx,y(z) |∇F |(dz),

where B̃(x, y) denotes the ball of center (x+y)/2 and diameter 2 |x−y| and
with φx,y(z) = 1

|x−z|d−1 + 1
|y−z|d−1 .

Now observe that, since w−d+1 is integrable, one has for all z ∈ Rd∫
Kε(z − w)w−d+1 dw ≤ C

(|z|+ ε)d−1
≤ C

|z|d−1
.

Therefore
Kε ? φx,y(z) ≤ C φx,y(z).

On the other hand since |∇F | is a positive measure, we have that∫
B̃(x,y)

Kε ? φx,y(z) |∇F |(dz) ≤ C
∫
B̃(x,y)

φx,y(z) |∇F |(dz).

Hence we have proved that for any x, y that are Lebesgue points of F ,

|F (x)− F (y)| ≤ C
∫
B̃(x,y)

(
1

|x− z|d−1
+

1

|y − z|d−1

)
|∇F |(dz). (3.4)

On the other hand for F ∈ BVloc the set of non Lebesgue points can be
defined (see [2] and the references therein) as the set of x s.t.

lim inf r−d+1

∫
B(x,r)

|∇F (dz)| > 0.
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At such a point x, one has∫
B(x,r)

|∇F |(dz)
|x− z|d−1

≥
∑

n≥| log2 r|

2n(−d+1)

∫
2−n−1≤|x−z|<2−n

|∇F |(dz) = +∞,

and the inequality (3.4) is trivial. As h(t, x) = +∞ if∫
B(x,r)

|∇F |(dz)
|x− z|d−1

= +∞,

for some r > 0 then this also implies that x is necessarily a Lebesgue point
of F if h(t, x) <∞.
Now |∇F | ≤ |∇F |s +

√
logLλ+ |∇F |a 1|∇F |a≥√logL where λ is Lebesgue’s

measure on Rd, where |∇F |a and |∇F |s are the absolutely continuous and
singular parts of the measure |∇F |, and where we identified |∇F |a with its
density w.r.t. λ in the indicator function. Thus, if 1/L ≤ |x− y| ≤ 1,

1

|x− y|

∫
B̃(x,y)

|∇F |(dz)
|x− z|d−1

≤ C

(√
logL

+

∫
B(x,2)

|∇F |a(z)1|∇F |≥√logL dz + |∇F |s(dz)
(1/L+ |x− z|) |x− z|d−1

)
,

where B(x, 2) is the ball of radius 2 centered at x and where we used that
if z ∈ B̃(x, y) then |x− z|+ 1/L ≤ 3 |x− y|. Similarly, if |x− y| ≤ 1/L,∫

B̃(x,y)

|∇F |(dz)
|x− z|d−1

dz ≤ C

L

(√
logL

+

∫
B(x,2)

|∇F |a(z)1|∇F |≥√logL dz + |∇F |s(dz)
(1/L+ |x− z|) |x− z|d−1

)
,

where we used that if z ∈ B(x, y), then |x−z|+1/L ≤ 2/L. By the definition
of ML, this concludes the proof. 2

Proof of Lemma 3.1 This is a classical result for which we can give an
easy proof by applying the preliminary work that we have just done. In
particular we recall that we have proved that estimate (3.4) holds for any
F ∈ BV at any points x and y. Applying this inequality to σ, we obtain
that for any x, y

|σ(x)− σ(y)| ≤ C
∫
B̃(x,y)

(
1

|x− z|d−1
+

1

|y − z|d−1

)
|∇σ|(dz).
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Now for a given x decompose∫
B̃(x,y)

|∇σ|(dz)
|x− z|d−1

=

∞∑
k=0

∫
2−k≤ |x−z||x−y|≤2−k+1

1

|x− z|d−1
|∇σ|(dz)

≤
∞∑
k=0

2k (d−1) |x− y|1−d
∫
|x−z|
|x−y|≤2−k+1

|∇σ|(dz)

≤
∞∑
k=0

2−k+d |x− y|M |∇σ|(x) ≤ 2d+1 |x− y|M |∇σ|(x),

by the definition of the maximal function. This concludes the proof. 2

Let us turn now to our last bound which uses ∂
1/2
x σ

Lemma 3.5 Fix t ≥ 0 and assume that σ(t, ·) ∈ L1
loc and ∂

1/2
x σ(t, ·) is a

locally finite Radon measure. Then for any x, y ∈ Rd

|σ(t, x)− σ(t, y)| ≤
(
M |∂1/2

x σ|(t, x) +M |∂1/2
x σ|(t, y)

)
|x− y|1/2.

Proof By the definition of ∂
1/2
x σ

σ(x) = K ? ∂1/2
x σ,

for the convolution kernel K with FK = |ξ|−1/2, which implies that

|K(x)| ≤ C |x|d−1/2, |∇K(x)| ≤ C |x|d+1/2. (3.5)

Now simply compute

|σ(x)− σ(y)| ≤
∫
|z−x|≥2 |x−y|

|K(x− z)−K(y − z)| |∂1/2
x σ|(dz)

+

∫
|z−x|≤2 |x−y|

(|K(x− z)|+ |K(y − z)|) |∂1/2
x σ|(dz).

Denote |x− y| = r. One has by (3.5)∫
|z−x|≤2 r

|K(x− z)| |∂1/2
x σ|(dz) ≤ C

∑
n≥−1

∫
|z−x|≤2−n r

2n(d−1/2)

rd−1/2
|∂1/2
x σ|(dz)

≤ C
∑
n≥−1

2−n/2r1/2M |∂1/2
x σ|(x) = C r1/2M |∂1/2

x σ|(x).
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Since |z − x| ≤ 2r implies that |z − y| ≤ 3r, one has the same inequality∫
|z−x|≤2 r

|K(y − z)| |∂1/2
x σ|(dz) ≤ C r1/2M |∂1/2

x σ|(y).

