Home  -   Research  -   Publications  -   Job offers  -   Curriculum vitæ   -   Teaching   -   Links



Publications


Submitted preprints
  1. Champagnat, N., Gégout-Petit, A., Rago, A. Semi-Lasso: a weighted Lasso designed for the integration of known regressors in linear model.
     
  2. Benaïm, M., Champagnat, N., Oçafrain, W., Villemonais, D. Quasi-compactness criterion for strong Feller kernels with an application to quasi-stationary distributions.
     
  3. Champagnat, N., Strickler, E. and Villemonais, D. Uniform Wasserstein convergence of penalized Markov processes
     
  4. Champagnat, N., Villemonais, D. Quasi-stationary distributions in reducible state spaces.
     

Articles in peer-reviewed international journals
  1. Champagnat, N., Hass, V. Convergence of individual-based models with small and frequent mutations to the canonical equation of adaptive dynamics.To appear in The Annals of Applied Probability (2024).
     
  2. Benaïm, M., Champagnat, N., Oçafrain, W., Villemonais, D. Degenerate processes killed at the boundary of a domain. To appear in The Annals of Probability (2024).
     
  3. Loubaton, R., Champagnat, N., Vallois, P. and Vallat, L. MultiRNAflow: integrated analysis of temporal RNA-seq data with multiple biological conditions. To appear in Bioinformatics (2024).
     
  4. Champagnat, N., Méléard, S., Mirrahimi, S., Tran, V. C. Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations. Journal de l'Ecole Polytechnique, vol. 10, pp. 1247-1275 (2023).
     
  5. Champagnat, N., Hass, V. Existence, uniqueness and ergodicity for the centered Fleming-Viot process. Stochastic Processes and their Applications, vol. 166, 104219 (2023).
     
  6. Champagnat, N., Villemonais, D. General criteria for the study of quasi-stationarity. Electronic Journal of Probability, vol. 28, pp. 1-84 (2023).
     
  7. Benaïm, M., Champagnat, N., Oçafrain, W., Villemonais, D. Transcritical bifurcation for the conditional distribution of a diffusion process.
    Journal of Theoretical Probability (2022). https://doi.org/10.1007/s10959-022-01216-7
     
  8. Fritsch, C., Champagnat, N., Billiard, S. Identifying conversion efficiency as a key mechanism underlying food webs evolution: A step forward, or backward?
    OIKOS, vol. 130, no. 6, pp. 904-930 (2021)
     
  9. Champagnat, N., Villemonais, D. Lyapunov criteria for uniform convergence of conditional distributions of absorbed Markov processes.
    Stochastic Processes and their Applications, vol. 135, pp. 51-74 (2021).
     
  10. Benaïm, M., Champagnat, N., Villemonais, D. Stochastic approximation of quasi-stationary distributions for diffusion processes in a bounded domain.
    Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, vol. 57, no. 2, pp. 726-739 (2021).
     
  11. Champagnat, N., Méléard, S., Tran, V. C. Stochastic analysis of emergence of evolutionary cyclic behavior in population dynamics with transfer.
    The Annals of Applied Probability, vol. 31, no.4, pp. 1820-1867 (2021).
     
  12. Champagnat, N., Schott, R.,Villemonais, D. Probabilistic Non-asymptotic Analysis of Distributed Algorithms.
    Stochastic Analysis and Applications, vol. 36, no. 6, 981-998 (2021).
     
  13. Champagnat, N., Villemonais, D. Practical criteria for R-positive recurrence of unbounded semigroups.
    Electronic Communications in Probability, vol. 25, paper no. 6, pp. 1-11 (2020).
     
  14. Champagnat, N., Villemonais, D. Convergence of the Fleming-Viot process toward the minimal quasi-stationary distribution.
    ALEA - Latin American Journal of Probability and Mathematical Statistics, vol. 18, pp. 1-15 (2021).
     
  15. Andrade-Restrepo, M., Champagnat, N., Ferrière, R. Local adaptation, dispersal evolution, and the spatial eco-evolutionary dynamics of invasion.
    Ecology Letters, vol. 22, no. 5, pp. 767-777 (2019).
     
  16. Champagnat, N., Henry, B. A probabilistic approach to Dirac concentration in nonlocal models of adaptation with several resources.
    The Annals of Applied Probability, vol. 29, no. 4, pp. 2175-2216 (2019).
     
  17. Champagnat, N., Claisse, J. On the link between infinite horizon control and quasi-stationary distributions.
    Stochastic Processes and their Applications, vol. 129, no. 3, pp. 771-798 (2019).
     
  18. Champagnat, N., Villemonais, D. Uniform convergence of time-inhomogeneous penalized Markov processes.
    ESAIM: Probability & Statistics, vol. 22, pp. 129-162 (2018).
     
