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Abstract

In this article, we describe a simple class of models of absorbed
diffusion processes with parameter, whose conditional law exhibits
a transcritical bifurcation. Our proofs are based on the description
of the set of quasi-stationary distributions for general two-clusters
reducible processes.

1 Model, motivation and main result

Let D = (0, 5) and consider Lipschitz functions ϕ1, ϕ2, ψ1, ψ2 : D → [0, 1]
such that ψ1 + ψ2 = 1 and (see Figure 1)

ϕ1
|(0,1] ≡ 1, ϕ1

|[1,2] ≤ 1, ϕ1
|[2,5) ≡ 0,

ϕ2
|(0,3] ≡ 0, ϕ2

|[3,4] ≤ 1, ϕ2
|[4,5) ≡ 1,

ψ1
|(0,2] ≡ 1, 0 < ψ1

|(2,3) ≤ 1, ψ1
|[3,5) ≡ 0,

ψ2
|(0,2] ≡ 0, 0 < ψ2

|(2,3) ≤ 1, ψ2
|[3,5) ≡ 1.

For all α > 0, we consider the absorbed diffusion process Xα evolving
according to the Itô’s stochastic differential equation

dXα
t =

(
ϕ1(Xα

t ) +
√
αϕ2(Xα

t )
)

dBt + (ψ1(Xt) + αψ2(Xt)) dt, (1)

stopped when it reaches ∂D = {0, 5}, and where B is a standard one dimen-
sional Brownian motion. This defines a sub-Markov semi-group (Pα

t )t∈R+ on
D by

δxP
α
t f = Ex(f(Xα

t )1Xα
t ∈D), ∀f ∈ L∞(D)
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Figure 1: Representation of the graphs of ϕ1, ϕ2, ψ1 and ψ2.

and a semi-flow (Φα
t )t∈R+ on the set P(D) of probability measures on D by

Φα
t (µ) = Pµ(Xt ∈ · | Xt ∈ D).

Observe that the diffusion coefficient in (1) vanishes on the interval [2,3].
Since in addition the drift coefficient is positive on [2, 3] for any α > 0, the
set [3, 5] is absorbing and P2(∀t ≥ 0, Xt ≥ 2, ∃t ≥ 0, Xt = 3) = 1.

Hence, the family of diffusion processes (Xα)α≥0 has some similarities
with the family of discrete-time Markov chains (Xa,b)a,b∈(0,1), where Xa,b is
defined on {1, 2, ∂}, absorbed at ∂, with transition submatrix on {1, 2} given
by (

a 1− a
0 b

)
.

It is pointed in [3, Example 3.5] that the probability measures ν2 := δ2 and
ν := a−b

1−bδ1 + 1−a
1−b δ2 (when a > b) are such that

• If a > b, limn→∞ Pµ(Xa,b
n = i|Xa,b

n 6= ∂) = ν({i}) for all i = 1, 2 and
µ 6= δ2.

• Otherwise, limn→∞ Pµ(Xa,b
n = i|Xa,b

n 6= ∂) = ν2({i}) for all i = 1, 2 and
µ ∈ P({1, 2}).

Our goal in this note is to prove a similar property for the family (Xα)α≥0,
which can be formulated as a bifurcation of the dynamical system on P(D)
generated by Φα. Our motivation is to quantify precisely the speed of con-
vergence and the basin of attraction of the fixed points of this dynamical
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Figure 2: Domain of attraction of the attractors, with quadratic
ϕ1, ϕ2, ψ1, ψ2. να((0, 2)) has been computed numerically using Fleming-Viot
type approximation techniques (see for instance [15]).

systems (see Fig. 2). Another motivation is to provide an illustration to the
fact that, for an absorbed diffusion process satisfying the weak Hörmander
condition and regularity properties at the absorbing set, uniqueness of a
quasi-stationary distribution does not necessary hold true unless some acces-
sibility properties are satisfied (see Theorem 1.8 of [2]). The definition of a
quasi-stationary distribution is recalled in Section 2 below.