As for the last term, first note that if |x−z| ≥ 2 |x−y| then |y−z| ≥ |x−z|/2.
Hence by (3.5) if |x− z| ≥ 2 |x− y|

|K(x− z)−K(y − z)| ≤ C |x− y|
|x− z|d+1/2

.

Therefore∫
|z−x|≥2 |x−y|

|K(x− z)−K(y − z)| |∂1/2
x σ|(dz)

≤
∑
n≥1

∫
|z−x|≥2n r

C
r

(2nr)d+1/2
|∂1/2
x σ|(dz)

≤ C r1/2
∑
n≥1

2−n/2M |∂1/2
x σ|(x) ≤ C r1/2M |∂1/2

x σ|(x).

Summing up the three estimates concludes the proof. 2

3.2 Proof of Theorems 2.2, 2.6 and 2.10

Proof of Theorem 2.2 First of all, ‖ · ‖H1(v) is indeed a norm on H1(v).
By definition it is non negative and finite on H1(v). Next if λ > 0 then
M (|λf |) = λM |f | and thus ‖λf‖H1(v) = |λ| ‖f‖H1(v). The triangle in-
equality is also trivially satisfied as M (f + g) ≤M f +M g.

Finally if ‖f‖H1(v) = 0 then M |f | = 0 on the support of v which contains
(at least) one point x0 since v is a probability measure. But now M |f |(x0) =
0 implies that f = 0 by the definition of the maximal function.

We now prove (2.2). Consider a sequence fn in H1(v) s.t. fn converges
to some f in the sense of distributions and assume (possibly restricting to
a subsequence)

sup
n
‖fn‖H1(v) <∞.

(Otherwise, there is nothing to prove.)
We notice that fn is hence uniformly bounded in BVloc. Indeed for any

R > 0, and any x ∈ B(0, R)

|∇ fn|(B(0, R)) ≤ (2R)dM |∇ fn|(x),
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so that by Cauchy-Schwartz

|∇ fn|(B(0, R)) ≤ 2dRd(∫
B(0,R) v(dx)

)1/2
‖fn‖H1(v). (3.6)

As fn −→ f in D′ then f belongs to BVloc as well. Therefore M |∇f | is well
defined.

On the other hand ∇fn converges to ∇f in D′. Note that, for all ϕ ∈
C∞c (Rd) with ϕ ≥ 0, the map µ 7→

∫
ϕ|µ| is convex and continuous on the

set of locally finite Radon measures on Rd for the strong topology of total
variation. Hence it is lower semi-continuous for the weak-* topology, and so∫

ϕ |∇f |(dx) ≤ lim inf

∫
ϕ |∇fn|(dx).

Now fix any c > 1 and any r > 0 and note that the previous inequality
implies that

1

|B(0, r)|

∫
B(0,r)

|∇f |(x+ dz) ≤ 1

|B(0, r)|
lim inf

∫
B(0,cr)

|∇fn|(x+ dz)

≤ cd lim inf M |∇fn|(x).

Taking now the supremum in r, we deduce that for any c > 1

M |∇f |(x) ≤ cd lim inf M |∇fn|(x).

Apply now Fatou’s lemma and let c go to 1 to deduce∫
(M |∇f |(x))2u(dx) ≤ lim inf

∫
(M |∇fn|(x))2u(dx).

The same steps can be performed with M |fn| and M |f | thus proving that
f ∈ H1(v) and that (2.2) holds.

Let us now prove that H1(v) is complete which concludes the proof that
H1(v) is a Banach space. Accordingly consider any Cauchy sequence fn in
H1(v).

The sequence fn is then also Cauchy in BVloc. Indeed using (3.6) for
fn − fm, we obtain that for any R > 0

|∇ (fn − fm)|(B(0, R)) ≤ 2dRd(∫
B(0,R) v(dx)

)1/2
‖fn − fm‖H1(v).
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Therefore there exists f ∈ BVloc s.t. fn converges toward f in BVloc. In
particular fn converges to f in D′ and we may use (2.2) a first time to
deduce that f ∈ H1(v).

It remains to show that ‖fn − f‖H1(v) −→ 0. For that fix n and con-
sider the sequence fn − fm in m. This sequence converges in the sense of
distribution to fn − f . We conclude using again (2.2) that

‖fn − f‖H1(v) ≤ lim inf
m→∞

‖fn − fm‖H1(v).

Let us now turn to the last part of Thm. 2.2. We first recall that if µ is a
finite, non-negative Radon measure then M µ is lower semi-continuous. This
follows from similar arguments to the ones above: Consider any xn → x,
then for c > 1

1

|B(0, r)|

∫
B(0,r)

µ(x+ dz) ≤ 1

|B(0, r)|
lim inf

∫
B(0,cr)

µ(xn + dz)

≤ cd lim inf M µ(xn).

The lower semi-continuity of M µ then follows taking the supremum in r
and then the infimum in c.

Denote now g = (M |∇f |)2+(M |f |)2, g is a non negative, Borel function
with values in R+ ∪ {+∞}. By the previous remark it is also lower semi-
continuous. Note that for any positive measure µ∫

g dµ =

∫ ∞
0

∫
1g(x)>ξµ(dx) dξ.

Now assume vn → v in the tight topology of P 1. Note that for any open set
O ∫

O
dv ≤ lim inf

∫
O
dvn.

Take O = {g(x) > ξ} which is open by the lower semi-continuity of g.
Therefore, Fatou’s lemma entails∫

g dv ≤ lim inf

∫
g dvn,

which finishes the proof of Thm. 2.2. 2
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Proof of Theorem 2.6 The proof is nearly identical to that of Thm. 2.2
and for this reason we omit it here. The only difference is that the space

BV is replaced by the space of L1
loc functions f s.t. ∂

1/2
x f is a locally finite

measure. 2

Proof of Theorem 2.10 The first part of the proof concerning the lower
semi-continuity follows exactly the same steps as the proof of Thm. 2.2.
One uses the same intermediate control through the BV norm as, for all
R,L ≥ 1,

ML |∇f |(x0) ≥
√

logL

+
1

Rd−1(R+ L−1)

∫
B(0,R)

(
|∇af |(z)1|∇af |(z)≥√logL dz + |∇sf |(dz)

)
≥ 1

C
√
L (1 +Rd)

∫
B(0,R)

|∇f |(dz).