  19. Champagnat, N., Coulibaly-Pasquier, K., Villemonais, D. Criteria for exponential convergence to quasi-stationary distributions and applications to multi-dimensional diffusions.
    Séminaire de Probabilités XLIX, pp. 165-182, Lecture Notes in Mathematics 2215, Springer (2018).
     
  20. Champagnat, N., Villemonais, D. Uniform convergence of conditional distributions for absorbed one-dimensional diffusions.
    Advances in Applied Probability, vol. 50, no. 1, pp. 178-203 (2018).
     
  21. Champagnat, N., Jabin, P.-E. Strong solutions to stochastic differential equations with rough coefficients.
    The Annals of Probability, vol. 46, no. 3, pp. 1498-1541 (2018).
     
  22. Champagnat, N., Villemonais, D. Uniform convergence to the Q-process.
    Electronic Communications in Probability, vol. 22, paper no. 33, 7 pp. (2017).
     
  23. Campillo, F., Champagnat, N., Fritsch, C. On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models.
    Communications in Mathematical Sciences, vol. 15, No. 7, pp. 1801-1819 (2017).
     
  24. Champagnat, N., Villemonais, D. Exponential convergence to quasi-stationary distribution for absorbed one-dimensional diffusions with killing.
    ALEA - Latin American Journal of Probability and Mathematical Statistics, vol. XIV, pp. 177-199 (2017).
     
  25. Champagnat, N., Henry, B. Moments of the frequency spectrum of a splitting tree with neutral Poissonian mutations.
    Electronic Journal of Probability, vol. 21, paper no. 53, 1-34 (2016).
     
  26. Baar, M., Bovier, A., Champagnat, N. From stochastic, individual-based models to the canonical equation of adaptive dynamics - In one step.
    The Annals of Applied Probability, 27, no. 2, 1093-1170 (2017).
     
  27. Campillo, F., Champagnat, N., Fritsch, C. Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models.
    Journal of Mathematical Biology, 73, no. 6, 1781-1821 (2016).
     
  28. Salhi, K., Deaconu, M., Lejay, A., Champagnat, N., Navet, N. Regime switching model for financial data: empirical risk analysis.
    Physica A: Statistical Mechanics and its Applications, 461, 148-157 (2016).
     
  29. Champagnat, N., Villemonais, D. Exponential convergence to quasi-stationary distribution and Q-process.
    Probability Theory and Related Fields, 164, no. 1, 243-283 (2016).
     
  30. Bossy, M., Champagnat, N., Leman, H., Maire, S., Violeau, L. and Yvinec, M. Monte Carlo methods for linear and non-linear Poisson-Boltzmann equation.
    ESAIM:Proceedings and Surveys, 48, 420-446 (2015).
     
  31. Champagnat, N., Jabin, P.-E., S. Méléard. Adaptive dynamics in a stochastic multi-resources chemostat model.
    Journal de Mathématiques Pures et Appliquées 101, no. 6, 755-788 (2014).
     
  32. Champagnat, N., Lambert, A. Splitting trees with neutral Poissonian mutations II: Largest and oldest families.
    Stochastic Processes and their Applications 123, no. 4, 1368-1414 (2013).
     
  33. Champagnat, N., Lambert, A., Richard, M. Birth and death processes with neutral mutations.
    International Journal of Stochastic Analysis 2012, article ID 569081, 20 pages (2012).
     
  34. Champagnat, N., Diaconis, P., Miclo, L. On Dirichlet eigenvectors for neutral two-dimensional Markov chains
    Electronic Journal of Probability 17, no. 63, 1-41 (2012).
     
  35. Campillo, F., Champagnat, N. Simulation and analysis of an individual-based model for graph-structured plant dynamics.
    Ecological Modelling, 234, 93-105 (2012).
     
  36. Champagnat, N., Lambert, A. Splitting trees with neutral Poissonian mutations I: Small families.
    Stochastic Processes and their Applications 122, no. 3, 1003-1033 (2012).
     
  37. Champagnat, N., Jabin, P.-E. The evolutionary limit for models of populations interacting competitively via several resources.
    Journal of Differential Equations 261, 179-195 (2011).
     
  38. Champagnat, N., Chipot, C. and Faou, E. Reconciling alternate methods for the determination of charge distributions: A probabilistic approach to high-dimensional least-squares approximations.
    Journal of Mathematical Chemistry 49, no. 1, 296-324 (2011).
     
  39. Champagnat, N., Méléard, S. Polymorphic evolution sequence and evolutionary branching.
    Probability Theory and Related Fields 151, no. 1-2, 45-94 (2011).
     
  40. Champagnat, N., Jabin, P.-E., Raoul, G. Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems.
    Comptes Rendus Mathématiques de l'Académie des Sciences de Paris 348, no. 23-24, 1267-1272 (2010).
     