To state our main result, we define the absorption parameters of Xα for
α = 1:

λ1 := inf

{
λ ∈ R, lim inf

t→+∞
eλt Px1(X1

t ∈ (0, 2)) > 0

}
, for some x1 ∈ (0, 2)).

and

λ2 := inf

{
λ ∈ R, lim inf

t→+∞
eλt Px2(X1

t ∈ [3, 5)) > 0

}
, for some x2 ∈ [3, 5),

As expected, we will see that the parameters λ1 and λ2 are positive and do
not depend on x1 nor x2.
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Theorem 1.1. The dynamical system generated by Φα parametrized by α >
0 admits a transcritical bifurcation at λ1/λ2. More precisely, there exist a
family of probability measure (µα)α>λ1/λ2 on (0, 5) and a probability measure
µ0 on [3, 5) such that:

• for α ≤ λ1/λ2, µ0 is a global attractor for Φα for the total variation
distance,

• for α > λ1/λ2, µ0 is a saddle point whose stable manifold for the total
variation distance is the set W s(µ0) := {µ ∈ P((0, 5)) : µ((0, 2)) = 0},
and µα is a stable point whose basin of attraction for the total variation
distance is W u(µ0) = {µ ∈ P((0, 5)) : µ((0, 2)) > 0}.

Our method also provides an estimate for the speed of convergence of the
dynamical system generated by Φα to its limit fixed point. One can check
from the proof that it is exponential when α 6= λ1/λ2 and polynomial in
O(1/t) when α = λ1/λ2.

The proof of this result relies on the theory of quasi-stationary distribu-
tions. We show in particular that the process Xα admits either one or two
quasi-stationary distributions, depending on the value of α, which correspond
to µ0 and µα (when α > λ0/λ1). A central feature allowing this property is
that Xα is reducible. Indeed, it is proved in [2] that irreducibility for such
diffusions entails the uniqueness of a quasi-stationary distribution. In order
to prove Theorem 1.1, we start with considerations on quasi-stationary dis-
tributions for Markov processes in reducible state spaces. Since they apply
to general Markov processes and may have independent interest, they are
stated independently in Section 2. We conclude the proof of the theorem in
Section 3.

2 Quasi-stationarity for two-clusters reducible

processes

Let X be a Markov process with state space M = D ∪ {∂} with ∂ /∈ D,
in discrete or continuous time, such that M admits a measurable partition
D1 ∪ D2 ∪ {∂}. We assume that {∂} and D2 ∪ {∂} are absorbing sets (see
Figure 3), which means that

P∂(Xt = ∂) = 1 and Px(Xt ∈ D2 ∪ {∂}) = 1, ∀x ∈ D2, ∀t ≥ 0.
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Figure 3: Transition graph displaying the relation between the sets D1, D2

and ∂.

A probability measure ν is said to be a quasi-stationary distribution if,
for all t ≥ 0,

Pν(Xt ∈ ·|Xt 6= ∂) = ν(·). (2)

It is well-known (see [24, Proposition 1]) that the notion of quasi-stationary
distribution is equivalent to the one of quasi-limiting distribution, defined as
a probability measure ν such that there exist some initial distributions µ
such that, for all measurable subset A ⊂ D,

lim
t→∞

Pµ(Xt ∈ A|Xt 6= ∂) = ν(A).

It is also well-known that, to any quasi-stationary distribution ν is associated
the so-called exponential absorption rate λ0 > 0 such that Pν(Xt ∈ ·, Xt 6=
∂) = e−λ0tν. We refer the reader to [24, 12, 27] for a general overview on the
theory of quasi-stationarity, and to [25, 17, 5, 6, 20, 21, 23, 15, 8, 7, 19, 18, 22,
26] for the study of the quasi-stationary distribution of diffusion processes.

The aim of this section is to provide conditions on X allowing to obtain
the existence of a quasi-stationary distribution ν for the process X, as well
as the so-called Malthusian behavior (see [4] for the terminology), that is to
say the existence of a positive function η on D such that

lim
t→∞

eλ0tPx(Xt ∈ ·, Xt 6= ∂) = η(x)ν(·),

where λ0 is the exponential absorption rate associated to ν (in particular, this
convergence entails the convergence of the conditional probability measure
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Px(Xt ∈ ·|Xt 6= ∂) towards ν). In what follows, we will present three different
sets of assumptions, each discussed in three different subsections, and each
entailing different Malthusian behavior for the process X.

2.1 Exponential convergence on D2 and faster exit from
D1

Let us introduce our first set of assumptions.

Assumption QSD2.

a. There exist a positive function η2 on D2, a probability measure ν2 on D2,
a constant λ2 > 0, and positive constants C2, γ2 > 0 such that∥∥eλ2tPx(Xt ∈ ·, Xt ∈ D2)− η2(x)ν2(·)

∥∥
TV
≤ C2e

−γ2t, ∀x ∈ D2, t ≥ 0.