One also has the same type of lower semi-continuity properties as for instance
if fn → f in the sense of distribution for fn a sequence uniformly bounded
in BVloc then for any L′ < L

ML′∇f(x) ≤ lim inf
n

ML∇fn(x).

Taking the supremum over L leads to (2.12) as φ is continuous.
We skip the rest of the details for this first part and instead focus on the

connection with W 1,1 which is the main novel feature of W φ,weak.
By contradiction assume that f ∈ W φ,weak(v) and v ≥ 1/C over Ω but

that f 6∈ W 1,1(B(x0, r)) for some ball s.t. B(x0, 2r) ⊂ Ω. Since f ∈ BVloc,
it implies that the singular part |∇sf | does not vanish on B(x0, r). On the
other hand∫

Rd
ML∇f v(dx) ≥ 1

C

∫∫
B(x0,2r)2

|∇sf |(dz)
(L−1 + |z − x|) |z − x|d−1

dx.

Define the kernel

KL = CL
1|x|≤2r

(L−1 + |x|) |x|d−1
,

with CL s.t. ‖KL‖L1 = 1. Observe that KL is a standard approximation of
the identity by convolution so in particular

lim inf
L→∞

∫
B(x0,2r)

KL ? (|∇sf |) dx ≥
∫
B(x0,r)

|∇sf |(B(x0, r)) > 0.
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As CL ∼ logL, this has for consequence that there exists C > 0 s.t. for L
large enough ∫

B(x0,2r)2

|∇sf |(dz)
(L−1 + |z − x|) |z − x|d−1

dx ≥ logL

C
.

Therefore

‖f‖Wφ,weak(v) ≥
1

C
sup
L

φ(L)

L
= +∞,

giving the desired contradiction.

Reciprocally, assume that v ≤ C on Ω and that f ∈W 1,1(K) compactly
supported in K ⊂ Ω. First, by Sobolev embedding, f and hence M f belong
to Lp for some p > 1 and M f ∈ L∞(Ωc). Therefore∫

M |f |(x) v(dx) <∞.

Then for x 6∈ Ω

ML∇f(x) ≤
√

logL+
1

d(x,K)d

∫
K
|∇f(z)| dz.

As a consequence for any φ satisfying (2.11), there exists some finite constant
Cφ s.t.

‖f‖Wφ,weak ≤ Cφ + C sup
L

φ(L)

L logL

∫
Ω
ML∇f(x) dx.

Now decompose ∇f in level sets by defining for all n ∈ Z

ωn = {z ∈ K, 2n ≤ |∇f(z)| < 2n+1}.

Then∫
Ω
ML∇f(x) dx ≤ |Ω|

√
logL+

∑
n≥log2 L−1

∫∫
Ω×K

2n+1
1z∈ωn dz dx

(L−1 + |z − x|) |z − x|d−1

≤ |Ω|
√

logL+
∑

n≥log2 L−1

2n+1 |ωn| logL.

Since ∇f ∈ L1, one has
∑

2n |ωn| <∞ and thus

sN =
∑
n≥N

2n |ωn| −→ 0, as N →∞.
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We can now define an appropriate φ: Choose any smooth function s.t. φ(x)/x
is non-decreasing and

φ(2N+1) = 2N+1 min
(
N1/4, s−1

N

)
.

Then φ satisfies (2.11) while

sup
L

φ(L)

L logL

∫
Ω
ML∇f(x) dx ≤ 2 sup

N

φ(2N+1)

2N
sN ≤ 4,

therefore concluding that f ∈W φ,weak(v). 2

4 Proof of Theorem 2.13

We use two types of estimates; one is based on an explicit quantitative
estimate which generalizes the one in [5] for Ordinary Differential Equations
and one which generalizes the local time which is used in dimension 1 in
the classical approach [33, 25, 8]. We use the first quantitative estimate to
prove existence and the second one to prove uniqueness (though with suitable
modifications any one could be used for both existence and uniqueness).

The first method is more precise but more complicated than the second,
which makes use of a similar argument as in [27, 36].

4.1 Existence

We consider the sequence of solutions to the regularized problem (1.3), and
assume it satisfies the assumptions of Th. 2.13. The proof is based on
estimates on the expectation of the family of quantities

Q(ε)
nm(t) = log

(
1 +
|Xn

t −Xm
t |2

ε2

)
, ε ∈ (0, 1], n,m ≥ 1, (4.1)

given in the next lemma.

Lemma 4.1 There exists a constant C such that, for all 0 < ε ≤ 1 and
n,m ≥ 1,

sup
t∈[0,T ]

E(Q(ε)
nm(t)) ≤ C (1 + | log ε| η̃(ε)) + C

η(n,m)

ε2
, (4.2)

where η(n,m) → 0 when n,m → +∞ and η̃(ε) := (εφ(ε−1))−1 → 0 when
ε→ 0.
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Proof Note that

|∇(log(1 + |x|2/ε))| =
∣∣∣∣ 2x

ε2 + |x|2

∣∣∣∣ ≤ C

ε+ |x|

and

|∇2(log(1 + |x|2/ε))| =
∣∣∣∣∇( 2x

ε2 + |x|2

)∣∣∣∣ ≤ C

ε2 + |x|2
.

By Itô’s formula, for any C2
b function f ,

E(f(Xn
t −Xm

t )) =f(0) +
1

2

∫ t

0
E
[
∇2f(Xn

s −Xm
s ) (σnσ

∗
n(Xn

s )

+ σmσ
∗
m(Xm

s )− σn(Xn
s )σ∗m(Xm

s )− σm(Xm
s )σ∗n(Xn

s ))
]
ds

+

∫ t

0
E(∇f(Xn

s −Xm
s ) · (Fn(s,Xn

s )− Fm(s,Xm
s ))) ds.