  41. Champagnat, N., Jabin, P.-E. Well-posedness in any dimension for Hamiltonian flows with non BV force terms.
    Communications in Partial Differential Equations 35, no. 5, 786-816 (2010).
     
  42. Bossy, M., Champagnat, N., Maire, S., Talay, D. Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics.
    ESAIM - Mathematical Modelling and Numerical Analysis 44, no. 5, 997-1048 (2010).
     
  43. Champagnat, N. Large deviations for singular and degenerate diffusion models in adaptive evolution.
    Markov Processes and Related Fields 15, no. 3, 289-342 (2009).
     
  44. Champagnat, N., Ferrière, R., Méléard, S. From individual stochastic processes to macroscopic models in adaptive evolution.
    Stoch. Models 24, Suppl. 1, 2-44 (2008).
     
  45. Champagnat, N., Roelly, S. Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions.
    Electron. J. Probab. 13, no. 25, 777-810 (2008).
     
  46. Champagnat, N. Méléard, S. Invasion and adaptive evolution for individual-based spatially structured populations.
    J. Math. Biol. 55, 147-188 (2007).
     
  47. Champagnat, N., Lambert, A. Evolution of discrete populations and the canonical diffusion of adaptive dynamics.
    Ann. Appl. Prob. 17, 102-155 (2007).
     
  48. Champagnat, N. A microscopic interpretation for adaptive dynamics trait substitution sequence models.
    Stoch. Proc. Appl. 116, 1127-1160 (2006).
     
  49. Champagnat, N., Ferrière, R., Méléard, S. Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models.
    Theor. Popul. Biol. 69, 297-321 (2006).
     
  50. Champagnat, N., Ferrière, R., Ben Arous, G. The canonical equation of adaptive dynamics: a mathematical view.
    Selection 2, 73-83 (2001).
     

Articles in peer-reviewed proceedings
  1. Champagnat, N., Méléard, S., Tran, V. C. Multi-scale eco-evolutionary models: from individuals to populations. Proceedings of ICM 2022, vol. VII, pp. 5656-5678 (2023).
     
  2. Champagnat, N., Lambert, A. Adaptive dynamics in logistic branching population.
    Banach Center Publ., vol. 80, Polish Acad. Sci., pp. 235-244 (2008).
     
  3. Champagnat, N., Ferrière, R., Méléard, S. Individual-based probabilistic models of adaptive evolution and various scaling approximations.
    In: Seminar on Stochastic Analysis, Random Fields and Applications V, Centro Stefano Franscini, Ascona, May 2005, Eds. Robert C. Dalang, Marco Dozzi and Francesco Russo, Progress in Probability vol. 59, Birkhaüser, pp. 75-114 (2008).
     

Articles in peer-reviewed scientific encyclopedias
  1. Bossy, M., Champagnat, N. Markov processes and parabolic partial differential equations.
    Encyclopedia of Quantitative Finance, Wiley (2010).
     

Reports of industrial collaborations
  1. Champagnat, N., Deaconu, M., Lejay, A. Méthodes de calcul de la Value-at-Risk et de la Conditional Value-at-Risk.
    Final report of collaboration between the SME Alphability and the TOSCA team of Inria Nancy - Grand Est (2016).
     
  2. Champagnat, N., Deaconu, M., Lejay, A. and Bedoui, A. Analyse de dépendance d'actifs financiers par la méthode des copules.
    Final report of collaboration between the SME Alphability and the TOSCA team of Inria Nancy - Grand Est (2014).
     
  3. Champagnat, N., Deaconu, M., Lejay, A. and Salhi, K. Mesure de risque : détection du régime de crise et calcul de la Value-at-Risk.
    Final report of collaboration between the SME Alphability and the TOSCA team of Inria Nancy - Grand Est (2013).
     
  4. Boukherouaa, S., Champagnat, N., Deaconu, M., Lejay, A. Mesure de risques : calcul de la Value-at-Risk et application à la gestion de portefeuilles.
    Final report of collaboration between the SME Alphability and the TOSCA team of Inria Nancy - Grand Est (2012).
     
  5. Champagnat, N., Maroso, S., Talay, D. and Tanré, E. Numerical approximation for impulse control problem with delay.
    Final report of collaboration between NATIXIS and the TOSCA team of Inria Sophia Antipolis - Méditerranée.
     

Unpublished articles
  1. Champagnat, N., Villemonais, D. Population processes with unbounded extinction rate conditioned to non-extinction.
     
  2. Champagnat, N., Villemonais, D. Quasi-stationary distribution for multi-dimensional birth and death processes conditioned to survival of all coordinates.
     
  3. Champagnat, N., Deaconu, M., Lejay, A., Navet, N., Boukherouaa, S. An empirical analysis of heavy-tails behavior of financial data: The case for power laws (2013).
     

Habilitation and Ph.D. Thesis

See also on HAL, arXiv or Google Scholar.



Back to