(3)

b. In addition, supx∈D1
eλ2tPx(Xt ∈ D1) ≤ f(t), where f is non-increasing

and L1 on R+.

The assumption a. refers to the Malthusian behavior, as described before,
of the restriction of X on the subset D2, holding uniformly in x in total
variation and exponentially fast. We refer the reader to [14, 13, 9, 16, 28, 1,
10, 18, 2, 11] for general criteria entailing such behavior.

Also, remark that the inequality (3) entails that η2 is bounded (take for
example t = 0). In addition, it implies that η2(x) = limt→+∞ e

λ2tPx(Xt 6= ∂)
for all x ∈ D2. In addition, as noticed above, it implies that ν2 is a quasi-
stationary distribution for X.

Then Assumption QSD2 entails the following result on quasi-stationarity.

Theorem 2.1. Under QSD2, there exists η : D → R+ positive on D2 such
that

sup
x∈D

∥∥eλ2tPx(Xt ∈ ·, Xt 6= ∂)− η(x)ν2(· ∩D2)
∥∥
TV
−−−−→
t→+∞

0. (4)

If in addition Px(∃n ≥ 0, Xn ∈ D2) > 0 for all x ∈ D1, then η is positive on
D and ν2(· ∩D2) is the unique quasi-stationary distribution for X on D.

In other terms, the Malthusian behavior of X, only assumed for x ∈ D2 in
Assumption QSD2, holds for all x ∈ D and uniformly in x in total variation.
Speed of convergence for (4) is discussed after the proof of Theorem 2.1.
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Proof of Theorem 2.1. For the rest, we first prove this theorem in the discrete
time setting, and then consider the continuous-time setting.

Step 1: Proof in the discrete-time setting. We define the stopping
time τ c1 := min{n ≥ 0, Xn /∈ D1}. For all x ∈ D and all measurable set
A ⊂ D1 ∪D2, for all n ∈ Z+, we have, using the strong Markov property at
time τ c1 ,

Px(Xn ∈ A) = Px(Xn ∈ A ∩D1) + Px(Xn ∈ A ∩D2)

= Px(Xn ∈ A ∩D1) +
n∑
k=0

Ex
(
1τc1=k PXk(Xn−k ∈ A ∩D2)

)
.

(5)

If x ∈ D2, then the result is an immediate consequence of (3) with η(x) =
η2(x). It only remains to consider the case x ∈ D1. On the one hand, we
have by assumption

eλ2nPx(Xn ∈ A ∩D1) ≤ eλ2nPx(Xn ∈ D1) −−−−→
n→+∞

0. (6)

On the other hand, using (3) and extending η2 to {∂} by η2(∂) = 0, we
obtain, for all k ≥ 0, t ≥ 0 and measurable set A ⊂ D2,∣∣∣Ex (1τc1=k PXk(Xn−k ∈ A)

)
− Ex

(
1τc1=k η2(Xk)ν2(A)e−λ2(n−k)

) ∣∣∣
≤ Ex

(
1τc1=k C2 e

−(λ2+γ2)(n−k)1Xk∈D2

)
≤

{
C2 Px (Xk−1 ∈ D1, Xk ∈ D2) e

−(λ2+γ2)(n−k) if k ≥ 1,

0 if k = 0.

Summing over k, we deduce that, for all n ≥ 0 and all measurable set A ⊂ D2,∣∣∣∣∣
n∑
k=0

Ex
(
1τc1=k PXk(Xn−k ∈ A)

)
−

n∑
k=0

Ex
(
1τc1=kη2(Xk)ν2(A)e−λ2(n−k)

)∣∣∣∣∣
≤ C2e

−λ2ne−γ2n
n∑
k=1

eλ2keγ2kPx (Xk−1 ∈ D1, Xk ∈ D2)

≤ C2e
−λ2(n−1)e−γ2n

n∑
k=1

eγ2kf(k − 1). (7)
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Moreover∑
k≥n+1

Ex
(
1τc1=kη2(Xk)e

λ2k
)
≤ ‖η2‖∞

∑
k≥n+1

eλ2kPx(Xk−1 ∈ D1, Xk ∈ D2)

≤ ‖η2‖∞
∑
k≥n+1

eλ2k (Px(Xk−1 ∈ D1)− Px(Xk ∈ D1))

≤ ‖η2‖∞(eλ2 − 1)
∑
k≥n

eλ2kPx(Xk ∈ D1)

≤ ‖η2‖∞(eλ2 − 1)

∫ +∞

n−1
f(t)dt.