Since supn(‖σn‖∞ + ‖Fn‖∞) < +∞, we deduce

E(f(Xn
t −Xm

t )) ≤ f(0) +
1

2

∫ t

0
E
[
|∇2f(Xn

s −Xm
s )
(
|σ(Xn

s )− σ(Xm
s )|2

+ sup
k
‖σk‖L∞ (|σn(Xn

s )− σ(Xn
s )|+ |σm(Xm

s )− σ(Xm
s )|)

)]
ds

+

∫ t

0
E(|∇f(Xn

s −Xm
s )| |Fn(s,Xn

s )− Fm(s,Xm
s )|) ds. (4.3)

Hence

E(Q(ε)
nm(t)) ≤C

∫ t

0
E
(
|σ(s,Xn

s )− σ(s,Xm
s )|2

ε2 + |Xn
s −Xm

s |2

)
ds+ C

η(n,m)

ε2

+ C

∫ t

0
E
(
|F (s,Xn

s )− F (s,Xm
s )|

ε+ |Xn
t −Xm

t |

)
ds, (4.4)

with C a constant independent of n and ε and η(n,m) → 0 as n, m → ∞
by Assumption (2.17).

Since ‖σ‖H1
T (un) + ‖σ‖H1

T (um) <∞, denoting h = M |∇σ|,∫ T

0

∫
h2(t, x) (un(t, dx) + um(t, dx)) dt ≤ ‖σ‖H1

T (un) + ‖σ‖H1
T (um) ≤ C,
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with C independent of n, m and ε. Now, it follows from (3.1) that∫ t

0
E
(
|σ(s,Xn

s )− σ(s,Xm
s )|2

ε2 + |Xn
s −Xm

s |2

)
ds ≤ C

∫ t

0
E(h2(s,Xn

s ) + h2(s,Xm
s )) ds,

and so ∫ t

0
E
(
|σ(s,Xn

s )− σ(s,Xm
s )|2

ε2 + |Xn
s −Xm

s |2

)
ds ≤ C.

We now turn to the term involving F and introduce the corresponding h =
|F |+M1/ε∇F .

By Lemma 3.2∫ t

0
E
(
|F (s,Xs

n)− F (s,Xs
m)|

ε+ |Xs
n −Xs

m|

)
ds

≤ C
∫ t

0

∫
h(s, x) (un(s, x) + um(s, x)) dx ds,

and by (2.13),∫ t

0

∫
h(s, x) (un(s, x) + um(s, x)) dx ds

≤ 1/ε log(1/ε)

φ(1/ε)

(
‖F‖

Wφ,weak
T (un)

+ ‖F‖
Wφ,weak
T (um)

)
≤ C | log ε|

ε φ(ε−1)
.

Note that we used the inequality |F | ≤ M |F | a.e., which follows from
Lebesgue’s points theorem since BVloc(Rd) ⊂ L1

loc(Rd). The function η̃(ε) =
(ε φ(ε−1))−1 → 0 as ε→ 0 since φ is super-linear.

Combining the previous inequalities, we obtain (4.2). 2

Fix p > 1. The next step consists in deducing from Lemma 4.1 that
(Xn

t − ξ) is a Cauchy sequence in Lp(Ω, L∞([0, T ])). Since Fn and σn are
uniformly bounded, it is standard to deduce from the Burkholder-Davis-
Gundy inequality that Xn

t − ξ are uniformly bounded in Lp(Ω, L∞([0, T ]))
for all p > 1, so we only need to prove the next lemma.

Lemma 4.2 For all p > 1,

E

(
sup

t∈[0, T ]
|Xn

t −Xm
t |p
)
−→ 0 as n, m→ +∞. (4.5)
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Proof For fixed t, for any ε and L s.t. 0 < ε < L,

E(|Xn
t −Xm

t |p) ≤E(|Xn
t −Xm

t |p; |Xn
t −Xm

t | ≥ L) + εp/2

+ LpP(|Xn
t −Xm

t | ≥
√
ε).

Note that

E(|Xn
t −Xm

t |p; |Xn
t −Xm

t | ≥ L) ≤ 1

L
(E(|Xn

t −ξ|p+1)+E(|Xm
t −ξ|p+1)). (4.6)

Now, the inequalities

sup
n≥1,t∈[0,T ]

E(|Xn
t − ξ|p+1) < +∞.

and

P(|Xn
t −Xm

t | ≥
√
ε) ≤ EQ(ε)

nm(t)

| log ε|
.

imply that

E(|Xn
t −Xm

t |p) ≤ C
[

1

L
+ εp/2 +

Lp

| log ε|

(
1 + | log ε| η̃(ε) +

η(n,m)

ε2

)]
.

Taking for example ε2 = η(n,m) and L =
(

1
| log ε| + η̃(ε)

)−1/2p
, one con-

cludes that

sup
t∈[0,T ]

E(|Xn
t −Xm

t |p)→ 0 as n,m→ +∞.

In order to pass the supremum inside the expectation, it suffices to ob-
serve that the computation of (4.3–4.4) in the proof of Lemma 4.1 can be
applied to |Ant∧τ −Amt∧τ |2∨|Mn

t∧τ −Mm
t∧τ |2, where τ is any stopping time and

Xn
t = ξ+Ant +Mn

t is Doob’s decomposition of the semi martingale Xn
t , i.e.

Ant =

∫ t

0
F (s,Xn

s )ds and Mn
t =

∫ t

0
σ(s,Xn

s )dWs.

Note that to be fully rigorous, one first needs to regularize the supremum
∨.
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Instead of (4.4), we obtain

E log

(
1 +
|Ant∧τ −Amt∧τ |2 ∨ |Mn

t∧τ −Mm
t∧τ |2

ε2

)
≤C

∫ t

0
E
(

|σ(s,Xn
s )− σ(s,Xm

s )|2

ε2 + |Ant −Amt |2 ∨ |Mn
t −Mm

t |2

)
ds+ C

η(n,m)

ε2

+ C

∫ t

0
E
(

|F (s,Xn
s )− F (s,Xm

s )|
ε+ |Ant −Amt | ∨ |Mn

t −Mm
t |

)
ds,

or

E log

(
1 +
|Ant∧τ −Amt∧τ |2 ∨ |Mn

t∧τ −Mm
t∧τ |2

ε2

)
≤C

∫ t

0
E

(
|σ(s,Xn

s )− σ(s,Xm
s )|2

ε2 + 1
4 |Xn

s −Xm
s |2

)
ds+ C

η(n,m)

ε2

+ C

∫ t

0
E

(
|F (s,Xn

s )− F (s,Xm
s )|

ε+ 1
2 |X

n
t −Xm

t |

)
ds.

Therefore, the same computation as in Lemma 4.1 gives

sup
t∈[0,T ], τ stopping time

E(|Ant∧τ−Amt∧τ |p∨|Mn
t∧τ−Mm

t∧τ |p)→ 0 as n,m→ +∞.

Since p > 1, Doob’s inequality entails

E( sup
t∈[0,T ]

|Mn
t −Mm

t |p)→ 0 as n,m→ +∞.

Fix η > 0, and fix n0 such that

sup
t∈[0,T ], τ stopping time

E(|Ant∧τ −Amt∧τ |p) ≤ η

for all n,m ≥ n0. For all M > 0, let τ = inf{t ≥ 0 : |Ant −Amt | ≥M}. Then

P( sup
t∈[0,T ]

|Ant −Amt | ≥M) = P(τ ≤ T ) ≤ η

Mp
.

Now, for all 1 < q < p,

E( sup
t∈[0,T ]

|Ant −Amt |q) = q

∫ +∞

0
xq−1P( sup

t∈[0,T ]
|Ant −Amt | ≥ x)dx

≤ q
∫ +∞

0
xq−1

( η
xp
∧ 1
)
dx =

p ηq/p

p− q
.
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Therefore
E( sup

t∈[0,T ]
|Ant −Amt |q)→ 0 as n,m→ +∞,

which concludes the proof of (4.5). 2

¿From the fact that (Xn− ξ) is a Cauchy sequence in Lp(Ω, L∞([0, T ])),
it is standard to deduce the almost sure convergence for the L∞ norm of
a subsequence of (Xn

t , t ∈ [0, T ])n to a process (Xt, t ∈ [0, T ]) such that
(Xt − ξ, t ∈ [0, T ]) ∈ Lp(Ω, L∞([0, T ])) for all p > 1. Since the convergence
holds for the L∞ norm, the process X is a.s. continuous and adapted to the
filtration (Ft)t≥0.

Since un converges to u in the weak topology of M1, we have for all
bounded continuous function f on [0, T ]× Rd

E
∫ T

0
f(t,Xt)dt =

∫
Rd

∫ T

0
f(t, x)u(dt, dx),

so u(t, dx) is the law of Xt for almost all t.
Defining for all t ∈ [0, T ]

Yt :=

∫ t

0
F (s,Xs)ds+

∫ t

0
σ(s,Xs)dWs,

it only remains to check that Yt = Xt − ξ for all t ∈ [0, T ] a.s. As

Xn
t − ξ =

∫ t

0
Fn(s,Xn

s )ds+

∫ t

0
σn(s,Xn

s ) dWs,

one has Yt = Xt provided that∫ t

0
E(|Fn(s,Xn

s )− F (s,Xs)|+ |σn(s,Xn
s )− σ(x,Xs)|2) ds −→ 0.

¿From the assumption (2.17) and the L∞ bounds on F , σ and σn, this is
implied by: For any fixed ε > 0,∫ T

0

[
P(|F (s,Xn

s )− F (s,Xs)| > ε) + P(|σ(s,Xn
s )− σ(x,Xs)| > ε)

]
ds −→ 0.

We prove it for σ, the argument for F being fully similar.
By Cor. 2.4∫ T

0

∫
Rd

(M |∇σ(t, x)|)2 (u(t, dx) + un(t, dx)) dt

≤ ‖σ‖H1
T (un) + lim inf ‖σ‖H1

T (un) ≤ C.
(4.7)
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Now by (3.1)

P(|σ(s,Xn
s )− σ(s,Xs)| > ε)

≤ P((M |∇σ|(s,Xn
s ) +M |∇σ|(s,Xs)) > ε/|Xn

s −Xs|)

≤ P(|Xn
s −Xs| > ε2) + P(M |∇σ|(s,Xn

s ) ≥ 1

2ε
) + P(M |∇σ|(s,Xs) ≥

1

2ε
),

and one easily concludes from (4.7) and the fact that |Xn
s −Xs| −→ 0 almost

surely.

4.2 Uniqueness

Consider two solutions X and Y satisfying the assumptions of point (ii) in
Th. 2.13. Define a family of functions (Lε)ε in C∞(Rd) satisfying

Lε(x) = 1 if |x| ≥ ε, Lε(x) = 0 if |x| ≤ ε/2, ε ‖∇Lε‖L∞+ε2 ‖∇2Lε‖L∞ ≤ C,

with C independent of ε, and Lε(x) ≥ Lε′(x) for all ε ≤ ε′ and x ∈ Rd. Use
Itô’s formula

E(Lε(Xt − Yt)) =L(0) +

∫ t

0
E (∇Lε(Xs − Ys) · (F (s,Xs)− F (s, Ys)) ds

+

∫ t

0
E
(
∇2Lε(Xs − Ys) : (σσ∗(Xs)

+ σσ∗(Ys)− σ(Xs)σ
∗(Ys)− σ(Ys)σ

∗(Xs))
)
ds.

Hence

E(Lε(Xt − Yt)) ≤ C
∫ t

0
E
(
1ε/2≤|Xs−Ys|≤ε

( |σ(s,Xs)− σ(s, Ys)|2

ε2

+
|F (s,Xs)− F (s, Ys)|

ε

))
ds.