This, (5), (6) and (7) entail that, for all x ∈ D1 and all measurable A ⊂ D,

sup
x∈D1

∣∣∣∣∣eλ2nPx(Xn ∈ A)−
+∞∑
k=0

Ex
(
1τc1=kη2(Xk)e

λ2k
)
ν2(A ∩D2)

∣∣∣∣∣ −−−−→n→+∞
0.

Setting

η(x) :=

{∑+∞
k=0 Ex

(
1τc1=kη2(Xk)e

λ2k
)

if x ∈ D1

η2(x) if x ∈ D2,

this concludes the proof of (4).
If in addition Px(∃n ≥ 0, Xn ∈ D2) > 0 for all x ∈ D1, then η is positive

on D and hence ν2(· ∩ D2) is the unique quasi-limiting distribution of the
process and hence its unique quasi-stationary distribution.

Step 2 : Proof in the continuous-time setting. The proof is done by
applying the discrete time result to the Markov chain (Xn)n∈Z+ .

Let X satisfy Assumption QSD2. Then the discrete time process (Xn)n∈N
also satisfies Assumption QSD2 and hence, by Theorem 2.1 in the discrete
time setting, we have

sup
x∈D

∥∥eλ2nPx(Xn ∈ ·, Xn 6= ∂)− η(x)ν2(· ∩D2)
∥∥
TV
−−−−→
n→+∞

0. (8)

For any x ∈ D and h > 0, integrating the above convergence result with
respect to Px(Xh ∈ ·) entails that∥∥eλ2nPx(Xn+h ∈ ·, Xn+h 6= ∂)− Ex(η(Xh))ν2(· ∩D2)

∥∥
TV
−−−−→
n→+∞

0
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Similarly, for any x ∈ D and h > 0, applying (8) to the test function y ∈
D 7→ Py(Xh ∈ ·, Xh 6= ∂), gives∥∥eλ2nPx(Xn+h ∈ ·, Xn+h 6= ∂)− η(x)Pν2(Xh ∈ ·, Xh 6= ∂)

∥∥
TV
−−−−→
n→+∞

0.

But D2 ∪ {∂} being absorbing, we have Pν2(Xh ∈ ·, Xh 6= ∂) = Pν2(Xh ∈
·, Xh ∈ D2), which implies that

Ex(η(Xh))ν2(· ∩D2) = η(x)Pν2(Xh ∈ · ∩D2) = e−λ2hη(x)ν2(· ∩D2),

so that Ex(η(Xh)) = e−λ2hη(x), and hence∥∥eλ2nPx(Xn+h ∈ ·, Xn+h 6= ∂)− e−λ2hη(x)ν2(· ∩D2)
∥∥
TV
−−−−→
n→+∞

0

Since the convergence holds uniformly in h ∈ [0, 1], this concludes the proof
of (4) in the continuous time setting. The uniqueness of the quasi-stationary
distribution is immediate, since any quasi-stationary distribution for (Xt)t∈R+

is also a quasi-stationary distribution for (Xn)n∈Z+ .

Let us do some remarks before passing to the second set of assumptions.

Remark 2.1. In the proof, the speed of convergence in the above theorem
are explicit in terms of the quantities appearing in the assumptions. In
particular, if Assumption QSD2 holds true with

e(λ2+ε)t sup
x∈D1

Px (Xt ∈ D1) −−−−→
t→+∞

0,

for some ε > 0, then the convergence in (4) is exponential.

Remark 2.2. Non-uniform speed of convergence can also be proved under
weaker form of Assumption QSD2. For instance if (3) holds true and if, for
some x ∈ D1, e

λ2tPx(Xt ∈ D1) ≤ f(t) with f non-increasing and L1 on R+

(but non-uniformly in x ∈ D1), then,∥∥eλ2nPx(Xn ∈ ·)− η(x)ν2(· ∩D2)
∥∥
TV
−−−−→
n→+∞

0.

Remark 2.3. The use of the absorbed Markov process setting is for conve-
nience only: the above result applies more generally to semi-groups on L∞(D)
admitting an isolated simple leading eigenvalue λ ∈ C.
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2.2 Exponential convergence on D1 and faster absorb-
tion in D2

Let us now state our second set of assumptions.

Assumption QSD1. There exist a positive function η1 on D1, a probability
measure ν1 on D1, a constant λ1 > 0, and positive constants C1, γ1 > 0 such
that∥∥eλ1tPx(Xt ∈ ·, Xt ∈ D1)− η1(x)ν1(·)

∥∥
TV
≤ C1e

−γ1t, ∀x ∈ D1, t ≥ 0. (9)

In addition, for all t ≥ 0,

eλ1t sup
x∈D2

Px(Xt ∈ D2) ≤ f(t) (10)

where f is non-decreasing and L1 on R+.
Assumption QSD1 is very similar to Assumption QSD2, except that

this assumption now deals with the quasi-stationarity for the restriction
of the process X considered as absorbed by D2 ∪ {∂}. Similarly to As-
sumption QSD2, Assumption QSD1 entails that η1 is bounded, η1(x) =
limt→∞ e

λ1tPx(Xt ∈ D1) for all x ∈ D1, and that ν1 is a quasi-stationary
distribution for the process X considered as absorbed by D2∪{∂}. The con-
dition (10) tells that supx∈D2

Px(Xt 6= ∂) vanishes faster than the probability
of survival starting from the quasi-stationary distribution ν1.

Theorem 2.2. Under Assumption QSD1, there exists a positive finite mea-
sure ν on D such that

sup
x∈D

∥∥eλ1tPx(Xt ∈ ·, Xt 6= ∂)− η(x)ν
∥∥
TV
−−−−→
t→+∞

0, (11)

where η(x) = η1(x) for all x ∈ D1 and η(x) = 0 for all x ∈ D2. In ad-
dition, ν/ν(D) is the unique quasi-stationary distribution of X such that
ν(D1)/ν(D) > 0.

Hence, (11) entails that Px(Xt ∈ ·|Xt 6= ∂) converges in total variation
towards ν/ν(D). Note also that Assumption QSD1 does not tell anything
on the convergence of Px(Xt ∈ ·|Xt 6= ∂) when x ∈ D2.

Remark 2.4. Similarly as in Remark 2.1, if

e(λ1+ε)t sup
x∈D2

Px(Xk ∈ D2)→ 0

for some ε > 0, then the convergence in (11) is exponential.
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Remark 2.5. Similarly as in Remark 2.2, if (9) holds true and if
∞∑
k=0

eλ1k sup
x∈D2

Px(Xk ∈ A) < +∞.

for some measurable A ⊂ D, then

sup
x∈D1

∣∣eλ1nPx(Xn ∈ A)− η1(x)ν(A)
∣∣ −−−−→
n→+∞

0.

This last case is particularly interesting, since it applies to situations where
ν is not necessarily a finite measure (one may have ν(D2) = +∞).

Proof of Theorem 2.2. We only prove the result in the discrete-time setting.
The adaptation to the continuous-time setting follows from the same argu-
ment as in the proof of Theorem 2.1.

Fix x ∈ D1. The result is an immediate consequence of (9) if A ⊂ D1

with ν(· ∩ D1) = ν1. It remains to consider the case A ⊂ D2, the general
case being obtained by linearity. For all measurable A ⊂ D2 and all x ∈ D1,
we have, for all k ∈ {0, . . . , n− 1},∣∣Ex (1τc1=n−kPXn−k(Xk ∈ A)

)
− η1(x)e−λ1(n−k−1)Eν1

(
1τc1=1 1Xk+1∈A

)∣∣
=
∣∣Ex (fA(Xn−k−1)1n−k−1<τc1

)
− η1(x)e−λ1(n−k−1)ν1(fA)

∣∣
where, for all y ∈ D1, fA(y) = Py(X1 6∈ D1, Xk+1 ∈ A), and where τ c1
was defined in the proof of Theorem 2.1. By Markov’s property, we have
fA(y) ≤ supz∈D2

Pz(Xk ∈ A). Hence, according to (9), we have∣∣Ex (1τc1=n−kPXn−k(Xk ∈ A)
)
− η1(x)e−λ1(n−k−1)Eν1

(
1τc1=1 1Xk+1∈A

)∣∣
≤ C1e

−λ1ne−γ1(n−k−1)
(
eλ1(k+1) sup

z∈D2

Pz(Xk ∈ A)

)
≤ C1e

−λ1ne−γ1(n−k−1)eλ1f(k).