Now denote h = M |∇σ| so that∫ T

0

∫
|h(t, x)|2 (uX(t, dx) + uY (t, dx)) dt ≤ C <∞.

Define as well h̃ε = |F |+M1/ε∇F s.t.∫ T

0

∫
h̃ε (uX + uY ) dx ds ≤ C | log ε|

ε φ(ε−1)
.
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The corresponding computation involving h̃ε is now tricky, precisely because
of the dependence on ε in h̃ε. To simplify it, we will use a slightly different
definition.

First note that, as observed in Section 2.1.3, one can always assume that
φ satisfies (2.11), and so φ(ξ)/ξ is a non-decreasing function which grows
note faster than log ξ. In particular, there exists a constant C > 0 s.t.

1

C
εφ(ε−1) ≤ φ(ξ)

ξ
≤ C εφ(ε−1) ∀ξ ∈ [ε−1/2, ε−1].

Consider the partition of (0, 1) =
⋃
i Ii where the Ii = [ai, bi) are disjoint

with bi =
√
ai (except for I0 := [1/2, 1)). In particular, |Ii| := bi−ai satisfies

|Ii| ∼
√
ai when i→ +∞.

Now for any ε ∈ Ii, choose h̄ε = h̃ai . One has∫ T

0

∫
h̄ε(t, x) (uX(t, x) + uY (t, x)) dx dt ≤ C | log ε|

ε φ(ε)
≤ C ′ | log bi|

bi φ(b−1
i )

.

Now by (3.1) and Lemma 3.2

E(Lε(Xt − Yt)) ≤C
∫ t

0
E
[
(h2(s,Xs) + h2(s, Ys))1ε/2≤|Xt−Yt|≤ε

]
ds

+ C

∫ t

0
E
[
(h̄ε(s,Xs) + h̄ε(s, Ys))1ε/2≤|Xt−Yt|≤ε

]
ds.

Denote

αk =

∫ t

0
E
[
(h2(s,Xs) + h2(s, Ys))12−k−1≤|Xt−Yt|≤2−k

]
ds.

Note that ∑
k

αk ≤
∫ t

0
E
(
(h2(s,Xs) + h2(s, Ys)

)
ds

=

∫ t

0

∫
h2(s, x) (uX(dx, s) + uY (dx, s)) ds ≤ C.

Therefore αk −→ 0 as k → +∞.
Denote similarly

βk =

∫ t

0
E
(

(h̄2−k(s,Xs) + h̄2−k(s, Ys))12−k−1≤|Xt−Yt|≤2−k

)
ds.
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Denote Ji = {k, [2−k−1, 2−k) ⊂ Ii}. Note that |Ji| ≥ 1
C | log bi| (in fact,

|Ji| = | log bi|
2 log 2 ) and since h̄ε is fixed on ε ∈ Ii

1

|Ji|
∑
k∈Ji

βk ≤
1

|Ji|

∫ t

0

∫
h̄bi(s, x) (uX(dx, s) + uY (dx, s)) ds

≤ C

bi φ(b−1
i )
−→ 0 as i→∞.

Therefore βnk −→ 0 as k → +∞ for some subsequence nk → +∞. Conse-
quently, since the sequence of functions Lε is non increasing,

sup
t∈[0, T ]

E(Lε(Xt − Yt)) −→ 0 as ε→ 0.

On the other hand

E(Lε(Xt − Yt)) ≥ P(|Xt − Yt| > ε),

and by taking the limit ε→ 0, we deduce that for any t ∈ [0, T ]

P(|Xt − Yt| > 0) = 0.

Since Xt and Yt have a.s. continuous paths, we finally deduce that

P( sup
t∈[0,T ]

|Xt − Yt| = 0) = 1.

5 Proof of Theorem 2.15

This proof follows exactly the same steps as the general multi-dimensional
case given in Section 4. The only differences are the functionals used and
accordingly we skip the other parts of the proof which are identical.

Technically the reason why the one dimensional case is so special is that
|x| is linear except at x = 0 (see Section 5.2).

5.1 Existence

For d = 1, we replace the functional Q
(ε)
nm by

Q̃(ε)
nm(t) = e−U

n,m
t |Xn

t −Xm
t | log

(
1 +
|Xn

t −Xm
t |2

ε2

)
,
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for Un,mt a non-negative stochastic process with bounded variation satisfying
dUn,mt = λn,mt dt with λn,mt an adapted process (measurable function of a
continuous, adapted process) to be chosen later.

Note that f(x) = |x| log(1 + |x|2/ε2) satisfies

|f ′(x)| ≤ 4 log

(
1 +
|x|2

ε2

)
and |f ′′(x)| ≤ C

ε+ |x|
.

Therefore by Itô’s formula

E(Q̃(ε)
nm(t)) ≤C + C

∫ t

0
E
(
|σ(Xn

s )− σ(Xm
s )|2

ε+ |Xn
s −Xm

s |

)
ds+

η(n,m)

ε

+

∫ t

0
E

(
|Xn

s −Xm
s | log(1 + |Xn

s −Xm
s |2/ε2)

(
4
|F (s,Xn

s )− F (s,Xm
s )|

|Xn
s −Xm

s |
− λn,mt

))
ds.

The first term is treated identically as for the multi-dimensional case. The

only difference here is that the careful choice of Q̃
(ε)
nm improved the exponent

of |Xn
s −Xm

s | to 1 instead of 2 in the denominator. Therefore this term can

be controlled with the H
1/2
T (un,m) norm of σ by using Lemma 3.5 instead

of estimate (3.1).
The drawback is that the term with F must be dealt with differently.

We introduce h̃ = M |∇F | s.t.∫ T

0

∫
Rd
h̃(t, x) (um(t, dx) + un(t, dx)) dt ≤ C.

We then choose
λn,mt = 4

(
h̃(t,Xm

s ) + h̃(t,Xm
t )
)
.

Therefore we deduce that

sup
t≤T

E(Q̃(ε)
nm(t)) ≤ C +

η(n,m)

ε
.