Summing over k ∈ {0, . . . , n− 1} and multiplying by eλ1n, we get∣∣∣∣∣eλ1nPx (Xn ∈ A)− η1(x)
n−1∑
k=0

eλ1(k+1)Eν1
(
1τc1=1 1Xk+1∈A

)∣∣∣∣∣
≤ C1e

−γ1n
n−1∑
k=0

eγ1(k+1)eλ1(k+1) sup
z∈D2

Pz(Xk ∈ A)

≤ C1e
λ1

n−1∑
k=0

e−γ1(n−k−1)f(k),
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where the right hand term goes to 0 when n → +∞. Finally, we observe
that

+∞∑
k=n

eλ1(k+1)Eν1
(
1τc1=1 1Xk+1∈A

)
≤

+∞∑
k=n

eλ1(k+1) sup
z∈D2

Px(Xk ∈ A)

≤ eλ1
∫ +∞

n−1
f(t)dt,

which also goes to 0 when n → +∞ under the assumption (10). This con-
cludes the proof of (11) with

ν(A) := ν2(A ∩D1) +
+∞∑
k=0

eλ1(k+1)Eν1
(
1τc1=1 1Xk+1∈A∩D2

)
In particular, ν/ν(D) is a quasi-limiting distribution of X and is thus a
quasi-stationary distribution.

To conclude, let ν ′ be a quasi-stationary distribution for X such that
ν ′(D1) > 0. Integrating (11) with respect to ν ′ and noting that ν ′(η1) > 0,
we deduce that the exponential absorption rate of ν ′ is λ1 and that ν/ν(D)
is a quasi-limiting distribution for X starting from ν ′, and thus ν = ν ′.

2.3 Exponential convergence in D1 and D2 with the
same rate

Let us now present our last set of assumptions.

Assumption QSD1-2. There exist two positive functions η1 on D1 and η2
on D2, two probability measures ν1 on D1 and ν2 on D2, a positive constant
λ0 > 0, and positive constants C1, γ1, C2, γ2 > 0 such that (9) and (3) hold
true with λ1 = λ2 = λ0.

In other terms, ν2 and ν1 are the quasi-stationary distributions for X
respectively started from D2 and absorbed at ∂, and started from D1 and
absorbed at D2 ∪{∂}, associated to the same absorption rate λ0 > 0. Under
this assumption, we have the following result.

Theorem 2.3. Under Assumption QSD1-2, the process admits ν2(· ∩D2) as
unique quasi-stationary distribution and

sup
x∈D1

∥∥∥∥eλ0tt Px (Xt ∈ ·, Xt ∈ D2)− η(x)ν2(· ∩D2)

∥∥∥∥
TV

≤ C

t+ 1
, (12)
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where η is a positive function on D1 and C is a positive constant.

In particular, Malthusian behavior (3) does not hold for x ∈ D1. However,
(12) still entails that the probability measure Px(Xt ∈ ·|Xt 6= ∂) converges
in total variation towards ν2 for all x ∈ D1 (and also for all x ∈ D2 by
Hypothesis (3)).

Proof of Theorem 2.3. As for the proof of Theorem 2.1, we only deal with
the discrete-time setting.

Fix x ∈ D1 and measurable set A ⊂ D2. For all k ≥ 0, we have, using (3)
(recall that λ1 = λ2 = λ0),∣∣eλ0(k+1)Pν1(τ c1 = 1, Xk+1 ∈ A)− eλ0Eν1

(
1τc1=1η2(X1)

)
ν2(A)

∣∣ ≤ eλ0C2e
−γ2k,

(13)

where τ c1 was defined in the proof of Theorem 2.1. Moreover, for all n ≥ 1
and k ∈ {0, . . . , n− 1},∣∣eλ0(k+1)η1(x)Pν1(τ c1 = 1, Xk+1 ∈ A)− eλ0nEx

(
1τc1=n−k 1Xn∈A

)∣∣
= eλ0(k+1)

∣∣η1(x)ν1(fA)− eλ0(n−k−1)Ex (fA(Xn−k−1))
∣∣ ,

where fA(y) = Py(τ c1 = 1, Xk+1 ∈ A) ≤ supz∈D2
Pz(Xk ∈ D2). Hence

using (9), we deduce that∣∣eλ0(k+1)η1(x)Pν1(τ 1c = 1, Xk+1 ∈ A)− eλ0nEx
(
1τc1=n−k 1Xn∈A

)∣∣
≤ eλ0(k+1)C1e

−γ1(n−k−1) sup
z∈D2

Pz(Xk ∈ D2)

= C1e
λ0e−γ1(n−k−1) sup

z∈D2

eλ0kPz(Xk ∈ D2),

where, according to (3), supz∈D2
eλ0kPz(Xk ∈ D2) is uniformly bounded in k

by C2 + ‖η2‖∞. This, (13) and summing over k ∈ {0, . . . , n− 1} imply that∣∣eλ0nPx (Xn ∈ A)− neλ0η1(x)Eν1
(
1τc1=1η2(X1)

)
ν2(A)

∣∣
≤ C2η1(x)eλ0

∞∑
k=0

e−γ2k +
+∞∑
k=0

e−γ1kC1e
λ0(C2 + ‖η2‖∞).