Using a similar method as in Thm. 2.13, we write for constants L and K to
be chosen later

E(|Xn
t −Xm

t |p) ≤ E(|Xn
t −Xm

t |p; |Xn
t −Xm

t | ≥ L) +
1

| log ε|p/2

+ P(Un,mt ≥ logK) + LpP

(
|Xn

t −Xm
t | ≥

1√
| log ε|

; Un,mt ≤ logK

)
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Note that

E(Un,mt ) = E
(∫ t

0
λn,ms ds

)
≤ 4

∫ t

0
h̃(s, x) (un(s, dx) + um(s, dx)) ds ≤ C.

Consequently

P(Un,mt ≥ log(K)) ≤ C

logK
.

In addition, for ε small enough,

P

(
|Xn

t −Xm
t | ≥

1√
| log ε|

; Un,mt ≤ logK

)
≤ K EQ̃(ε)

nm(t)

2
√
| log ε|

.

Therefore, using (4.6) as in the proof of Lemma 4.2,

E(|Xn
t − Xm

t |p) ≤ C

 1

L
+

1

| log ε|p/2
+

1

logK
+
LpK

(
1 + η(n,m)

ε

)
√
| log ε|

 .

Taking for example ε = η(n,m), K = | log ε|1/8 and L = | log ε|1/8p, we
deduce that

sup
t∈[0,T ]

E(|Xn
t −Xm

t |p)→ 0, as n,m→ +∞.

The rest of the proof is similar.

5.2 Uniqueness

For simplicity, we assume here that F = 0. Otherwise it is necessary to
introduce Ut as in the previous subsection but it is handled in exactly the
same way.

We similarly change the definition of Lε in

L̃ε(x) = |x| if |x| ≥ ε, L̃ε(x) = 0 if |x| ≤ ε/2, ‖∇L̃ε‖L∞+ε ‖∇2L̃ε‖ ≤ C,

with C independent of ε.
Applying Itô’s formula

E(L̃ε(Xt − Yt)) ≤ C
∫ t

0
E
(
1ε/2≤|Xt−Yt|≤ε

|σ(Xs)− σ(Ys)|2

ε

)
ds.
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By using as before the assumptions, Lemma 3.5 and the corresponding def-

inition of H
1/2
T (uX) and H

1/2
T (uY ), one deduces that

E(L̃ε(Xt − Yt)) −→ 0 as ε→ 0.

This is slightly less strong than before (Lε(ε)� L̃ε(ε) when ε→ 0) but still
enough. In particular one has if α ≥ ε

P(|Xt − Yt| ≥ α) ≤ 1

α
E(L̃ε(Xt − Yt)).

Therefore by taking ε→ 0, one still obtains that for any t ∈ [0, T ],

P(|Xt − Yt| > 0) = 0,

which allows to conclude as before.

6 Proof of Prop. 2.19

We simply use the energy estimates. The computations below are formal
but could easily be made rigorous by taking a regularization of σ, F and
hence a and then pass to the limit.

d

dt

∫
uα(t, x) dx =− α (α− 1)

∫
uα−1(t, x)∇u(t, x) · F (t, x) dx

− α (α− 1)

∫
uα−2(t, x)∇u(t, x)T a(t, x)∇u(t, x) dx

− α (α− 1)

∫
uα−1(t, x)

∑
1≤i,j≤d

∂u(t, x)

∂xi

∂aij(t, x)

∂xj
dx.

Note that by (2.21)∫
uα−2(t, x)∇u(t, x)T a(t, x)∇u(t, x) dx ≥ C ‖∇uα/2‖2L2 .

On the other hand∫
uα−1(t, x)∇u(t, x) · F (t, x) dx ≤ ‖∇uα/2‖L2 ‖uα/2‖L2 ‖F‖L∞

≤ C

4
‖∇uα/2‖2L2 + C ′

∫
uα(t, x) dx.
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And∫
uα−1(t, x)

∑
1≤i,j≤d

∂u(t, x)

∂xi

∂aij(t, x)

∂xj
dx ≤ ‖∇uα/2‖L2 ‖uα/2∇a‖L2

≤ ‖∇uα/2‖L2 ‖∇a‖Lp ‖uα/2‖Lr ,

with 1/2 = 1/p+ 1/r, which can be done since p > d ≥ 2 . Now by Sobolev
embedding

‖uα/2‖Lr ≤
(∫

uα dx

)θ/2
‖∇uα/2‖1−θ

L2 ,

for some θ ∈ (0, 1], precisely 1/r = 1/2 − (1 − θ)/d or (1 − θ)/d = 1/p,
provided that p > d. In that case we immediately deduce that

d

dt

∫
uα(t, x) dx+

C

2

∫
|∇uα/2|2 dx ≤ C ′′

(
1 + ‖∇a‖2/θLp

) ∫
uα dx.

This concludes the bound provided that∫ T

0
‖∇a‖2/θLp <∞,

which means that ∇a ∈ Lqt,loc(L
p
x) with 1/q = θ/2 = 1/2 − d/2p. This

exactly corresponds to the condition 2/q + d/p = 1 with p > d.
Note that p = d is critical here in the sense that the result could still

hold in that case provided that the norm of ∇a is small enough with respect
to the constant of ellipticity.

Finally we hence deduce that for any t and any α <∞

‖u(t, .)‖Lα ≤ ‖u(t = 0, .)‖Lα ≤ C,

with C independent of α since u0 ∈ L1∩L∞. This implies that ‖u(t, .)‖L∞ ≤
C and finishes the proof.

7 Proof of Prop. 2.24

We are going to prove this result under the assumptions of Corollary 2.21.
The other cases are similar.