This concludes the proof of (12) with η(x) := eλ0η1(x)Eν1
(
1τc1=1η2(X1)

)
.
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3 Proof of Theorem 1.1

We start with a proposition related to the theory of quasi-stationary distri-
butions for diffusion processes.

Proposition 3.1. There exist a positive function η2 : [3, 5) → (0,+∞), a
probability measure ν2 on [3, 5) and positive constants C2, λ2, γ2 > 0 such
that, for all α > 0 and for all probability measure µ on [3, 5),∥∥eαλ2tPµ (Xα

t ∈ · ∩ [3, 5))− µ(η2)ν2(·)
∥∥
TV
≤ C2 e

−αγ2t, ∀t ≥ 0. (14)

There exist a positive function η1 : (0, 2) → (0,+∞), a probability measure
ν1 on (0, 2) and positive constants C1, λ1, γ1 > 0 such that, for all probability
measure µ on (0, 2) and all α > 0,∥∥eλ1tPµ (Xα

t ∈ · ∩ (0, 2))− µ(η1)ν1(·)
∥∥
TV
≤ C1 e

−γ1t, ∀t ≥ 0. (15)

Proof of Proposition 3.1. For any α > 0, on the event Xα
0 ∈ [3, 5), the pro-

cess remains almost surely in [3, 5) until it reaches ∂D at the end point 5.
It is known (this can be proved for instance using Section 4.5 of [8]) that,
considering the process Xα restricted to [3, 5) absorbed when it reaches 5,
there exists a probability measure µα on [3, 5) (the quasi-stationary distribu-
tion of Xα restricted to [3, 5)), a positive function ζα : [3, 5)→ (0,+∞), and
positive constants cα, δα, δ

′
α > 0 such that, for all probability measure µ on

[3, 5), ∥∥eδαtPµ (Xα
t ∈ ·)− µ(ζα)µα(·)

∥∥
TV
≤ cα e

−δ′αt, ∀t ≥ 0. (16)

Also, since Law((Xα
t )t≥0) = Law((X1

αt)t≥0), we deduce that ζα = ζ1, µα = µ1

and δα = αδ1 for all α > 0. Moreover, on can take cα = c1 and δ′α = αδ′1.
Setting η2 = ζ2, ν2 = µ1, C2 = c1, λ2 = δ1 and γ2 = δ′1, this proves (14).

Similarly, the law of the process Xα restricted to (0, 2) and absorbed when
it reaches {0, 2} does not depend on α, and there exists a probability measure
ν1 on (0, 2) (the quasi-stationary distribution of the process Xα conditioned
to remain in (0, 2)), a positive function η1 : (0, 2) → (0,+∞) and positive
constants C1, λ1, γ1 > 0 such that, for all probability measure µ on (0, 2) and
all α > 0,∥∥eλ1tPµ (Xα

t ∈ ·, t < T0 ∧ T2)− µ(η1)µ1(·)
∥∥
TV
≤ C1 e

−γ1t, ∀t ≥ 0, (17)
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where Ta denotes the first hitting time of {a} (see again Section 4.5 in [8]).
Since the process cannot enter (0, 2) after time T0 ∧ T2, we deduce that
Pµ (Xα

t ∈ ·, t < T0 ∧ T2) = Pµ (Xα
t ∈ · ∩ (0, 2)). This concludes the proof of

Proposition 3.1.