Fix a complete filtered probability space (Ω, (Ft)t≥0,P) equipped with a
r-dimensional standard Brownian motion W . Fix also u0 > 0 in L1 ∩ L∞
such that

∫
Rd u0(x) dx = 1. Then, by Corollary 2.21, on the probability

space (Rd × Ω, (B(Rd)⊗ Ft)t≥0, u0(x)dx× P(dω)), there is strong existence
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of a process (Xt(x, ω), t ≥ 0) solution of (1.1) with ξ(x, ω) = x and path-
wise uniqueness holds. We deduce that strong existence for almost every
deterministic initial condition x holds for (1.1) on (Ω, (Ft)t≥0, (Wt)t≥0,P).
In addition, the family of laws Px of the process ω 7→ X(x, ω) for x ∈ Rd
forms a regular conditional probability of the law of X given ξ.

For uniqueness, the two key points are

• first, that we are always in cases where uniqueness in law is known
for all initial conditions in (1.1), and in particular for all deterministic
initial conditions;

• second, that u ∈ L∞ by Cor. 2.20 (or is bounded by an explicit function

in the case of Cor. 2.16 and 2.22), σ ∈ H1(u) and F ∈W φ,weak
T (u) (this

is implied by Cor. 2.4 and 2.12).

For all x such that strong existence holds for (1.1) with ξ = x, let Xx
t and

X̂x
t be two strong solutions of (1.1) such that Xx

0 = X̂x
0 = x a.s. Repeating

the proof of Lemma 4.1, we have

E log

(
1 +
|Xx

t − X̂x
t |2

ε2

)
≤ C

∫ t

0
E
[
M |∇σ|(s,Xx

s )2 +M |∇σ|(s, X̂x
s )2
]
ds

+ C

∫ t

0
E
[
(|F |+M1/ε∇F )(s,Xx

s ) + (|F |+M1/ε∇F )(s, X̂x
s )
]
ds

By uniqueness in law, the two processes Xx and X̂x have the same distri-
bution Px, and so

E log

(
1 +
|Xx

t − X̂x
t |2

ε2

)

≤ C
∫ t

0
Ex
[(

(M |∇σ|)2 + |F |+M1/ε∇F
)

(s,Xs)
]
ds.

Let us denote by M ε
t (x) the integral in the r.h.s. Note that the l.h.s. may

not be a measurable function of x, but M ε
t (x) is, because (Px)x∈Rd is a

regular conditional probability of the law of X given ξ. Choosing φ as in
the proof of Theorem 1.1 (see the Appendix)∫

Rd
M ε
t (x)u0(x) ds =

∫ t

0

∫
Rd

(
(M |∇σ|)2 + |F |+M1/ε∇F

)
(s, x)u(s, dx) ds

≤ C
(

1 +
| log ε|
εφ(ε−1)

)
.
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Now, copying the proof of Lemma 4.2,

E(|Xx
t − X̂x

t |) ≤ C
[√

ε+
1

L
+
LM ε

t (x)

| log ε|

]
Let us denote by N ε

t (x) the r.h.s. Choosing L =
(

1
| log ε| + η̃(ε)

)−1
with

η(ε) = (εφ(ε−1))−1, we obtain∫
Rd
N ε
t (x)u0(x) ds ≤ C

(
√
ε+

√
1

| log ε|
+ η̃(ε)

)
.

Since the r.h.s. converges to 0 when ε → 0, there exists a sequence εk → 0
such that N εk

t (x)→ 0 for almost all x. The diagonal procedure then shows

the existence of a subsequence ε′k → 0 such that N
ε′k
t (x)→ 0 for almost all x

and for all t in a dense countable subset of [0, T ]. Since the paths of Xx and
X̂x are continuous, we deduce that pathwise uniqueness holds for almost all
x ∈ Rd.

Appendix: Sketch of the proof of Theorem 1.1

The only thing left to prove after Thm. 2.13 is: Assume u ∈ Lq
′

t,loc(L
p′
x (Rd))

then show that, for some super-linear φ,

‖σ‖H1
T (u) ≤ C ‖σ‖L2q

t ([0,T ],W 1,2p
x )

, ‖F‖
Wφ,weak
T (u)

≤ C ‖F‖
Lqt ([0,T ],W 1,p

x )
.

¿From the fact that the maximal operator M is bounded on Lp, p > 1, this
is straightforward for σ (as 2p ≥ 2 > 1).

Therefore the key point is how to prove that for F when p ≥ 1. We give
the proof for p = 1, the case p > 1 can be treated following the same lines.

Now fix L ≥ 1 and denote

h(t, x) = ML∇F =
√

logL+

∫
Rd

|∇F (t, z)|1|∇F |≥√logL dz

(L−1 + |x− z|) |x− z|d−1
.

As p′ =∞, for almost any fixed t, u(t, ·) ∈ Lq′ ∩ L∞ and hence∫
h(t, x)u(t, x) dx ≤

√
logL+ max(1, ‖u(t, ·)‖L∞)∫∫

min(1, u(t, x))
|∇F (t, z)|1|∇F |≥√logL dz

(L−1 + |x− z|) |x− z|d−1
dx

≤
√

logL+ C logL (‖u(t, ·)‖L∞ + ‖u(t, ·)‖L1) ‖∇F (t, ·)1|∇F |≥√logL‖L1 ,
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by Fubini’s theorem. Note that the term min(1, u(t, x)) was kept in the
integral because the function x 7→ (L−1 + |x − z|)−1|x − z|−(d−1) is not
integrable on {|x| > 1}.

Therefore integrating now in time, by Hölder’s estimates∫ T

0

∫
h(t, x)u(t, x) dx dt ≤

√
logLT + C logL ‖∇F 1|∇F |≥

√
logL‖Lqt (L1

x).

Now, if ∇F ∈ Lqt ([0, T ], L1
x), then de la Vallée Poussin classical integrability

result means that there exists a super-linear ψ s.t.

‖ψ(∇F )‖Lqt ([0,T ],L1
x) <∞.

Consequently∫ T

0

∫
h(t, x)u(t, x) dx dt ≤ T

√
logL+ C

(logL)3/2

ψ(
√

logL)
.

We conclude that ‖∇F‖
Wφ,weak
T (u)

is bounded for φ defined by

L

φ(L)
=
C
√

logL

logL
+

C
√

logL

ψ(
√

logL)
,

which is hence also super-linear.
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