We consider now the behaviour of the process with initial position in
[2, 3). For any α > 0 and x ∈ [2, 3), denote by (fαt (x))t≥0 the solution of the
ODE ∂fαt (x)/∂t = ψ1(fαt (x))+αψ2(fαt (x)) and fα0 (x) = x. For all x ∈ [2, 3),
denote by t3(x) = inf{t ≥ 0, fαt (x) = 3}, then

Px(Xα
t ∈ A) =

{
1fαt (x)∈A if fαt (x) < 3,

P3

(
Xα
t−t3(x) ∈ A

)
if fαt (x) ≥ 3,

where we used the strong Markov property at time T3 and the fact that Xα

is deterministic with drift equal to ψ1 + αψ2 on [2, 3] (so that T3 = t3(x)
Px-almost surely). In particular, we deduce from Proposition 3.1 that, for all
x ∈ [2, 3) and t ≥ t3(x),∥∥eαλ2(t−t3(x))Px (Xα

t ∈ ·)− η2(3)ν2(·)
∥∥
TV
≤ C2 e

−αγ2(t−t3(x))

and hence∥∥eαλ2tPx (Xα
t ∈ ·)− ηα(x)ν2(·)

∥∥
TV
≤ eα(λ2+γ2)t3(x)C2 e

−αγ2t ≤ C ′2 e
−αγ2t,

where ηα(x) := eαλ2t3(x)η2(3) and C ′2 = eα(λ2+γ2)t3(2)C2. By integration of the
last inequality and by (14), we thus proved that, for any initial distribution
in [2, 5), ∥∥eαλ2tPµ (Xα

t ∈ ·)− µ(ηα)ν2(·)
∥∥
TV
≤ C ′2 e

−αγ2t, ∀t ≥ 0, (18)

where

ηα(x) =

{
eαλ2t3(x)η2(3) if x ∈ [2, 3]

η2(x) if x ∈ [3, 5).

We are now in a position to apply the results of Section 2, with D1 = (0, 2)
and D2 = [2, 5).
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Case α < λ1/λ2. In this case we observe that Assumption QSD2 is satisfied
(of course with αλ2 instead of λ2). Indeed, on the one hand (3) is immediate
from (18), while, for all x ∈ D1,

sup
x∈D1

eαλ2tPx(Xt ∈ D1) ≤ e(αλ2−λ1)t (C1 + ‖η1‖∞) −−−−→
t→+∞

0

and is L1(R+), where we used (15). Moreover, we have Px(X1 ∈ D2) > 0
for all x ∈ D1 and hence, according to Theorem 2.1, ν2(· ∩D2) is the unique
quasi-stationary distribution ν for the process Xα absorbed at {0, 5}, and (4)
implies that, for all probability measure µ on D,

Φα
t (µ)

TV−−−−→
t→+∞

ν2(· ∩D2).

Case α = λ1/λ2. In this case, we observe that Assumption QSD1-2 is
satisfied. To deduce the convergence of Φα

t (µ), we need to distinguish two
cases: either µ(D1) = 0 and then the fact that

Φα
t (µ)

TV−−−−→
t→+∞

ν2(· ∩D2).

follows from (3), or µ(D1) > 0 and then it follows from (9), (3) and (12)
that, on the one hand,

eλ0t

t
Pµ(Xt 6= ∂) =

eλ0t

t
Pµ(Xt ∈ D1)+

eλ0t

t
Pµ(Xt ∈ D2, Xt 6= ∂) −−−−→

t→+∞
µ(η) > 0

and on the other hand, that for all A ⊂ D1 ∪D2 measurable,

eλ0t

t
Pµ(Xt ∈ A) =

eλ0t

t
Pµ(Xt ∈ A∩D1)+

eλ0t

t
Pµ(Xt ∈ A∩D2) −−−−→

t→+∞
µ(η)ν2(A∩D2),

where the convergence is uniform with respect to A. Hence, in all cases,

Φα
t (µ)

TV−−−−→
t→+∞

ν2(· ∩D2).

Case α > λ1/λ2. In this case, we observe that Assumption QSD1 is satis-
fied. Indeed, on the one hand (9) holds true, while, for all x ∈ D2,∑

k∈Z+

sup
x∈D2

eλ1kPx(Xk ∈ D2) ≤
∑
k∈Z+

e(λ1−αλ2)k (C ′2 + ‖ηα‖∞) < +∞,
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where we used (18) and αλ2 > λ1. Then, (11) in Theorem 2.2 implies that
there exists a probability measure ν on D such that ν(D1) > 0 and such
that, for all probability measure µ on D such that µ(D1) > 0,

Φα
t (µ)

TV−−−−→
t→+∞

ν.

In addition, (18) entails that, for all probability measure µ on D such that
µ(D1) = 0,

Φα
t (µ)

TV−−−−→
t→+∞

ν2(· ∩D2).

This concludes the proof of Theorem 1.1.
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